51
|
Weiss IM, Schmitt KP, Kirchner HO. The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) II. The molecular parameters of feather keratin plasticity. ACTA ACUST UNITED AC 2011; 315:266-73. [DOI: 10.1002/jez.671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 11/07/2022]
|
52
|
Diez-Perez A, Güerri R, Nogues X, Cáceres E, Peña MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A, Brimer D, Koester KJ, Ritchie RO, Hansma PK. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 2010; 25:1877-85. [PMID: 20200991 PMCID: PMC3153354 DOI: 10.1002/jbmr.73] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/21/2010] [Accepted: 02/17/2010] [Indexed: 01/23/2023]
Abstract
Bone tissue mechanical properties are deemed a key component of bone strength, but their assessment requires invasive procedures. Here we validate a new instrument, a reference point indentation (RPI) instrument, for measuring these tissue properties in vivo. The RPI instrument performs bone microindentation testing (BMT) by inserting a probe assembly through the skin covering the tibia and, after displacing periosteum, applying 20 indentation cycles at 2 Hz each with a maximum force of 11 N. We assessed 27 women with osteoporosis-related fractures and 8 controls of comparable ages. Measured total indentation distance (46.0 +/- 14 versus 31.7 +/- 3.3 microm, p = .008) and indentation distance increase (18.1 +/- 5.6 versus 12.3 +/- 2.9 microm, p = .008) were significantly greater in fracture patients than in controls. Areas under the receiver operating characteristic (ROC) curve for the two measurements were 93.1% (95% confidence interval [CI] 83.1-100) and 90.3% (95% CI 73.2-100), respectively. Interobserver coefficient of variation ranged from 8.7% to 15.5%, and the procedure was well tolerated. In a separate study of cadaveric human bone samples (n = 5), crack growth toughness and indentation distance increase correlated (r = -0.9036, p = .018), and scanning electron microscope images of cracks induced by indentation and by experimental fractures were similar. We conclude that BMT, by inducing microscopic fractures, directly measures bone mechanical properties at the tissue level. The technique is feasible for use in clinics with good reproducibility. It discriminates precisely between patients with and without fragility fracture and may provide clinicians and researchers with a direct in vivo measurement of bone tissue resistance to fracture.
Collapse
Affiliation(s)
- Adolfo Diez-Perez
- Hospital del Mar-IMIM-Universitat AutónomaBarcelona, Spain
- RETICEF, Instituto Carlos IIIMadrid, Spain
| | - Roberto Güerri
- Hospital del Mar-IMIM-Universitat AutónomaBarcelona, Spain
| | - Xavier Nogues
- Hospital del Mar-IMIM-Universitat AutónomaBarcelona, Spain
- RETICEF, Instituto Carlos IIIMadrid, Spain
| | - Enric Cáceres
- Hospital del Mar-IMIM-Universitat AutónomaBarcelona, Spain
- RETICEF, Instituto Carlos IIIMadrid, Spain
| | | | - Leonardo Mellibovsky
- Hospital del Mar-IMIM-Universitat AutónomaBarcelona, Spain
- RETICEF, Instituto Carlos IIIMadrid, Spain
| | - Connor Randall
- Department of Physics, University of CaliforniaSanta Barbara, CA, USA
| | - Daniel Bridges
- Department of Physics, University of CaliforniaSanta Barbara, CA, USA
| | - James C Weaver
- Department of Physics, University of CaliforniaSanta Barbara, CA, USA
- Coastal Marine BiolabsVentura, CA, USA
| | | | - Davis Brimer
- Active Life Scientific, Inc.Santa Barbara, CA, USA
| | - Kurt J Koester
- Department of Materials Science and Engineering, University of CaliforniaBerkeley, CA, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of CaliforniaBerkeley, CA, USA
| | - Paul K Hansma
- Department of Physics, University of CaliforniaSanta Barbara, CA, USA
- Active Life Scientific, Inc.Santa Barbara, CA, USA
| |
Collapse
|
53
|
Hartmann MA, Fratzl P. Sacrificial ionic bonds need to be randomly distributed to provide shear deformability. NANO LETTERS 2009; 9:3603-7. [PMID: 19725552 PMCID: PMC2762307 DOI: 10.1021/nl901816s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Multivalent ions are known to allow for reversible cross-linking in soft biological materials, providing stiffness and extensibility via sacrificial bonds. We present a simple model where stiff nanoscale elements carrying negative charges are coupled in shear by divalent mobile cations in aqueous media. Such a shear coupling through a soft glue has, indeed, been proposed to operate in biological nanocomposites. While the coupling is elastic and brittle when the negative charges are periodically arranged, sufficient randomness in their distribution allows for large irreversible deformation.
Collapse
|
54
|
Abasolo W, Eder M, Yamauchi K, Obel N, Reinecke A, Neumetzler L, Dunlop JWC, Mouille G, Pauly M, Höfte H, Burgert I. Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. MOLECULAR PLANT 2009; 2:990-9. [PMID: 19825674 DOI: 10.1093/mp/ssp065] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant cell walls, like a multitude of other biological materials, are natural fiber-reinforced composite materials. Their mechanical properties are highly dependent on the interplay of the stiff fibrous phase and the soft matrix phase and on the matrix deformation itself. Using specific Arabidopsis thaliana mutants, we studied the mechanical role of the matrix assembly in primary cell walls of hypocotyls with altered xyloglucan and pectin composition. Standard microtensile tests and cyclic loading protocols were performed on mur1 hypocotyls with affected RGII borate diester cross-links and a hindered xyloglucan fucosylation as well as qua2 exhibiting 50% less homogalacturonan in comparison to wild-type. As a control, wild-type plants (Col-0) and mur2 exhibiting a specific xyloglucan fucosylation and no differences in the pectin network were utilized. In the standard tensile tests, the ultimate stress levels (approximately tensile strength) of the hypocotyls of the mutants with pectin alterations (mur1, qua2) were rather unaffected, whereas their tensile stiffness was noticeably reduced in comparison to Col-0. The cyclic loading tests indicated a stiffening of all hypocotyls after the first cycle and a plastic deformation during the first straining, the degree of which, however, was much higher for mur1 and qua2 hypocotyls. Based on the mechanical data and current cell wall models, it is assumed that folded xyloglucan chains between cellulose fibrils may tend to unfold during straining of the hypocotyls. This response is probably hindered by geometrical constraints due to pectin rigidity.
Collapse
Affiliation(s)
- Willie Abasolo
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hansma P, Yu H, Schultz D, Rodriguez A, Yurtsev EA, Orr J, Tang S, Miller J, Wallace J, Zok F, Li C, Souza R, Proctor A, Brimer D, Nogues-Solan X, Mellbovsky L, Peña MJ, Diez-Ferrer O, Mathews P, Randall C, Kuo A, Chen C, Peters M, Kohn D, Buckley J, Li X, Pruitt L, Diez-Perez A, Alliston T, Weaver V, Lotz J. The tissue diagnostic instrument. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:054303. [PMID: 19485522 PMCID: PMC2832056 DOI: 10.1063/1.3127602] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.
Collapse
Affiliation(s)
- Paul Hansma
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Wynnyckyj C, Omelon S, Savage K, Damani M, Chachra D, Grynpas MD. A new tool to assess the mechanical properties of bone due to collagen degradation. Bone 2009; 44:840-8. [PMID: 19150659 DOI: 10.1016/j.bone.2008.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 09/30/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Current clinical tools for evaluating fracture risk focus only on the mineral phase of bone. However, changes in the collagen matrix may affect bone mechanical properties, increasing fracture risk while remaining undetected by conventional screening methods such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). The mechanical response tissue analyzer (MRTA) is a non-invasive, radiation-free potential clinical tool for evaluating fracture risk. The objectives of this study were two-fold: to investigate the ability of the MRTA to detect changes in mechanical properties of bone as a result of treatment with 1 M potassium hydroxide (KOH) and to evaluate the differences between male and female bone in an emu model. DXA, QUS, MRTA and three-point bending measurements were performed on ex vivo emu tibiae before and after KOH treatment. Male and female emu tibiae were endocortically treated with 1 M KOH solution for 1-14 days, resulting in negligible collagen loss (0.05%; by hydroxyproline assay) and overall mass loss (0.5%). Three-point bending and MRTA detected significant changes in modulus between days 1 and 14 of KOH treatment (-18%) while all values measured by DXA and QUS varied by less than 2%. This close correlation between MRTA and three-point bending results support the utility of the MRTA as a clinical tool to predict fracture risk. In addition, the significant reduction in modulus contrasted with the negligible amount of collagen removal from the bone after KOH exposure. As such, the significant changes in bone mechanical properties may be due to partial debonding between the mineral and organic matrix or in situ collagen degradation rather than collagen removal. In terms of sex differences, male emu tibiae had significantly decreased failure stress and increased failure strain and toughness compared to female tibiae with increasing KOH treatment time.
Collapse
Affiliation(s)
- C Wynnyckyj
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
57
|
Buehler MJ, Yung YC. Deformation and failure of protein materials in physiologically extreme conditions and disease. NATURE MATERIALS 2009; 8:175-88. [PMID: 19229265 DOI: 10.1038/nmat2387] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biological protein materials feature hierarchical structures that make up a diverse range of physiological materials. The analysis of protein materials is an emerging field that uses the relationships between biological structures, processes and properties to probe deformation and failure phenomena at the molecular and microscopic level. Here we discuss how advanced experimental, computational and theoretical methods can be used to assess structure-process-property relations and to monitor and predict mechanisms associated with failure of protein materials. Case studies are presented to examine failure phenomena in the progression of disease. From this materials science perspective, a de novo basis for understanding biological processes can be used to develop new approaches for treating medical disorders. We highlight opportunities to use knowledge gained from the integration of multiple scales with physical, biological and chemical concepts for potential applications in materials design and nanotechnology.
Collapse
Affiliation(s)
- Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
58
|
Gupta H, Zioupos P. Fracture of bone tissue: The ‘hows’ and the ‘whys’. Med Eng Phys 2008; 30:1209-26. [DOI: 10.1016/j.medengphy.2008.09.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/25/2022]
|
59
|
Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 2008; 41:2932-9. [PMID: 18786670 DOI: 10.1016/j.jbiomech.2008.07.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/14/2008] [Accepted: 07/27/2008] [Indexed: 11/23/2022]
|
60
|
Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J 2008; 95:2939-50. [PMID: 18586839 DOI: 10.1529/biophysj.108.135889] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using an atomic force microscope and a surface force apparatus, we measured the surface coverage, adhesion, and mechanical properties of layers of osteopontin (OPN), a phosphoprotein of the human bones, adsorbed on mica. OPN is believed to connect mineralized collagen fibrils of the bone in a matrix that dissipates energy, reducing the risk of fractures. Atomic force microscopy normal force measurements showed large adhesion and energy dissipation upon retraction of the tip, which were due to the breaking of the many OPN-OPN and OPN-mica bonds formed during tip-sample contact. The dissipated energy increased in the presence of Ca(2+) ions due to the formation of additional OPN-OPN and OPN-mica salt bridges between negative charges. The forces measured by surface force apparatus between two macroscopic mica surfaces were mainly repulsive and became hysteretic only in the presence of Ca(2+): adsorbed layers underwent an irreversible compaction during compression due to the formation of long-lived calcium salt bridges. This provides an energy storage mechanism, which is complementary to energy dissipation and may be equally relevant to bone recovery after yield. The prevalence of one mechanism or the other appears to depend on the confinement geometry, adsorption protocol, and loading-unloading rates.
Collapse
|
61
|
Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, Lulejian J, Randall C, Adams J, Jungmann R, Garza-de-Leon F, Fantner G, Mkrtchyan H, Pontin M, Weaver A, Brown MB, Sahar N, Rossello R, Kohn D. The bone diagnostic instrument II: indentation distance increase. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:064303. [PMID: 18601422 PMCID: PMC2678790 DOI: 10.1063/1.2937199] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe IItrade mark. In the Osteoprobe IItrade mark, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone.
Collapse
Affiliation(s)
- Paul Hansma
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kirchner HO, Lazar M. The thermodynamic driving force for bone growth and remodelling: a hypothesis. J R Soc Interface 2008; 5:183-93. [PMID: 17698479 PMCID: PMC2705975 DOI: 10.1098/rsif.2007.1096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Eshelby stress (static energy momentum) tensor is derived for bone modelled as an inhomogeneous piezoelectric and piezomagnetic Cosserat (micropolar) medium. The divergence of this tensor is the configurational force felt by material gradients and defects in the medium. Just as in inhomogeneous elastic media, this force is identified with the thermodynamic force for phase transformations, in bone it is the thermodynamic cause of structural transformations, i.e. remodelling and growth. The thermodynamic approach shows that some terms of driving force are proportional to the stress, and some acting on material inhomogeneities are quadratic in the stress-the latter outweigh by far the former. Since inertial forces due to acceleration enter the energy-momentum tensor, it follows that the rate of loading matters and that both tension and compression stimulate growth, which is favoured at heterogeneities.
Collapse
Affiliation(s)
| | - Markus Lazar
- Emmy Noether Research Group, Department of Physics, Darmstadt University of TechnologyHochschulstrasse 6, 64289 Darmstadt, Germany
- Author for correspondence ()
| |
Collapse
|
63
|
Fratzl P. Biomimetic materials research: what can we really learn from nature's structural materials? J R Soc Interface 2007; 4:637-42. [PMID: 17341452 PMCID: PMC2373394 DOI: 10.1098/rsif.2007.0218] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nature provides a wide range of materials with different functions and which may serve as a source of bio-inspiration for the materials scientist. The article takes the point of view that a successful translation of these ideas into the technical world requires more than the observation of nature. A thorough analysis of structure-function relations in natural tissues must precede the engineering of new bio-inspired materials. There are, indeed, many opportunities for lessons from the biological world: on growth and functional adaptation, about hierarchical structuring, on damage repair and self-healing. Biomimetic materials research is becoming a rapidly growing and enormously promising field. Serendipitous discovery from the observation of nature will be gradually replaced by a systematic approach involving the study of natural tissues in materials laboratories, the application of engineering principles to the further development of bio-inspired ideas and the generation of specific databases.
Collapse
Affiliation(s)
- Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany.
| |
Collapse
|
64
|
He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 2007; 1:18-29. [PMID: 19627768 DOI: 10.1016/j.jmbbm.2007.05.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/10/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
As the hardest and one of the most durable load-bearing tissues of the body, enamel has attracted considerable interest from both material scientists and clinical practitioners due to its excellent mechanical properties. In this paper, possible mechanisms responsible for the excellent mechanical properties of enamel are explored and summarized, which primarily include its hierarchical structure and the nanomechanical properties of the minor protein macromolecular component. Furthermore, additional experimental and numerical evidences to support the assumptions are presented. For example, enamel shows lower elastic modulus, higher energy absorption ability and greater indentation creep behaviour than sintered hydroxyapatite material. All the data indicate that the structural and compositional characteristics of the minor protein component significantly regulate the mechanical properties of enamel to better match its functional needs.
Collapse
Affiliation(s)
- Li Hong He
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | | |
Collapse
|