51
|
Azcárate-García M, Ruiz-Rodríguez M, Díaz-Lora S, Ruiz-Castellano C, Martín-Vivaldi M, Figuerola J, Martínez-de la Puente J, Tomás G, Pérez-Contreras T, Soler JJ. Ornamental Throat Feathers Predict Telomere Dynamic and Hatching Success in Spotless Starling (Sturnus unicolor) Males. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
52
|
Pineda-Pampliega J, Herrera-Dueñas A, Mulder E, Aguirre JI, Höfle U, Verhulst S. Antioxidant supplementation slows telomere shortening in free-living white stork chicks. Proc Biol Sci 2020; 287:20191917. [PMID: 31937223 DOI: 10.1098/rspb.2019.1917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomere length (TL) and shortening is increasingly shown to predict variation in survival and lifespan, raising the question of what causes variation in these traits. Oxidative stress is well known to accelerate telomere attrition in vitro, but its importance in vivo is largely hypothetical. We tested this hypothesis experimentally by supplementing white stork (Ciconia ciconia) chicks with antioxidants. Individuals received either a control treatment, or a supply of tocopherol (vitamin E) and selenium, which both have antioxidant properties. The antioxidant treatment increased the concentration of tocopherol for up to two weeks after treatment but did not affect growth. Using the telomere restriction fragment technique, we evaluated erythrocyte TL and its dynamics. Telomeres shortened significantly over the 21 days between the baseline and final sample, independent of sex, mass, size and hatching order. The antioxidant treatment significantly mitigated shortening rate of average TL (-31% in shorter telomeres; percentiles 10th, 20th and 30th). Thus, our results support the hypothesis that oxidative stress shortens telomeres in vivo.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Amparo Herrera-Dueñas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), 13071 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
53
|
Grunst AS, Grunst ML, Bervoets L, Pinxten R, Eens M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113373. [PMID: 31672366 DOI: 10.1016/j.envpol.2019.113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling design to compare telomere shortening and body condition between nestlings from four urban study sites south of Antwerp, Belgium, which are located at different distances from a metal pollution point source. In addition, we explored associations between metal exposure and telomere dynamics on the individual level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were present at concentrations above the limit of detection. To assess whether roadway-associated stressors (e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or body condition, despite elevated blood lead concentrations close to the metal pollution source (mean ± SE = 0.270 ± 0.095 μg/g wet weight at the most polluted study site), suggesting that nestlings may have some capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather, proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution. Our study highlights that traffic-related pollution, which is implicated in human health problems, might also affect urban wildlife.
Collapse
Affiliation(s)
- A S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - M L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - L Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, 2020, Antwerp, Belgium
| | - R Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000, Antwerp, Belgium
| | - M Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
54
|
The Psilocybin-Telomere Hypothesis: An empirically falsifiable prediction concerning the beneficial neuropsychopharmacological effects of psilocybin on genetic aging. Med Hypotheses 2020; 134:109406. [DOI: 10.1016/j.mehy.2019.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
55
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
56
|
Eastwood JR, Hall ML, Teunissen N, Kingma SA, Hidalgo Aranzamendi N, Fan M, Roast M, Verhulst S, Peters A. Early-life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Mol Ecol 2019; 28:1127-1137. [PMID: 30592345 DOI: 10.1111/mec.15002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022]
Abstract
Poor conditions during early development can initiate trade-offs that favour current survival at the expense of somatic maintenance and subsequently, future reproduction. However, the mechanisms that link early and late life-history are largely unknown. Recently it has been suggested that telomeres, the nucleoprotein structures at the terminal end of chromosomes, could link early-life conditions to lifespan and fitness. In wild purple-crowned fairy-wrens, we combined measurements of nestling telomere length (TL) with detailed life-history data to investigate whether early-life TL predicts fitness prospects. Our study differs from previous studies in the completeness of our fitness estimates in a highly philopatric population. The association between TL and survival was age-dependent with early-life TL having a positive effect on lifespan only among individuals that survived their first year. Early-life TL was not associated with the probability or age of gaining a breeding position. Interestingly, early-life TL was positively related to breeding duration, contribution to population growth and lifetime reproductive success because of their association with lifespan. Thus, early-life TL, which reflects growth, accumulated early-life stress and inherited TL, predicted fitness in birds that reached adulthood but not noticeably among fledglings. These findings suggest that a lack of investment in somatic maintenance during development particularly affects late life performance. This study demonstrates that factors in early-life are related to fitness prospects through lifespan, and suggests that the study of telomeres may provide insight into the underlying physiological mechanisms linking early- and late-life performance and trade-offs across a lifetime.
Collapse
Affiliation(s)
- Justin R Eastwood
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michelle L Hall
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia.,Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| | - Niki Teunissen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sjouke A Kingma
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Marie Fan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Roast
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
57
|
Chatelain M, Drobniak SM, Szulkin M. The association between stressors and telomeres in non‐human vertebrates: a meta‐analysis. Ecol Lett 2019; 23:381-398. [DOI: 10.1111/ele.13426] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Chatelain
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 30‐387 Kraków Poland
- Ecology & Evolution Research Centre School of Biological, Environmental and Earth Sciences University of New South Wales Sydney Australia
| | - Marta Szulkin
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| |
Collapse
|
58
|
Lindsay WR, Andersson S, Bererhi B, Höglund J, Johnsen A, Kvarnemo C, Leder EH, Lifjeld JT, Ninnes CE, Olsson M, Parker GA, Pizzari T, Qvarnström A, Safran RJ, Svensson O, Edwards SV. Endless forms of sexual selection. PeerJ 2019; 7:e7988. [PMID: 31720113 PMCID: PMC6839514 DOI: 10.7717/peerj.7988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the 'aesthetic sense' proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate 'null model' of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress.
Collapse
Affiliation(s)
- Willow R. Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Staffan Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Badreddine Bererhi
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erica H. Leder
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jan T. Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Calum E. Ninnes
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Geoff A. Parker
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States of America
| | - Ola Svensson
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
59
|
Criscuolo F, Cornell A, Zahn S, Williams TD. Oxidative status and telomere length are related to somatic and physiological maturation in chicks of European starlings ( Sturnus vulgaris). ACTA ACUST UNITED AC 2019; 222:jeb.204719. [PMID: 31548285 DOI: 10.1242/jeb.204719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Telomere length can be considered as an indicator of an organism's somatic state, long telomeres reflecting higher energy investment in self-maintenance. Early-life is a period of intense investment in somatic growth and in physiological maturation but how this is reflected in telomere length remains unclear. Using European starling chicks we tested: (i) how telomere length measured at asymptotic mass is related to proxies of somatic growth and physiological maturity in 17-day-old nestlings; (ii) how telomere length measured at 17 days then predicts the changes in somatic and physiological maturity occurring in fledglings (between 17 and 21 days); (iii) how growth and telomere length co-vary when chicks are under experimentally good (fed) growth conditions. Depending on environmental conditions, our data suggest links between somatic growth, physiological maturation and body maintenance parameters (positive with oxidative stress and negative with telomere length) in nestlings. Telomere length measured at day 17 predicted a subsequent change in physiological maturation variables observed in fledglings, but only in second-brood chicks: chicks with shorter telomeres had a higher pre-fledging rate of increase in haematocrit and haemoglobin content and a greater decrease in reticulocyte count. Finally, food supplementation of chicks did not change telomere length compared with that in control siblings. Our results suggest that physiological maturation prior to fledging may occur at the expense of telomere length but only when environmental conditions are sub-optimal.
Collapse
Affiliation(s)
- Francois Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France
| | - Allison Cornell
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| | - Sandrine Zahn
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| |
Collapse
|
60
|
Sudyka J. Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life‐History Strategies in Telomere Biology. Bioessays 2019; 41:e1900095. [DOI: 10.1002/bies.201900095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Joanna Sudyka
- Wild Urban Evolution and Ecology LabCentre of New Technologies (CeNT)University of Warsaw 02‐097 Warsaw Poland
| |
Collapse
|
61
|
McLennan D, Recknagel H, Elmer KR, Monaghan P. Distinct telomere differences within a reproductively bimodal common lizard population. Funct Ecol 2019; 33:1917-1927. [PMID: 31762528 PMCID: PMC6853248 DOI: 10.1111/1365-2435.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Different strategies of reproductive mode, either oviparity (egg-laying) or viviparity (live-bearing), will be associated with a range of other life-history differences that are expected to affect patterns of ageing and longevity. It is usually difficult to compare the effects of alternative reproductive modes because of evolutionary and ecological divergence. However, the very rare exemplars of reproductive bimodality, in which different modes exist within a single species, offer an opportunity for robust and controlled comparisons.One trait of interest that could be associated with life history, ageing and longevity is the length of the telomeres, which form protective caps at the chromosome ends and are generally considered a good indicator of cellular health. The shortening of these telomeres has been linked to stressful conditions; therefore, it is possible that differing reproductive costs will influence patterns of telomere loss. This is important because a number of studies have linked a shorter telomere length to reduced survival.Here, we have studied maternal and offspring telomere dynamics in the common lizard (Zootoca vivipara). Our study has focused on a population where oviparous and viviparous individuals co-occur in the same habitat and occasionally interbreed to form admixed individuals.While viviparity confers many advantages for offspring, it might also incur substantial costs for the mother, for example require more energy. Therefore, we predicted that viviparous mothers would have relatively shorter telomeres than oviparous mothers, with admixed mothers having intermediate telomere lengths. There is thought to be a heritable component to telomere length; therefore, we also hypothesized that offspring would follow the same pattern as the mothers.Contrary to our predictions, the viviparous mothers and offspring had the longest telomeres, and the oviparous mothers and offspring had the shortest telomeres. The differing telomere lengths may have evolved as an effect of the life-history divergence between the reproductive modes, for example due to the increased growth rate that viviparous individuals may undergo to reach a similar size at reproduction. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13408/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
62
|
Lieshout SHJ, Bretman A, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Individual variation in early‐life telomere length and survival in a wild mammal. Mol Ecol 2019; 28:4152-4165. [DOI: 10.1111/mec.15212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Amanda Bretman
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Christina D. Buesching
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
63
|
Jiang Y, Zhu D, Liu W, Qin Q, Fang Z, Pan Z. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness. Stem Cell Res Ther 2019; 10:198. [PMID: 31277696 PMCID: PMC6612207 DOI: 10.1186/s13287-019-1299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Follicle depletion is one of the causes of premature ovarian failure (POF) and primary ovarian insufficiency (POI). Hence, maintenance of a certain number of female germline stem cells (FGSCs) is optimal to produce oocytes and replenish the primordial follicle pool. The mechanism that regulates proliferation or stemness of FGSCs could contribute to restoring ovarian function, but it remains uncharacterized in postnatal mammalian ovaries. This study aims to investigate the mechanism by which inhibiting the activity of the hedgehog (Hh) signaling pathway regulates follicle development and FGSC proliferation. Methods and results To understand the role of the Hh pathway in ovarian aging, we measured Hh signaling activity at different reproductive ages and the correlation between them in physiological and pathological mice. Furthermore, we evaluated the follicle number and development and the changes in FGSC proliferation or stemness after blocking the Hh pathway in vitro and in vivo. In addition, we aimed to explain one of the mechanisms for the FGSC phenotype changes induced by treatment with the Hh pathway-specific inhibitor GANT61 via oxidative stress and apoptosis. The results show that the activity of Hh signaling is decreased in the ovaries in physiological aging and POF models, which is consistent with the trend of expression levels of the germline stem cell markers Mvh and Oct4. In vitro, blocking the Hh pathway causes follicular developmental disorders and depletes ovarian germ cells and FGSCs after treating ovaries with GANT61. The proliferation or stemness of cultured primary FGSCs is reduced when Hh activity is blocked. Our results show that the antioxidative enzyme level and the ratio of Bcl-2/Bax decrease, the expression level of caspase 3 increases, the mitochondrial membrane potential is abnormal, and ROS accumulate in this system. Conclusions We observed that the inhibition of the Hh signaling pathway with GANT61 could reduce primordial follicle number and decrease FGSC reproductive capacity or stemness through oxidative damage and apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Jiang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dantian Zhu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wenfeng Liu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiushi Qin
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi Fang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. .,Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
64
|
Singchat W, Kraichak E, Tawichasri P, Tawan T, Suntronpong A, Sillapaprayoon S, Phatcharakullawarawat R, Muangmai N, Suntrarachun S, Baicharoen S, Punyapornwithaya V, Peyachoknagul S, Chanhome L, Srikulnath K. Dynamics of telomere length in captive Siamese cobra ( Naja kaouthia) related to age and sex. Ecol Evol 2019; 9:6366-6377. [PMID: 31236227 PMCID: PMC6580288 DOI: 10.1002/ece3.5208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
Telomeres comprise tandem repeated DNA sequences that protect the ends of chromosomes from deterioration or fusion with neighboring chromosomes, and their lengths might vary with sex and age. Here, age- and sex-related telomere lengths in male and female captive Siamese cobras (Naja kaouthia) were investigated using quantitative real-time polymerase chain reaction based on cross-sectional data. A negative correlation was shown between telomere length and body size in males but not in females. Age-related sex differences were also recorded. Juvenile female snakes have shorter telomeres relative to males at up to 5 years of age, while body size also rapidly increases during this period. This suggests that an accelerated increase in telomere length of female cobra results from sex hormone stimulation to telomerase activity, reflecting sexually dimorphic phenotypic traits. This might also result from amplification of telomeric repeats on sex chromosomes. By contrast, female Siamese cobras older than 5 years had longer telomeres than males. Diverse sex hormone levels and oxidative stress parameters between sexes may affect telomere length.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
| | - Ekaphan Kraichak
- Department of Botany, Faculty of ScienceKasetsart UniversityBangkokThailand
| | - Panupong Tawichasri
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
| | - Tanapong Tawan
- Queen Saovabha Memorial Institute (QSMI)The Thai Red Cross SocietyBangkokThailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
| | | | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of FisheriesKasetsart UniversityBangkokThailand
| | | | - Sudarath Baicharoen
- Bureau of Conservation and ResearchZoological Park Organization under the Royal Patronage of His Majesty the King (ZPO)BangkokThailand
| | | | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute (QSMI)The Thai Red Cross SocietyBangkokThailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of GeneticsFaculty of ScienceKasetsart UniversityBangkokThailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University‐Kasetsart University (CASTNAR, NRU‐KU), Kasetsart UniversityBangkokThailand
- Center of Excellence on Agricultural Biotechnology (AG‐BIO/PERDO‐CHE)BangkokThailand
- Omics Center for Agriculture, Bioresources, Food and HealthKasetsart University (OmiKU)BangkokThailand
| |
Collapse
|
65
|
Pérez-Rodríguez L, Redondo T, Ruiz-Mata R, Camacho C, Moreno-Rueda G, Potti J. Vitamin E Supplementation—But Not Induced Oxidative Stress—Influences Telomere Dynamics During Early Development in Wild Passerines. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
66
|
Stevenson JR, McMahon EK, Boner W, Haussmann MF. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology 2019; 103:52-60. [PMID: 30640038 PMCID: PMC7476076 DOI: 10.1016/j.psyneuen.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023]
Abstract
Chronic stressors, such as chronic isolation in social mammals, can elevate glucocorticoids, which can affect cellular mechanisms of aging, including increased levels of oxidative stress and shortened telomere lengths. Recent work in the selectively social prairie vole (Microtus ochrogaster) suggests that oxytocin and social support may mitigate some of the negative consequences of social isolation, possibly by reducing glucocorticoid levels. We investigated the influences of isolation, social support, and daily oxytocin injections in female prairie voles. Glucocorticoid levels, oxidative damage, telomere length, and anhedonia, a behavioral index of depression, were measured throughout the study. We found that six weeks of chronic isolation led to increased glucocorticoid levels, oxidative damage, telomere degradation and anhedonia. However, daily oxytocin injections in isolated voles prevented these negative consequences. These findings demonstrate that chronic social isolation in female prairie voles is a potent stressor that results in depression-like behavior and accelerated cellular aging. Importantly, oxytocin can completely prevent the negative consequences of social isolation.
Collapse
Affiliation(s)
- Jennie R. Stevenson
- Department of Psychology, Bucknell University, Lewisburg, PA, USA,Corresponding author at: 215 O’Leary Center, 1 Dent Drive, Bucknell University, Lewisburg, PA, 17837, United States. (J.R. Stevenson)
| | | | - Winnie Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
67
|
Pegan TM, Winkler DW, Haussmann MF, Vitousek MN. Brief Increases in Corticosterone Affect Morphology, Stress Responses, and Telomere Length but Not Postfledging Movements in a Wild Songbird. Physiol Biochem Zool 2019; 92:274-285. [DOI: 10.1086/702827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
68
|
Angelier F, Weimerskirch H, Barbraud C, Chastel O. Is telomere length a molecular marker of individual quality? Insights from a long-lived bird. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13307] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé; CNRS-Université de La Rochelle, UMR-7372; Villiers-en-Bois France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé; CNRS-Université de La Rochelle, UMR-7372; Villiers-en-Bois France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé; CNRS-Université de La Rochelle, UMR-7372; Villiers-en-Bois France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé; CNRS-Université de La Rochelle, UMR-7372; Villiers-en-Bois France
| |
Collapse
|
69
|
Epigenetic inheritance of telomere length in wild birds. PLoS Genet 2019; 15:e1007827. [PMID: 30763308 PMCID: PMC6375570 DOI: 10.1371/journal.pgen.1007827] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Telomere length (TL) predicts health and survival across taxa. Variation in TL between individuals is thought to be largely of genetic origin, but telomere inheritance is unusual, because zygotes already express a TL phenotype, the TL of the parental gametes. Offspring TL changes with paternal age in many species including humans, presumably through age-related TL changes in sperm, suggesting an epigenetic inheritance mechanism. However, present evidence is based on cross-sectional analyses, and age at reproduction is confounded with between-father variation in TL. Furthermore, the quantitative importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring decreases with parental age within individual fathers, but not mothers. By cross-fostering eggs, we confirmed the paternal age effect to be independent of paternal age dependent care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL that was explained by paternal TL. This is a minimum estimate, because it ignores the epigenetic component in paternal TL variation and sperm TL heterogeneity within ejaculates. Our results indicate an important epigenetic component in the heritability of TL with potential consequences for offspring fitness prospects.
Collapse
|
70
|
Bauch C, Boonekamp JJ, Korsten P, Mulder E, Verhulst S. Epigenetic inheritance of telomere length in wild birds. PLoS Genet 2019; 15:e1007827. [PMID: 30763308 DOI: 10.1101/284208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 05/25/2023] Open
Abstract
Telomere length (TL) predicts health and survival across taxa. Variation in TL between individuals is thought to be largely of genetic origin, but telomere inheritance is unusual, because zygotes already express a TL phenotype, the TL of the parental gametes. Offspring TL changes with paternal age in many species including humans, presumably through age-related TL changes in sperm, suggesting an epigenetic inheritance mechanism. However, present evidence is based on cross-sectional analyses, and age at reproduction is confounded with between-father variation in TL. Furthermore, the quantitative importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring decreases with parental age within individual fathers, but not mothers. By cross-fostering eggs, we confirmed the paternal age effect to be independent of paternal age dependent care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL that was explained by paternal TL. This is a minimum estimate, because it ignores the epigenetic component in paternal TL variation and sperm TL heterogeneity within ejaculates. Our results indicate an important epigenetic component in the heritability of TL with potential consequences for offspring fitness prospects.
Collapse
Affiliation(s)
- Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
71
|
Sudyka J, Arct A, Drobniak SM, Gustafsson L, Cichoń M. Birds with high lifetime reproductive success experience increased telomere loss. Biol Lett 2019; 15:20180637. [PMID: 30958221 PMCID: PMC6371901 DOI: 10.1098/rsbl.2018.0637] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Lifetime reproductive success (LRS) is what counts in terms of evolution, but investments in reproduction entail costs for an organism. The idea that telomere dynamics may be shaped in response to such costs is already established; however, we still lack information on whether this relation translates to overall fitness. Here, we quantified LRS (number of fledged young) and longitudinal telomere dynamics of small passerine birds-the blue tits ( Cyanistes caeruleus). We found that individual telomere erosion rate was positively associated with lifetime fledgling number. Birds with more fledged young experienced increased telomere attrition. We show that telomere attrition rate, but not telomere length, is related to individual fitness and suggest that telomere dynamics may underlie reproductive costs experienced by animals as a consequence of prioritizing their lifetime fitness. This is the first study, to our knowledge, to provide evidence that more pronounced telomere erosion is associated with higher fitness gain.
Collapse
Affiliation(s)
- Joanna Sudyka
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Aneta Arct
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Lars Gustafsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
72
|
Apfelbeck B, Haussmann MF, Boner W, Flinks H, Griffiths K, Illera JC, Mortega KG, Sisson Z, Smiddy P, Helm B. Divergent patterns of telomere shortening in tropical compared to temperate stonechats. Ecol Evol 2019; 9:511-521. [PMID: 30680132 PMCID: PMC6342124 DOI: 10.1002/ece3.4769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Telomeres have emerged as important biomarkers of health and senescence as they predict chances of survival in various species. Tropical birds live in more benign environments with lower extrinsic mortality and higher juvenile and adult survival than temperate birds. Therefore, telomere biology may play a more important role in tropical compared to temperate birds. We measured mean telomere length of male stonechats (Saxicola spp.) at four age classes from tropical African and temperate European breeding regions. Tropical and temperate stonechats had similarly long telomeres as nestlings. However, while in tropical stonechats pre-breeding first-years had longer telomeres than nestlings, in temperate stonechats pre-breeding first-years had shorter telomeres than nestlings. During their first breeding season, telomere length was again similar between tropical and temperate stonechats. These patterns may indicate differential survival of high-quality juveniles in tropical environments. Alternatively, more favorable environmental conditions, that is, extended parental care, may enable tropical juveniles to minimize telomere shortening. As suggested by previous studies, our results imply that variation in life history and life span may be reflected in different patterns of telomere shortening rather than telomere length. Our data provide first evidence that distinct selective pressures in tropical and temperate environments may be reflected in diverging patterns of telomere loss in birds.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
| | | | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO‐CSIC‐PA), Oviedo UniversityMieresSpain
| | - Kim G. Mortega
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Migration and Immunoecology, Max‐Planck‐Institut für OrnithologieRadolfzellGermany
- Museum für Naturkunde—Leibniz‐Institut für Evolutions‐und BiodiversitätsforschungBerlinGermany
| | - Zachary Sisson
- Department of BiologyBucknell UniversityLewisburgPennsylvania
| | - Patrick Smiddy
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
73
|
Gil D, Alfonso-Iñiguez S, Pérez-Rodríguez L, Muriel J, Monclús R. Harsh conditions during early development influence telomere length in an altricial passerine: Links with oxidative stress and corticosteroids. J Evol Biol 2018; 32:111-125. [PMID: 30387533 DOI: 10.1111/jeb.13396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Stress during early development can induce substantial long-term effects in organisms. In the case of birds, despite growth compensations, nestlings reared under harsh conditions typically show reduced survival chances in adulthood. It has been proposed that environmental early-life stressors could affect longevity via effects on telomere length, possibly mediated through oxidative stress. However, the link between these processes is not clear. In this study, we experimentally manipulated brood size in spotless starlings (Sturnus unicolor) to test the causal relationship between early stress, oxidative and corticosterone-mediated stress and telomere shortening. Our results show that experimentally enlarged brood sizes led to a reduction in morphometric development on nestlings, the effect being stronger for females than males. Additionally, basal corticosterone levels increased with increasing brood size in female nestlings. Neither plasma antioxidant status nor malondialdehyde levels (a marker of lipid peroxidation) were affected by experimental brood size, although the levels of a key intracellular antioxidant (glutathione) decreased with increasing brood size. We found that the treatment showed a quadratic effect on nestling telomere lengths: these were shortened either by increases or by decreases in the original brood size. Our study provides experimental evidence for a link between developmental stress and telomere length, but does not support a direct causal link of this reduction with corticosterone or oxidative stress. We suggest that future studies should focus on how telomere length responds to additional markers of allostatic load.
Collapse
Affiliation(s)
- Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Sergio Alfonso-Iñiguez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jaime Muriel
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz, Spain
| | - Raquel Monclús
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
74
|
Grunst AS, Grunst ML, Gonser RA, Tuttle EM. Developmental stress and telomere dynamics in a genetically polymorphic species. J Evol Biol 2018; 32:134-143. [DOI: 10.1111/jeb.13400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea S. Grunst
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
- Department of Biology, Behavioural Ecology and Ecophysiology Research Group University of Antwerp Wilrijk Belgium
| | - Melissa L. Grunst
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
- Department of Biology, Behavioural Ecology and Ecophysiology Research Group University of Antwerp Wilrijk Belgium
| | - Rusty A. Gonser
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
| | - Elaina M. Tuttle
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
| |
Collapse
|
75
|
Olsson M, Friesen CR, Rollings N, Sudyka J, Lindsay W, Whittington CM, Wilson M. Long-term effects of superoxide and DNA repair on lizard telomeres. Mol Ecol 2018; 27:5154-5164. [PMID: 30368957 DOI: 10.1111/mec.14913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Telomeres are the non-coding protein-nucleotide "caps" at chromosome ends that contribute to chromosomal stability by protecting the coding parts of the linear DNA from shortening at cell division, and from erosion by reactive molecules. Recently, there has been some controversy between molecular and cell biologists, on the one hand, and evolutionary ecologists on the other, regarding whether reactive molecules erode telomeres during oxidative stress. Many studies of biochemistry and medicine have verified these relationships in cell culture, but other researchers have failed to find such effects in free-living vertebrates. Here, we use a novel approach to measure free radicals (superoxide), mitochondrial "content" (a combined measure of mitochondrial number and size in cells), telomere length and DNA damage at two primary time points during the mating season of an annual lizard species (Ctenophorus pictus). Superoxide levels early in the mating season vary widely and elevated levels predict shorter telomeres both at that time as well as several months later. These effects are likely driven by mitochondrial content, which significantly impacts late season superoxide (cells with more mitochondria have more superoxide), but superoxide effects on telomeres are counteracted by DNA repair as revealed by 8-hydroxy-2'-deoxyguanosine assays. We conclude that reactive oxygen species and DNA repair are fundamental for both short- and long-term regulation of lizard telomere length with pronounced effects of early season cellular stress detectable on telomere length near lizard death.
Collapse
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- School of Biological Sciences, The University of Wollongong, Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Biological Sciences, The University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicky Rollings
- School of Life and Environmental Sciences, Heydon-Laurence Building (A08), University of Sydney, Sydney, New South Wales, Australia
| | - Joanna Sudyka
- Wild Urban Evolution and Ecology Lab, Centre of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Willow Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Camilla M Whittington
- School of Life and Environmental Sciences, Heydon-Laurence Building (A08), University of Sydney, Sydney, New South Wales, Australia
| | - Mark Wilson
- School of Biological Sciences, The University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
76
|
Parolini M, Possenti CD, Romano A, Caprioli M, Rubolini D, Saino N. Perinatal variation and covariation of oxidative status and telomere length in yellow-legged gull chicks. Curr Zool 2018; 65:509-516. [PMID: 31616481 PMCID: PMC6784506 DOI: 10.1093/cz/zoy084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/10/2018] [Indexed: 11/17/2022] Open
Abstract
The perinatal period is critical to survival and performance of many organisms. In birds, rapid postnatal growth and sudden exposure to aerial oxygen around hatching markedly affect the chick redox status, with potentially negative consequences on physiology mediated by oxidative stress. In addition, telomere length (TL) undergoes reduction during birds’ early life, partly depending on oxidative status. However, relatively few studies have focused specifically on the changes in oxidative status and TL that occur immediately after hatching. In this study of the yellow-legged gull Larus michahellis, we found that chicks undergo a marked increase in plasma total antioxidant capacity and a marked decrease in the concentration of pro-oxidant molecules during the first days after hatching. In addition, TL in erythrocytes decreased by 1 standard deviation over the 4 days post-hatching. Body mass and tarsus length covaried with total antioxidant capacity and concentration of pro-oxidants in a complex way, that partly depended on sex and laying order, suggesting that oxidative status can affect growth. Moreover, TL positively covaried with the concentration of pro-oxidant molecules, possibly because retention of high concentrations of pro-oxidant molecules results from mechanisms of prevention of their negative effects, including reduction in TL. Thus, this study shows that chicks undergo marked variation in oxidative status, which predicts growth and subsequent TL, prompting for more studies of the perinatal changes in the critical post-hatching stages.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | | | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, Milan, Italy.,Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne, Switzerland
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
77
|
Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett 2018; 13:rsbl.2017.0463. [PMID: 29212750 DOI: 10.1098/rsbl.2017.0463] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
The length of telomeres, the protective caps of chromosomes, is increasingly used as a biomarker of individual health state because it has been shown to predict chances of survival in a range of endothermic species including humans. Oxidative stress is presumed to be a major cause of telomere shortening, but most evidence to date comes from in vitro cultured cells. The importance of oxidative stress as a determinant of telomere shortening in vivo remains less clear and has recently been questioned. We, therefore, reviewed correlative and experimental studies investigating the links between oxidative stress and telomere shortening in vivo While correlative studies provide equivocal support for a connection between oxidative stress and telomere attrition (10 of 18 studies), most experimental studies published so far (seven of eight studies) partially or fully support this hypothesis. Yet, this link seems to be tissue-dependent in some cases, or restricted to particular categories of individual (e.g. sex-dependent) in other cases. More experimental studies, especially those decreasing antioxidant protection or increasing pro-oxidant generation, are required to further our understanding of the importance of oxidative stress in determining telomere length in vivo Studies comparing growing versus adult individuals, or proliferative versus non-proliferative tissues would provide particularly important insights.
Collapse
Affiliation(s)
- Sophie Reichert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
78
|
McLennan D, Armstrong JD, Stewart DC, Mckelvey S, Boner W, Monaghan P, Metcalfe NB. Telomere elongation during early development is independent of environmental temperatures in Atlantic salmon. ACTA ACUST UNITED AC 2018; 221:jeb.178616. [PMID: 29636409 PMCID: PMC6031317 DOI: 10.1242/jeb.178616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
There is increasing evidence from endothermic vertebrates that telomeres, which cap the ends of chromosomes and play an important role in chromosome protection, decline in length during postnatal life and are a useful indicator of physiological state and expected lifespan. However, much less is currently known about telomere dynamics in ectothermic vertebrates, which are likely to differ from that of endotherms, at least in part due to the sensitivity of ectotherm physiology to environmental temperature. We report here on an experiment in which Atlantic salmon (Salmo salar) were reared through the embryonic and larval stages of development, and under differing temperatures, in order to examine the effects of environmental temperature during early life on telomere dynamics, oxidative DNA damage and cellular proliferation. Telomere length significantly increased between the embryonic and larval stages of development. Contrary to our expectations, variation in telomere length at the end of the larval stage was unrelated to either cell proliferation rate or the relative level of oxidative DNA damage, and did not vary between the temperature treatments. This study suggests that salmon are able to restore the length of their telomeres during early development, which may possibly help to buffer potentially harmful environmental effects experienced in early life. Summary: The authors show that, in salmon, telomeres significantly lengthen between the embryonic and larval stages of development, and that this is not influenced by environmental temperature.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Armstrong
- Marine Scotland-Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - David C Stewart
- Marine Scotland-Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - Simon Mckelvey
- Cromarty Firth Fishery Trust, CKD Galbraith, Reay House, 17 Old Edinburgh Road, Inverness, IV2 3HF
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
79
|
Bauer CM, Graham JL, Abolins-Abols M, Heidinger BJ, Ketterson ED, Greives TJ. Chronological and Biological Age Predict Seasonal Reproductive Timing: An Investigation of Clutch Initiation and Telomeres in Birds of Known Age. Am Nat 2018; 191:777-782. [PMID: 29750556 DOI: 10.1086/697224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Female vertebrates that breed earlier in the season generally have greater reproductive success. However, evidence suggests that breeding early may be costly, thus leading to the prediction that females with fewer future reproductive events will breed earlier in the season. While chronological age is a good indicator of remaining life span, telomere lengths may also be good biomarkers of longevity as they potentially reflect lifetime wear and tear (i.e., biological age). We examined whether variation in the timing of the first seasonal clutch was related to age and telomere length in female dark-eyed juncos (Junco hyemalis), predicting that older females and those with shorter telomeres would breed earlier. Both predictions held true and were independent of each other, as telomere length did not significantly vary with age. These results suggest that females may adjust their reproductive effort based on both chronological and biological age.
Collapse
|
80
|
Bateson M, Nettle D. Why are there associations between telomere length and behaviour? Philos Trans R Soc Lond B Biol Sci 2018; 373:20160438. [PMID: 29335363 PMCID: PMC5784059 DOI: 10.1098/rstb.2016.0438] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2017] [Indexed: 12/30/2022] Open
Abstract
Individual differences in telomere length are associated with individual differences in behaviour in humans and birds. Within the human epidemiological literature this association is assumed to result from specific behaviour patterns causing changes in telomere dynamics. We argue that selective adoption-the hypothesis that individuals with short telomeres are more likely to adopt specific behaviours-is an alternative worthy of consideration. Selective adoption could occur either because telomere length directly affects behaviour or because behaviour and telomere length are both affected by a third variable, such as exposure to early-life adversity. We present differential predictions of the causation and selective adoption hypotheses and describe how these could be tested with longitudinal data on telomere length. Crucially, if behaviour is causal then it should be associated with differential rates of telomere attrition. Using smoking behaviour as an example, we show that the evidence that smoking accelerates the rate of telomere attrition within individuals is currently weak. We conclude that the selective adoption hypothesis for the association between behaviour and telomere length is both mechanistically plausible and, if anything, more compatible with existing empirical evidence than the hypothesis that behaviour is causal.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Melissa Bateson
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Nettle
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
81
|
Monaghan P, Ozanne SE. Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160446. [PMID: 29335370 PMCID: PMC5784066 DOI: 10.1098/rstb.2016.0446] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/11/2023] Open
Abstract
Much telomere loss takes place during the period of most rapid growth when cell proliferation and potentially energy expenditure are high. Fast growth is linked to reduced longevity. Therefore, the effects of somatic cell proliferation on telomere loss and cell senescence might play a significant role in driving the growth-lifespan trade-off. While different species will have evolved a growth strategy that maximizes lifetime fitness, environmental conditions encountered during periods of growth will influence individual optima. In this review, we first discuss the routes by which altered cellular conditions could influence telomere loss in vertebrates, with a focus on oxidative stress in both in vitro and in vivo studies. We discuss the relationship between body growth and telomere length, and evaluate the empirical evidence that this relationship is generally negative. We further discuss the potentially conflicting hypotheses that arise when other factors are taken into account, and the further work that needs to be undertaken to disentangle confounding variables.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Level 4, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
82
|
Tricola GM, Simons MJP, Atema E, Boughton RK, Brown JL, Dearborn DC, Divoky G, Eimes JA, Huntington CE, Kitaysky AS, Juola FA, Lank DB, Litwa HP, Mulder EGA, Nisbet ICT, Okanoya K, Safran RJ, Schoech SJ, Schreiber EA, Thompson PM, Verhulst S, Wheelwright NT, Winkler DW, Young R, Vleck CM, Haussmann MF. The rate of telomere loss is related to maximum lifespan in birds. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160445. [PMID: 29335369 PMCID: PMC5784065 DOI: 10.1098/rstb.2016.0445] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Els Atema
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700AB Groningen, Netherlands
| | - Raoul K Boughton
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - J L Brown
- Department of Biological Sciences, University of Albany, Albany, NY 12222, USA
| | | | - G Divoky
- Friends of Cooper Island, Seattle, WA 98112, USA
| | - John A Eimes
- Department of Biological Sciences, University College, Sungkyunkwan University, Suwon 16419, Korea
| | | | | | - Frans A Juola
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Ellis G A Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700AB Groningen, Netherlands
| | | | - Kazuo Okanoya
- Department of Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stephan J Schoech
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - Elizabeth A Schreiber
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Paul M Thompson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700AB Groningen, Netherlands
| | | | - David W Winkler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Young
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | - Carol M Vleck
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
83
|
Cram DL, Monaghan P, Gillespie R, Clutton-Brock T. Effects of early-life competition and maternal nutrition on telomere lengths in wild meerkats. Proc Biol Sci 2018; 284:rspb.2017.1383. [PMID: 28855370 DOI: 10.1098/rspb.2017.1383] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Early-life adversity can affect health, survival and fitness later in life, and recent evidence suggests that telomere attrition may link early conditions with their delayed consequences. Here, we investigate the link between early-life competition and telomere length in wild meerkats. Our results show that, when multiple females breed concurrently, increases in the number of pups in the group are associated with shorter telomeres in pups. Given that pups from different litters compete for access to milk, we tested whether this effect is due to nutritional constraints on maternal milk production, by experimentally supplementing females' diets during gestation and lactation. While control pups facing high competition had shorter telomeres, the negative effects of pup number on telomere lengths were absent when maternal nutrition was experimentally improved. Shortened pup telomeres were associated with reduced survival to adulthood, suggesting that early-life competition for nutrition has detrimental fitness consequences that are reflected in telomere lengths. Dominant females commonly kill pups born to subordinates, thereby reducing competition and increasing growth rates of their own pups. Our work suggests that an additional benefit of infanticide may be that it also reduces telomere shortening caused by competition for resources, with associated benefits for offspring ageing profiles and longevity.
Collapse
Affiliation(s)
- Dominic L Cram
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK .,Kalahari Meerkat Project, Kuruman River Reserve, PO Box 64, Van Zylsrus, Northern Cape 8467, South Africa
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Kalahari Meerkat Project, Kuruman River Reserve, PO Box 64, Van Zylsrus, Northern Cape 8467, South Africa
| |
Collapse
|
84
|
McLennan D, Armstrong JD, Stewart DC, McKelvey S, Boner W, Monaghan P, Metcalfe NB. Links between parental life histories of wild salmon and the telomere lengths of their offspring. Mol Ecol 2018; 27:804-814. [DOI: 10.1111/mec.14467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 11/13/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity; Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | | | | | - Simon McKelvey
- Cromarty Firth Fishery Trust; CKD Galbraith; Inverness UK
| | - Winnie Boner
- Institute of Biodiversity; Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Pat Monaghan
- Institute of Biodiversity; Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Neil B. Metcalfe
- Institute of Biodiversity; Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| |
Collapse
|
85
|
Angelier F, Costantini D, Blévin P, Chastel O. Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. Gen Comp Endocrinol 2018; 256:99-111. [PMID: 28705731 DOI: 10.1016/j.ygcen.2017.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
Following the discoveries of telomeres and of their implications in terms of health and ageing, there has been a growing interest into the study of telomere dynamics in wild vertebrates. Telomeres are repeated sequences of non-coding DNA located at the terminal ends of chromosomes and they play a major role in maintaining chromosome stability. Importantly, telomeres shorten over time and shorter telomeres seem to be related with lower survival in vertebrates. Because of this potential link with longevity, it is crucial to understand not only the ecological determinants of telomere dynamics but also the regulatory endocrine mechanisms that may mediate the effect of the environment on telomeres. In this paper, we review the relationships that link environmental conditions, glucocorticoids (GC, the main hormonal mediator of allostasis) and telomere length in vertebrates. First, we review current knowledge about the determinants of inter-individual variations in telomere length. We emphasize the potential strong impact of environmental stressors and predictable life-history events on telomere dynamics. Despite recent progress, we still lack crucial basic data to fully understand the costs of several life-history stages and biotic and abiotic factors on telomere length. Second, we review the link that exists between GCs, oxidative stress and telomere dynamics in vertebrates. Although circulating GC levels may be closely and functionally linked with telomere dynamics, data are still scarce and somewhat contradictory. Further laboratory and field studies are therefore needed not only to better assess the proximate link between GC levels and telomere dynamics, but also to ultimately understand to what extent GCs and telomere length could be informative to measure the fitness costs of specific life-history stages and environmental conditions. Finally, we highlight the importance of exploring the functional links that may exist between coping styles, the GC stress response, and telomere dynamics in a life-history framework. To conclude, we raise new hypotheses regarding the potential of the GC stress response to drive the trade-off between immediate survival and telomere protection.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France.
| | - David Costantini
- Muséum National d'Histoire Naturelle, UMR 7221, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| |
Collapse
|
86
|
|