51
|
Umerani MJ, Pratakshya P, Chatterjee A, Cerna Sanchez JA, Kim HS, Ilc G, Kovačič M, Magnan C, Marmiroli B, Sartori B, Kwansa AL, Orins H, Bartlett AW, Leung EM, Feng Z, Naughton KL, Norton-Baker B, Phan L, Long J, Allevato A, Leal-Cruz JE, Lin Q, Baldi P, Bernstorff S, Plavec J, Yingling YG, Gorodetsky AA. Structure, self-assembly, and properties of a truncated reflectin variant. Proc Natl Acad Sci U S A 2020; 117:32891-32901. [PMID: 33323484 PMCID: PMC7780002 DOI: 10.1073/pnas.2009044117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.
Collapse
Affiliation(s)
- Mehran J. Umerani
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | | | - Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Juana A. Cerna Sanchez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Ho Shin Kim
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, CA 92697
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Albert L. Kwansa
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Helen Orins
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Andrew W. Bartlett
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Erica M. Leung
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Zhijing Feng
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Kyle L. Naughton
- Department of Physics and Astronomy, University of California, Irvine, CA 92697
| | | | - Long Phan
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - James Long
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| | - Alex Allevato
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Jessica E. Leal-Cruz
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
| | - Qiyin Lin
- Irvine Materials Research Institute, University of California, Irvine, CA 92697
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA 92697
| | | | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
| | - Alon A. Gorodetsky
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697
| |
Collapse
|
52
|
Girotti A, Escalera-Anzola S, Alonso-Sampedro I, González-Valdivieso J, Arias FJ. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics 2020; 12:E1115. [PMID: 33228250 PMCID: PMC7699523 DOI: 10.3390/pharmaceutics12111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Biomaterials science is one of the most rapidly evolving fields in biomedicine. However, although novel biomaterials have achieved well-defined goals, such as the production of devices with improved biocompatibility and mechanical properties, their development could be more ambitious. Indeed, the integration of active targeting strategies has been shown to allow spatiotemporal control of cell-material interactions, thus leading to more specific and better-performing devices. This manuscript reviews recent advances that have led to enhanced biomaterials resulting from the use of natural structural macromolecules. In this regard, several structural macromolecules have been adapted or modified using biohybrid approaches for use in both regenerative medicine and therapeutic delivery. The integration of structural and functional features and aptamer targeting, although still incipient, has already shown its ability and wide-reaching potential. In this review, we discuss aptamer-functionalized hybrid protein-based or polymeric biomaterials derived from structural macromolecules, with a focus on bioresponsive/bioactive systems.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Sara Escalera-Anzola
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Irene Alonso-Sampedro
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Juan González-Valdivieso
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Francisco. Javier Arias
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| |
Collapse
|
53
|
Coradin T, Wang K, Law T, Trichet L. Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels 2020; 6:E36. [PMID: 33092154 PMCID: PMC7709698 DOI: 10.3390/gels6040036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type I collagen and fibrin are two essential proteins in tissue regeneration and have been widely used for the design of biomaterials. While they both form hydrogels via fibrillogenesis, they have distinct biochemical features, structural properties and biological functions which make their combination of high interest. A number of protocols to obtain such mixed gels have been described in the literature that differ in the sequence of mixing/addition of the various reagents. Experimental and modelling studies have suggested that such co-gels consist of an interpenetrated structure where the two proteins networks have local interactions only. Evidences have been accumulated that immobilized cells respond not only to the overall structure of the co-gels but can also exhibit responses specific to each of the proteins. Among the many biomedical applications of such type I collagen-fibrin mixed gels, those requiring the co-culture of two cell types with distinct affinity for these proteins, such as vascularization of tissue engineering constructs, appear particularly promising.
Collapse
Affiliation(s)
- Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France; (K.W.); (T.L.); (L.T.)
| | | | | | | |
Collapse
|
54
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
55
|
Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein Spherical Nucleic Acids for Live-Cell Chemical Analysis. J Am Chem Soc 2020; 142:13350-13355. [PMID: 32706250 DOI: 10.1021/jacs.0c06866] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the development of a new strategy for the chemical analysis of live cells based on protein spherical nucleic acids (ProSNAs). The ProSNA architecture enables analyte detection via the highly programmable nucleic acid shell or a functional protein core. As a proof-of-concept, we use an i-motif as the nucleic acid recognition element to probe pH in living cells. By interfacing the i-motif with a forced-intercalation readout, we introduce a quencher-free approach that is resistant to false-positive signals, overcoming limitations associated with conventional fluorophore/quencher-based gold NanoFlares. Using glucose oxidase as a functional protein core, we show activity-based, amplified sensing of glucose. This enzymatic system affords greater than 100-fold fluorescence turn on in buffer, is selective for glucose in the presence of close analogs (i.e., glucose-6-phosphate), and can detect glucose above a threshold concentration of ∼5 μM, which enables the study of relative changes in intracellular glucose concentrations.
Collapse
|
56
|
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive biopolymers derived from human elastin. Their unique properties—including lower critical solution temperature phase behavior and minimal immunogenicity—make them attractive materials for a variety of biomedical applications. ELPs also benefit from recombinant synthesis and genetically encoded design; these enable control over the molecular weight and precise incorporation of peptides and pharmacological agents into the sequence. Because their size and sequence are defined, ELPs benefit from exquisite control over their structure and function, qualities that cannot be matched by synthetic polymers. As such, ELPs have been engineered to assemble into unique architectures and display bioactive agents for a variety of applications. This review discusses the design and representative biomedical applications of ELPs, focusing primarily on their use in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Anastasia K. Varanko
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan C. Su
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
57
|
Beloqui A, Cortajarena AL. Protein-based functional hybrid bionanomaterials by bottom-up approaches. Curr Opin Struct Biol 2020; 63:74-81. [PMID: 32485564 DOI: 10.1016/j.sbi.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
This review aims to summarize the last advances on the field of protein engineering towards functional bionanomaterials. Albeit being this an emerging research field, multidisciplinary perspectives in the design of synthetic protein-based hybrid bionanomaterials have resulted in significant progresses. The review covers the definition of bionanomaterials as such and the description of the main methodological approaches currently employed for their assembly. In this context, special emphasis is placed on the fundamental role of protein design. Then, a general overview of the most recent advances related to the fabrication and application of protein-based bionanomaterials in several applications is provided, with special focus on catalysis. Finally, key aspects to be considered by the research community to establish the path for significant future developments in this promising field are discussed.
Collapse
Affiliation(s)
- Ana Beloqui
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avda. Manuel de Lardizabal 3, E-20018 Donostia - San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain.
| | - Aitziber L Cortajarena
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, E-20014 Donostia - San Sebastian, Spain.
| |
Collapse
|
58
|
Abstract
AbstractStructural proteins, including silk fibroins, play an important role in shaping the skeletons and structures of cells, tissues, and organisms. The amino acid sequences of structural proteins often show characteristic features, such as a repeating tandem motif, that are notably different from those of functional proteins such as enzymes and antibodies. In recent years, materials composed of or containing structural proteins have been studied and developed as biomedical, apparel, and structural materials. This review outlines the definition of structural proteins, methods for characterizing structural proteins as polymeric materials, and potential applications.
Collapse
|
59
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
60
|
Capezza AJ, Lundman M, Olsson RT, Newson WR, Hedenqvist MS, Johansson E. Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules 2020; 21:1709-1719. [PMID: 31899621 DOI: 10.1021/acs.biomac.9b01646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functionalized wheat gluten (WG) protein particles with the ability to absorb fluids within the superabsorbent range are presented. Ethyleneditetraacetic dianhydride (EDTAD), a nontoxic acylation agent, was used for the functionalization of the WG protein at higher protein content than previously reported and no additional chemical cross-linking. The 150-550 μm protein particles had 50-150 nm nanopores induced by drying. The EDTAD treated WG were able to absorb 22, 5, and 3 times of, respectively, water, saline and blood, per gram of dry material (g/g), corresponding to 1000, 150 and 100% higher values than for the as-received WG powder. The liquid retention capacity after centrifugation revealed that almost 50% of the saline liquid was retained within the protein network, which is similar to that for petroleum-based superabsorbent polymers (SAPs). An advantageous feature of these biobased particulate materials is that the maximum swelling is obtained within the first 10 min of exposure, that is, in contrast to many commercial SAP alternatives. The large swelling in a denaturation agent (6 M urea) solution (about 32 g/g) suggests that the secondary entangled/folded structure of the protein restricts protein network expansion and when disrupted allows the absorption of even higher amounts of liquid. The increased liquid uptake, utilization of inexpensive protein coproducts, easy scalable protocols, and absence of any toxic chemicals make these new WG-based SAP particles an interesting alternative to petroleum-based SAP in, for example, absorbent disposable hygiene products.
Collapse
Affiliation(s)
- Antonio J Capezza
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.,Department of Plant Breeding, Faculty of Landscape Planning, Horticulturem and Crop Production Sciences, SLU Swedish University of Agricultural Sciences, Alnarp 23053, Sweden
| | - Malin Lundman
- Essity Hygiene and Health AB, SE-405 03, Gothenburg, Sweden
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - William R Newson
- Department of Plant Breeding, Faculty of Landscape Planning, Horticulturem and Crop Production Sciences, SLU Swedish University of Agricultural Sciences, Alnarp 23053, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Faculty of Landscape Planning, Horticulturem and Crop Production Sciences, SLU Swedish University of Agricultural Sciences, Alnarp 23053, Sweden
| |
Collapse
|
61
|
Alex JM, Brancatelli G, Volpi S, Bonaccorso C, Casnati A, Geremia S, Crowley PB. Probing the determinants of porosity in protein frameworks: co-crystals of cytochrome c and an octa-anionic calix[4]arene. Org Biomol Chem 2020; 18:211-214. [DOI: 10.1039/c9ob02275a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In contrast to sulfonato-calix[4]arene (sclx4), which mediates close-packed assemblies, the higher charge carboxylate-containing sclx4mc induced a crystalline framework of cytochrome c.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland Galway
- University Road
- Galway
- Ireland
| | - Giovanna Brancatelli
- Centre of Excellence in Biocrystallography
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Stefano Volpi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale
- Università degli Studi di Parma
- 43124 Parma
- Italy
| | - Carmela Bonaccorso
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- Catania
- Italy
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale
- Università degli Studi di Parma
- 43124 Parma
- Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Peter B. Crowley
- School of Chemistry
- National University of Ireland Galway
- University Road
- Galway
- Ireland
| |
Collapse
|
62
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
63
|
Bowen CH, Reed TJ, Sargent CJ, Mpamo B, Galazka JM, Zhang F. Seeded Chain-Growth Polymerization of Proteins in Living Bacterial Cells. ACS Synth Biol 2019; 8:2651-2658. [PMID: 31742389 DOI: 10.1021/acssynbio.9b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbially produced protein-based materials (PBMs) are appealing due to use of renewable feedstock, low energy requirements, tunable side-chain chemistry, and biodegradability. However, high-strength PBMs typically have high molecular weights (HMW) and repetitive sequences that are difficult to microbially produce due to genetic instability and metabolic burden. We report the development of a biosynthetic strategy termed seeded chain-growth polymerization (SCP) for synthesis of HMW PBMs in living bacterial cells. SCP uses split intein (SI) chemistry to cotranslationally polymerize relatively small, genetically stable material protein subunits, effectively preventing intramolecular cyclization. We apply SCP to bioproduction of spider silk in Escherichia coli, generating HMW spider silk proteins (spidroins) up to 300 kDa, resulting in spidroin fibers of high strength, modulus, and toughness. SCP provides a modular strategy to synthesize HMW, repetitive material proteins, and may facilitate bioproduction of a variety of high-performance PBMs for broad applications.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan M. Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, United States
| | | |
Collapse
|
64
|
Rosselin M, Xiao Y, Belhomme L, Lecommandoux S, Garanger E. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Lett 2019; 8:1648-1653. [PMID: 35619386 DOI: 10.1021/acsmacrolett.9b00862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective modifications at methionyl residues in proteins have attracted particular attention in recent years. Previously described methods to chemoselectively modify the methionine side chain in elastin-like polypeptides (ELPs) involved nucleophilic addition using alkyl halides or epoxides yielding a sulfonium group with a positive charge strongly affecting ELPs' physicochemical properties, in particular their thermal responsiveness. We herein explored the recently reported ReACT method (Redox-Activated Chemical Tagging) based on the use of oxaziridine derivatives, yielding an uncharged sulfimide as an alternative route for chemoselective modifications of methionine-containing ELPs in aqueous medium. The different synthetic strategies are herein compared in order to provide a furnished toolbox for further biorthogonal postmodifications of any protein polymers.
Collapse
Affiliation(s)
- Marie Rosselin
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ye Xiao
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ludovic Belhomme
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Elisabeth Garanger
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
65
|
Sanchez-deAlcazar D, Romera D, Castro-Smirnov J, Sousaraei A, Casado S, Espasa A, Morant-Miñana MC, Hernandez JJ, Rodríguez I, Costa RD, Cabanillas-Gonzalez J, Martinez RV, Cortajarena AL. Engineered protein-based functional nanopatterned materials for bio-optical devices. NANOSCALE ADVANCES 2019; 1:3980-3991. [PMID: 36132122 PMCID: PMC9418893 DOI: 10.1039/c9na00289h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
The development of new active biocompatible materials and devices is a current need for their implementation in multiple fields, including the fabrication of implantable devices for biomedical applications and sustainable devices for bio-optics and bio-optoelectronics. This paper describes a simple strategy to use designed proteins to develop protein-based functional materials. Using simple proteins as self-assembling building blocks as a platform for the fabrication of new optically active materials takes previous work one step further towards the design of materials with defined structures and functions using naturally occurring protein materials, such as silk. The proposed fabrication strategy generates thin and flexible nanopatterned protein films by letting the engineered protein elements self-assemble over the surface of an elastomeric stamp with nanoscale features. These nanopatterned protein films are easily transferred onto 3D objects (flat and curved) by moisture-induced adhesion. Additionally, flexible nanopatterned protein films are prepared by incorporating a thin polymeric layer as a back support. Finally, taking advantage of the tunability of the selected protein scaffold, the flexible protein-based surfaces are endowed with optical functions, achieving efficient lasing features. As such, this work enables the simple and cost-effective production of flexible and nanostructured, protein-based, optically active biomaterials and devices over large areas toward emerging applications.
Collapse
Affiliation(s)
| | - David Romera
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
| | | | - Ahmad Sousaraei
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
| | - Santiago Casado
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato Avda. Los Chasquis y río Payamino s/n 180207 Ambato Ecuador
| | - Anna Espasa
- IMDEA-Materiales C/Eric Kandel, 2 - Tecnogetafe 28906 Getafe-Madrid Spain
| | - María C Morant-Miñana
- CIC energiGUNE Parque Tecnologico de Alava, Albert Einstein 48 ED CIC 01510 Miñano Spain
| | - Jaime J Hernandez
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
| | - Isabel Rodríguez
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
| | - Rubén D Costa
- IMDEA-Materiales C/Eric Kandel, 2 - Tecnogetafe 28906 Getafe-Madrid Spain
| | | | - Ramses V Martinez
- School of Industrial Engineering, Purdue University 315 N. Grant Street West Lafayette Indiana 47907 USA
- Weldon School of Biomedical Engineering, Purdue University 206 S. Martin Jischke Drive West Lafayette Indiana 47907 USA
| | - Aitziber L Cortajarena
- CIC biomaGUNE Paseo de Miramón 182 E-20014 Donostia-San Sebastian Spain
- IMDEA-Nanociencia Campus Universitario de Cantoblanco 28049 Madrid Spain
- Ikerbasque, Basque Foundation for Science Ma Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
66
|
Sánchez-deAlcázar D, Velasco-Lozano S, Zeballos N, López-Gallego F, Cortajarena AL. Biocatalytic Protein-Based Materials for Integration into Energy Devices. Chembiochem 2019; 20:1977-1985. [PMID: 30939214 DOI: 10.1002/cbic.201900047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Indexed: 01/23/2023]
Abstract
There is a current need to fabricate new biobased functional materials. Bottom-up approaches to assemble simple molecular units have shown promise for biomaterial fabrication due to their tunability and versatility for the incorporation of functionalities. Herein, the fabrication of catalytic protein thin films by the entrapment of catalase into protein films composed of a scaffolding protein is demonstrated. Extensive structural and functional characterization of the films provide evidence of the structural integrity, order, stability, catalytic activity, and reusability of the biocatalytic materials. Finally, these functional biomaterials are coupled with piezoelectric disks to fabricate a second generation of bio-inorganic generators. These devices are capable of producing electricity from renewable fuels through catalase-driven gas production that mechanically stimulates the piezoelectric material.
Collapse
Affiliation(s)
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.,ARAID, Aragon I+D Foundation, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018, Zaragoza, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|