51
|
Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, Burke T, Macdonald DW. No Compensatory Relationship between the Innate and Adaptive Immune System in Wild-Living European Badgers. PLoS One 2016; 11:e0163773. [PMID: 27695089 PMCID: PMC5047587 DOI: 10.1371/journal.pone.0163773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual’s leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, United States of America
- * E-mail:
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, Netherlands
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christina Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| | - Maria-Elena Mannarelli
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Geetha Annavi
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
- Faculty of Science, Department of Biology, University of Putra Malaysia, UPM 43400, Serdang, Selangor, Malaysia
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, United Kingdom
| |
Collapse
|
52
|
Dearborn DC, Gager AB, McArthur AG, Gilmour ME, Mandzhukova E, Mauck RA. Gene duplication and divergence produce divergent MHC genotypes without disassortative mating. Mol Ecol 2016; 25:4355-67. [PMID: 27376487 DOI: 10.1111/mec.13747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.
Collapse
Affiliation(s)
- Donald C Dearborn
- Department of Biology, Bates College, Lewiston, ME, 04240, USA.,School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Andrea B Gager
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Morgan E Gilmour
- Ocean Sciences Department, University of California, Santa Cruz, CA, 95064, USA
| | | | - Robert A Mauck
- Department of Biology, Kenyon College, Gambier, OH, 43022, USA
| |
Collapse
|
53
|
Biedrzycka A, Kloch A. Development of novel associations between MHC alleles and susceptibility to parasitic infections in an isolated population of an endangered mammal. INFECTION GENETICS AND EVOLUTION 2016; 44:210-217. [PMID: 27423515 DOI: 10.1016/j.meegid.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The role of pathogens in dynamics of endangered species is not fully understood, and the effect of infection often interacts with other processes affecting those species, such as fragmentation and isolation or loss of genetic variation. Small, isolated populations are prone to losing functional alleles due to demographic processes and genetic drift, which may diminish their ability to resist infection if immune genes are affected. Demographic processes may also alter the selective pressure exerted by a parasite, as they influence the rate of parasite transmission between individuals. In the present paper we studied changes in parasite infection levels and genetic variability in an isolated population of spotted suslik (Spermophillus suslicus). Over a three-year period (approx. three generations), when the population size remained relatively stable, we observed a considerable increase in parasite prevalence and infection intensity, followed by the development of novel associations between MHC DRB alleles and parasite burden. Contrary to expectations, the change in MHC allele frequency over time was not consistent with the effect of the allele - for instance, Spsu-DRB*07, associated with higher intensity of infection with a nematode Capillaria sp., increased in frequency from 11.8 to 20.2%. Yet, we found no signatures of selection in the studied loci. Our results show that an isolated, stable population may experience a sudden increase in parasitic infections, resulting in a development of novel associations between MHC alleles and parasite susceptibility/resistance, even though no signatures of selection can be found.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120 Kraków, Poland.
| | - Agnieszka Kloch
- Department of Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
54
|
Lei W, Zhou X, Fang W, Lin Q, Chen X. Major histocompatibility complex class II DAB alleles associated with intestinal parasite load in the vulnerable Chinese egret (Egretta eulophotes). Ecol Evol 2016; 6:4421-34. [PMID: 27386085 PMCID: PMC4930990 DOI: 10.1002/ece3.2226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
The maintenance of major histocompatibility complex (MHC) polymorphism has been hypothesized to result from many mechanisms such as rare-allele advantage, heterozygote advantage, and allele counting. In the study reported herein, 224 vulnerable Chinese egrets (Egretta eulophotes) were used to examine these hypotheses as empirical results derived from bird studies are rare. Parasite survey showed that 147 (65.63%) individuals were infected with 1-3 helminths, and 82.31% of these infected individuals carried Ascaridia sp. Using asymmetric polymerase chain reaction technique, 10 DAB1, twelve DAB2, and three DAB3 exon 2 alleles were identified at each single locus. A significant association of the rare allele Egeu-DAB2*05 (allele frequency: 0.022) with helminth resistance was found for all helminths, as well as for the most abundant morphotype Ascaridia sp. in the separate analyses. Egeu-DAB2*05 occurred frequently in uninfected individuals, and individuals carrying Egeu-DAB2*05 had significantly lower helminth morphotypes per individual (HMI) (the number of HMI) and the fecal egg count values. Further, the parasite infection measurements were consistently lower in individuals with an intermediate number of different alleles in the duplicated DAB loci. Significantly, heterozygosity within each DAB locus was not correlated with any parasite infection measurements. These results indicate that the diversity in MHC Egeu-DAB gene is associated with intestinal parasite load and maintained by pathogen-driven selection that probably operate through both the rare-allele advantage and the allele counting strategy, and suggest that Egeu-DAB2*05 might be a valuable indicator of better resistance to helminth diseases in the vulnerable Chinese egret.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| |
Collapse
|
55
|
Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations. Immunogenetics 2016; 68:429-437. [PMID: 27225422 DOI: 10.1007/s00251-016-0916-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations.
Collapse
|
56
|
Vanpé C, Debeffe L, Galan M, Hewison AJM, Gaillard JM, Gilot-Fromont E, Morellet N, Verheyden H, Cosson JF, Cargnelutti B, Merlet J, Quéméré E. Immune gene variability influences roe deer natal dispersal. OIKOS 2016. [DOI: 10.1111/oik.02904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cécile Vanpé
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
| | - Lucie Debeffe
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| | - Maxime Galan
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet Montferrier-sur-Lez Cedex France
| | | | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
| | - Emmanuelle Gilot-Fromont
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), CNRS UMR5558; Université Claude Bernard Lyon 1; 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
- VetAgro-sup; Univ. Lyon 1; Marcy l'Etoile France
| | | | | | - Jean-François Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet Montferrier-sur-Lez Cedex France
| | | | - Joël Merlet
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| | - Erwan Quéméré
- CEFS; Univ. de Toulouse; INRA Castanet-Tolosan France
| |
Collapse
|
57
|
Blanchong JA, Robinson SJ, Samuel MD, Foster JT. Application of genetics and genomics to wildlife epidemiology. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Blanchong
- Department of Natural Resource Ecology and Management; Iowa State University; 339 Science II Ames IA 50011 USA
| | | | - Michael D. Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; 204 Russell Labs, 1630 Linden Dr. Madison WI 53706 USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences; University of New Hampshire; 291 Rudman Hall Durham NH 03824 USA
| |
Collapse
|
58
|
Buczek M, Okarma H, Demiaszkiewicz AW, Radwan J. MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. J Evol Biol 2016; 29:617-32. [PMID: 26687843 DOI: 10.1111/jeb.12811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
The Hamilton-Zuk hypothesis proposes that the genetic benefits of preferences for elaborated secondary sexual traits have their origins in the arms race between hosts and parasites, which maintains genetic variance in parasite resistance. Infection, in turn, can be reflected in the expression of costly sexual ornaments. However, the link between immune genes, infection and the expression of secondary sexual traits has rarely been investigated. Here, we explored whether the presence and identity of functional variants (supertypes) of the highly polymorphic major histocompatibility complex (MHC), which is responsible for the recognition of parasites, predict the load of lung and gut parasites and antler development in the red deer (Cervus elaphus). While we found MHC supertypes to be associated with infection by a number of parasite species, including debilitating lung nematodes, we did not find support for the Hamilton-Zuk hypothesis. On the contrary, we found that lung nematode load was positively associated with antler development. We also found that the supertypes that were associated with resistance to certain parasites at the same time cause susceptibility to others. Such trade-offs may undermine the potential genetic benefits of mate choice for resistant partners.
Collapse
Affiliation(s)
- M Buczek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - H Okarma
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | | | - J Radwan
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.,Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
59
|
Piertney SB. High-Throughput DNA Sequencing and the Next Generation of Molecular Markers in Wildlife Research. CURRENT TRENDS IN WILDLIFE RESEARCH 2016. [DOI: 10.1007/978-3-319-27912-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
60
|
Seifertová M, Jarkovský J, Šimková A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)? Parasitol Res 2015; 115:1401-15. [PMID: 26693717 DOI: 10.1007/s00436-015-4874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.
Collapse
Affiliation(s)
- Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
61
|
Talbot B, Garant D, Rioux Paquette S, Mainguy J, Pelletier F. Genetic structure and diversity among rabid and nonrabid raccoons. ECOSCIENCE 2015. [DOI: 10.2980/20-4-3633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
62
|
Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, Way SS. Tolerance to noninherited maternal antigens, reproductive microchimerism and regulatory T cell memory: 60 years after 'Evidence for actively acquired tolerance to Rh antigens'. CHIMERISM 2015; 6:8-20. [PMID: 26517600 PMCID: PMC5063085 DOI: 10.1080/19381956.2015.1107253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compulsory exposure to genetically foreign maternal tissue imprints in offspring sustained tolerance to noninherited maternal antigens (NIMA). Immunological tolerance to NIMA was first described by Dr. Ray D. Owen for women genetically negative for erythrocyte rhesus (Rh) antigen with reduced sensitization from developmental Rh exposure by their mothers. Extending this analysis to HLA haplotypes has uncovered the exciting potential for therapeutically exploiting NIMA-specific tolerance naturally engrained in mammalian reproduction for improved clinical outcomes after allogeneic transplantation. Herein, we summarize emerging scientific concepts stemming from tolerance to NIMA that includes postnatal maintenance of microchimeric maternal origin cells in offspring, expanded accumulation of immune suppressive regulatory T cells with NIMA-specificity, along with teleological benefits and immunological consequences of NIMA-specific tolerance conserved across mammalian species.
Collapse
Affiliation(s)
- Jeremy M Kinder
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Tony T Jiang
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - James M Ertelt
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Lijun Xin
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Beverly S Strong
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Aimen F Shaaban
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Sing Sing Way
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| |
Collapse
|
63
|
Durand S, Beauché F, Richard FJ, Beltran-Bech S. How Do Females’ Genetic Characteristics Influence Male Mate Preference in the Terrestrial IsopodArmadillidium vulgare? Ethology 2015. [DOI: 10.1111/eth.12429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sylvine Durand
- Université de Poitiers; UFR Sciences Fondamentales et Appliquées; Laboratoire EBI Ecologie & Biologie des Interactions; UMR CNRS 7267; Equipe Ecologie Evolution Symbiose; Poitiers France
| | - Fanny Beauché
- Université de Poitiers; UFR Sciences Fondamentales et Appliquées; Laboratoire EBI Ecologie & Biologie des Interactions; UMR CNRS 7267; Equipe Ecologie Evolution Symbiose; Poitiers France
| | - Freddie-Jeanne Richard
- Université de Poitiers; UFR Sciences Fondamentales et Appliquées; Laboratoire EBI Ecologie & Biologie des Interactions; UMR CNRS 7267; Equipe Ecologie Evolution Symbiose; Poitiers France
| | - Sophie Beltran-Bech
- Université de Poitiers; UFR Sciences Fondamentales et Appliquées; Laboratoire EBI Ecologie & Biologie des Interactions; UMR CNRS 7267; Equipe Ecologie Evolution Symbiose; Poitiers France
| |
Collapse
|
64
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|
65
|
Morger J, Råberg L, Hille SM, Helsen S, Štefka J, Al-Sabi MM, Kapel CMO, Mappes T, Essbauer S, Ulrich RG, Bartolommei P, Mortelliti A, Balčiauskas L, van den Brink NW, Rémy A, Bajer A, Cheprakov M, Korva M, García-Pérez AL, Biek R, Withenshaw S, Tschirren B. Distinct haplotype structure at the innate immune receptor Toll-like receptor 2 across bank vole populations and lineages in Europe. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer Morger
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Lars Råberg
- Department of Biology; Lund University; Sölvegatan 35 223 62 Lund Sweden
| | - Sabine M. Hille
- Institute of Wildlife Biology and Game Management; University of Natural Resources and Life Sciences; Gregor Mendel-Strasse 33 1180 Vienna Austria
| | - Sanne Helsen
- Evolutionary Ecology Group; Department of Biology; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Jan Štefka
- Faculty of Science; Biology Centre ASCR; Institute of Parasitology and University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Mohammad M. Al-Sabi
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Christian M. O. Kapel
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Tapio Mappes
- Department of Biological and Environmental Science; University of Jyväskylä; PO Box 35 40014 Jyväskylä Finland
| | - Sandra Essbauer
- Department Virology and Rickettsiology; Bundeswehr Institute of Microbiology; Neuherbergstrasse 11 80937 Munich Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut; Institute for Novel and Emerging Infectious Diseases; Federal Research Institute for Animal Health; Südufer 10 17493 Greifswald - Insel Riems Germany
| | - Paola Bartolommei
- Fondazione Ethoikos; Convento dell'Osservanza Radicondoli 53030 Siena Italy
| | - Alessio Mortelliti
- Department of Biology and Biotechnology ‘Charles Darwin’; University of Rome ‘La Sapienza’; Viale dell'Università 32 00185 Rome Italy
- National Environmental Research Program; Fenner School of Environment and Society; Australian Research Council Centre for Environmental Decisions; The Australian National University; Canberra ACT 0200 Australia
| | | | - Nico W. van den Brink
- Alterra, Wageningen UR; PO-Box 47 6700 AA Wageningen the Netherlands
- Sub-Department of Toxicology; Wageningen University Wageningen UR; PO-Box 8000 6700 EA Wageningen the Netherlands
| | - Alice Rémy
- Faculty of Applied Ecology and Agricultural Sciences; Hedmark University College; Anne Evenstadsvei 80 2480 Koppang Norway
| | - Anna Bajer
- Department of Parasitology; Faculty of Biology; Institute of Zoology; University of Warsaw; 1 Miecznikowa Street 02-096 Warsaw Poland
| | - Mihail Cheprakov
- Ural Branch; Institute of Plant and Animal Ecology; Russian Academy of Sciences; Str 8 Marta 202 Yekaterinburg 620144 Russia
| | - Misa Korva
- Faculty of Medicine; Institute of Microbiology and Immunology; Zaloška 4 1000 Ljubljana Slovenia
| | - Ana L. García-Pérez
- Department of Animal Health; NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario; Berreaga 1 48160 Derio Bizkaia Spain
| | - Roman Biek
- College of Medical Veterinary and Life Sciences; Boyd Orr Centre for Population and Ecosystem Health; Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow G12 8QQ UK
| | - Susan Withenshaw
- Department of Evolution, Ecology and Behaviour; Institute of Integrative Biology; University of Liverpool; Crown Street Liverpool L69 7ZB UK
| | - Barbara Tschirren
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
66
|
Gene dynamics of toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0731-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Bichet C, Moodley Y, Penn DJ, Sorci G, Garnier S. Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites. Ecol Evol 2015; 5:1639-52. [PMID: 25937907 PMCID: PMC4409412 DOI: 10.1002/ece3.1452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 11/07/2022] Open
Abstract
Small and isolated populations usually exhibit low levels of genetic variability, and thus, they are expected to have a lower capacity to adapt to changes in environmental conditions, such as exposure to pathogens and parasites. Comparing the genetic variability of selectively neutral versus functional loci allows one to assess the evolutionary history of populations and their future evolutionary potential. The genes of the major histocompatibility complex (MHC) control immune recognition of parasites, and their unusually high diversity is genes which is likely driven by parasite-mediated balancing selection. Here, we examined diversity and differentiation of neutral microsatellite loci and functional MHC class I genes in house sparrows (Passer domesticus), living in six insular and six mainland populations, and we aimed to determine whether their diversity or differentiation correlates with the diversity and the prevalence of infection of hemosporidian parasites. We found that island bird populations tended to have lower neutral genetic variability, whereas MHC variability gene was similar between island and mainland populations. Similarly, island populations tended to show greater genetic differentiation than mainland populations, especially at microsatellite markers. The maintenance of MHC genetic diversity and its less marked structure in the island populations could be attributed to balancing-selection. The greater MHC differentiation among populations was negatively correlated with similarity in blood parasites (prevalence and diversity of parasite strains) between populations. Even at low prevalence and small geographical scale, haemosporidian parasites might contribute to structure the variability of immune genes among populations of hosts.
Collapse
Affiliation(s)
- Coraline Bichet
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France ; Laboratoire LBBE, UMR CNRS 5558, Université Claude Bernard Lyon 1 bâtiment Mendel, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Yoshan Moodley
- Department of Zoology, University of Venda Private Bag X5050, Thohoyandou, 0950, South Africa ; Department of Integrative Biology and Evolution, Konrad-Lorenz-Institute of Ethology, University of Veterinarian Medicine Vienna Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Dustin J Penn
- Department of Integrative Biology and Evolution, Konrad-Lorenz-Institute of Ethology, University of Veterinarian Medicine Vienna Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Gabriele Sorci
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
68
|
Osborne AJ, Pearson J, Negro SS, Chilvers BL, Kennedy MA, Gemmell NJ. Heterozygote advantage at MHC DRB may influence response to infectious disease epizootics. Mol Ecol 2015; 24:1419-32. [PMID: 25728376 DOI: 10.1111/mec.13128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations.
Collapse
Affiliation(s)
- Amy J Osborne
- Department of Anatomy, University of Otago, PO Box 913, Dunedin, 9054, New Zealand; Department of Pathology, University of Otago, Christchurch, 8140, New Zealand
| | | | | | | | | | | |
Collapse
|
69
|
Björklund M, Aho T, Behrmann-Godel J. Isolation over 35 years in a heated biotest basin causes selection on MHC class IIß genes in the European perch (Perca fluviatilis L.). Ecol Evol 2015; 5:1440-55. [PMID: 25897384 PMCID: PMC4395174 DOI: 10.1002/ece3.1426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/15/2023] Open
Abstract
Genes that play key roles in host immunity such as the major histocompatibility complex (MHC) in vertebrates are expected to be major targets of selection. It is well known that environmental conditions can have an effect on host–parasite interactions and may thus influence the selection on MHC. We analyzed MHC class IIß variability over 35 years in a population of perch (Perca fluviatilis) from the Baltic Sea that was split into two populations separated from each other. One population was subjected to heating from cooling water of a nuclear power plant and was isolated from the surrounding environment in an artificial lake, while the other population was not subjected to any change in water temperature (control). The isolated population experienced a change of the allelic composition and a decrease in allelic richness of MHC genes compared to the control population. The two most common MHC alleles showed cyclic patterns indicating ongoing parasite–host coevolution in both populations, but the alleles that showed a cyclic behavior differed between the two populations. No such patterns were observed at alleles from nine microsatellite loci, and no genetic differentiation was found between populations. We found no indications for a genetic bottleneck in the isolated population during the 35 years. Additionally, differences in parasitism of the current perch populations suggest that a change of the parasite communities has occurred over the isolation period, although the evidence in form of in-depth knowledge of the change of the parasite community over time is lacking. Our results are consistent with the hypothesis of a selective sweep imposed by a change in the parasite community.
Collapse
Affiliation(s)
- Mats Björklund
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | - Teija Aho
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences Skolgatan 6, Öregrund, SE-742 42, Sweden
| | - Jasminca Behrmann-Godel
- Limnological Institute, University of Konstanz Mainaustrasse 252, D-78464, Konstanz, Germany
| |
Collapse
|
70
|
Real-Monroy MD, Martínez-Méndez N, Ortega J. MHC-DRB Exon 2 Diversity of the Jamaican Fruit-Eating Bat (Artibeus jamaicensis) from Mexico. ACTA CHIROPTEROLOGICA 2014. [DOI: 10.3161/150811014x687260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Pilosof S, Fortuna MA, Cosson JF, Galan M, Kittipong C, Ribas A, Segal E, Krasnov BR, Morand S, Bascompte J. Host-parasite network structure is associated with community-level immunogenetic diversity. Nat Commun 2014; 5:5172. [PMID: 25312328 DOI: 10.1038/ncomms6172] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) encode proteins that recognize foreign antigens and are thus crucial for immune response. In a population of a single host species, parasite-mediated selection drives MHC allelic diversity. However, in a community-wide context, species interactions may modulate selection regimes because the prevalence of a given parasite in a given host may depend on its prevalence in other hosts. By combining network analysis with immunogenetics, we show that host species infected by similar parasites harbour similar alleles with similar frequencies. We further show, using a Bayesian approach, that the probability of mutual occurrence of a functional allele and a parasite in a given host individual is nonrandom and depends on other host-parasite interactions, driving co-evolution within subgroups of parasite species and functional alleles. Therefore, indirect effects among hosts and parasites can shape host MHC diversity, scaling it from the population to the community level.
Collapse
Affiliation(s)
- Shai Pilosof
- Mitrani Department of Desert Ecology and Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Miguel A Fortuna
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| | - Jean-François Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France
| | - Maxime Galan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France
| | - Chaisiri Kittipong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Alexis Ribas
- Biodiversity Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, 76100, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology and Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Serge Morand
- 1] Centre National de la Recherche Scientifique-Institut des Sciences de l'Évolution, Université Montpellier 2, Montpellier 34095, France [2] Centre de coopération International en Recherche Agronomique pour le Développement, Animal et Gestion Intégrée des Risques, Campus de Baillarguet, F-34093 Montpellier Cedex 5, France [3] Centre d'Infectiologie Christophe Mérieux du Laos, PO Box 3888, Samsenthai Road, Vientiane, Lao PDR
| | - Jordi Bascompte
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| |
Collapse
|
72
|
Sin YW, Annavi G, Dugdale HL, Newman C, Burke T, MacDonald DW. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol Ecol 2014; 23:5072-88. [PMID: 25211523 DOI: 10.1111/mec.12917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Department of Organismic and Evolutionary Biology; Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Geetha Annavi
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Faculty of Science; Department of Biology; University of Putra Malaysia; UPM 43400 Serdang Selangor Malaysia
| | - Hannah L. Dugdale
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Behavioural Ecology and Self-Organization; University of Groningen; PO Box 11103 9700 CC Groningen the Netherlands
- Theoretical Biology; University of Groningen; PO Box 11103 9700 CC Groningen the Netherlands
| | - Chris Newman
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
| | - Terry Burke
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - David W. MacDonald
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
| |
Collapse
|
73
|
Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas. Heredity (Edinb) 2014; 114:85-93. [PMID: 25248466 DOI: 10.1038/hdy.2014.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.
Collapse
|
74
|
Lighten J, van Oosterhout C, Bentzen P. Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 2014; 23:3957-72. [DOI: 10.1111/mec.12843] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Jackie Lighten
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| | - Cock van Oosterhout
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich UK
| | - Paul Bentzen
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
75
|
Grossen C, Keller L, Biebach I, Croll D. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex. PLoS Genet 2014; 10:e1004438. [PMID: 24945814 PMCID: PMC4063738 DOI: 10.1371/journal.pgen.1004438] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/30/2014] [Indexed: 12/30/2022] Open
Abstract
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. The major histocompatibility complex (MHC), a crucial component of the defense against pathogens, contains the most polymorphic functional genes in vertebrate genomes. The extraordinary genetic variation is generally considered to be ancient. We investigated whether a previously neglected mechanism, introgression from related species, provides an additional source of MHC variation. We show that introgression from domestic goat dramatically increased genetic variation at the MHC of Alpine ibex, a species that had nearly gone extinct during the 18th century, but has been restored to large numbers since. We show that Alpine ibex share one of only two alleles at a generally highly polymorphic MHC locus with domestic goats and that the chromosomal region containing the goat-type allele has a signature of recent introgression. Our finding contradicts the long-standing view that ancient trans-species polymorphism is the sole source of the extraordinary genetic variability at the MHC. Instead, we show that in Alpine ibex introgression generated genetic diversity at a MHC locus. Our study supports the view that loci favoring genetic polymorphism may be susceptible to adaptive introgression from related species and will encourage future research to identify unexpected signatures of introgression.
Collapse
Affiliation(s)
- Christine Grossen
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Lukas Keller
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Iris Biebach
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - The International Goat Genome Consortium
- Kunming Institute of Zoology, Chinese Academy of Sciences, State Key Laboratory of Genetic Resources and Evolution, Kunming, China
- INRA, UMR444, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Daniel Croll
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
76
|
Nonsynonymous substitution rate heterogeneity in the peptide-binding region among different HLA-DRB1 lineages in humans. G3-GENES GENOMES GENETICS 2014; 4:1217-26. [PMID: 24793785 PMCID: PMC4455771 DOI: 10.1534/g3.114.011726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution.
Collapse
|
77
|
Winternitz JC, Wares JP, Yabsley MJ, Altizer S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9709-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
78
|
Kamath PL, Turner WC, Küsters M, Getz WM. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga). Proc Biol Sci 2014; 281:20140077. [PMID: 24718761 DOI: 10.1098/rspb.2014.0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite 'susceptibility alleles' were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.
Collapse
Affiliation(s)
- Pauline L Kamath
- US Geological Survey, Northern Rocky Mountain Science Center, , 2327 University Way, Bozeman, MT 59715, USA, Department of Environmental Science, Policy, and Management, University of California, , 130 Mulford Hall No. 3114, Berkeley, CA 94720, USA, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, , PO Box 1066 Blindern, Oslo 0361, Norway, Berkeley Etosha Anthrax Research Project, , Swakopmund, Namibia, School of Mathematical Sciences, University of KwaZulu-Natal, , Private Bag X54001, 14, Durban 4000, South Africa
| | | | | | | |
Collapse
|
79
|
Alcaide M, Muñoz J, Martínez-de la Puente J, Soriguer R, Figuerola J. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 2014; 4:688-98. [PMID: 24683452 PMCID: PMC3967895 DOI: 10.1002/ece3.974] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022] Open
Abstract
The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird.
Collapse
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Joaquin Muñoz
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
- The University of Oklahoma Biological Station15389 Station Road, Kingston, Oklahoma, 73439
| | | | - Ramón Soriguer
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| |
Collapse
|
80
|
Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol 2014; 23:875-89. [DOI: 10.1111/mec.12647] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. K. Niskanen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - L. J. Kennedy
- Centre for Integrated Genomic Medical Research; University of Manchester; Stopford Building Oxford Road Manchester M13 9PT UK
| | - M. Ruokonen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - I. Kojola
- Finnish Game and Fisheries Research Institute; Paavo Havaksen tie 3 PO Box 413 FI-90014 Oulu Finland
| | - H. Lohi
- Department of Veterinary Biosciences; Research Programs Unit; Molecular Neurology; Folkhälsan Institute of Genetics; Biomedicum Helsinki; University of Helsinki; PO Box 63 FI-00014 Helsinki Finland
| | - M. Isomursu
- Fish and Wildlife Health Research Unit; Finnish Food Safety Authority Evira; PO Box 517 FI-90101 Oulu Finland
| | - E. Jansson
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - T. Pyhäjärvi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - J. Aspi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| |
Collapse
|
81
|
Ozener B, Graham JH. Growth and fluctuating asymmetry of human newborns: influence of inbreeding and parental education. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:45-51. [PMID: 24318940 DOI: 10.1002/ajpa.22401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/30/2013] [Indexed: 02/03/2023]
Abstract
Historically, medical concerns about the deleterious effects of closely inbred marriages have focused on the risk posed by recessive Mendelian disease, with much less attention to developmental instability. We studied the effects of inbreeding (first-cousin marriage) on growth and fluctuating asymmetry of 200 full-term infants (101 inbred and 99 outbred) whose parents were of similar socioeconomic status in Sivas Province, Turkey. In addition to differences in their mean inbreeding coefficients (f = 1/16 for first cousins and f < 1/1,024 for unrelated parents), the consanguineous parents were less well educated (3 years, on average for both husbands and wives). We measured weight, height, head circumference, and chest circumference of the newborns, as well as four bilateral traits (ear width, ear length, and second and fourth digit lengths). After taking education into account, none of the measures of size (weight, height, head circumference, and chest circumference) and fluctuating asymmetry differed between the inbred and outbred groups. Male children of well-educated parents, however, were larger and had less fluctuating asymmetry. Female children of well-educated parents weighed more than those of less well-educated parents, but were otherwise indistinguishable for height, head circumference, chest circumference, and fluctuating asymmetry. We conclude that inbreeding depression causes neither an increase in fluctuating asymmetry of full-term newborns, nor a decrease in body size. Unmeasured variables correlated with education appear to have an effect on fluctuating asymmetry and size of male children and only a weak effect on size (weight) of female children.
Collapse
Affiliation(s)
- Bariş Ozener
- Department of Anthropology, Cumhuriyet University, Sivas, 58140, Turkey
| | | |
Collapse
|
82
|
Westerdahl H, Stjernman M, Råberg L, Lannefors M, Nilsson JÅ. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits. PLoS One 2013; 8:e72647. [PMID: 24023631 PMCID: PMC3758318 DOI: 10.1371/journal.pone.0072647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
83
|
Restif O. An offer you cannot refuse: down-regulation of immunity in response to a pathogen's retaliation threat. J Evol Biol 2013; 26:2021-30. [PMID: 23927686 PMCID: PMC4274018 DOI: 10.1111/jeb.12209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
According to the Red Queen hypothesis, hosts and pathogens are engaged in an escalating coevolutionary arms race between resistance and virulence. However, the vast majority of symbionts colonize their hosts' mucosal compartments without triggering any immune response, resulting in durable commensal associations. Here, I propose a simple extension of previous mathematical models for antagonistic coevolution in which the host can mount a delayed immune response; in response, the symbiont can change its virulence following this activation. Even though the levels of virulence in both phases are assumed to be genetically determined, this simple form of plasticity can select for commensal associations. In particular, coevolution can result in hosts that do not activate their immune response, thus preventing phenotypically plastic pathogens from switching to a higher virulence level. I argue that, from the host's point of view, this state is analogous to the mafia behaviour previously described in avian brood parasites. More importantly, this study provides a new hypothesis for the maintenance of a commensal relationship through antagonistic coevolution.
Collapse
Affiliation(s)
- O Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
84
|
Zhang M, He H. Parasite-mediated selection of major histocompatibility complex variability in wild brandt's voles (Lasiopodomys brandtii) from Inner Mongolia, China. BMC Evol Biol 2013; 13:149. [PMID: 23848494 PMCID: PMC3720540 DOI: 10.1186/1471-2148-13-149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/27/2013] [Indexed: 11/21/2022] Open
Abstract
Background Genes of the major histocompatibility complex (MHC) exhibit high levels of variability, which is believed to have arisen through pathogen-mediated selection. We investigated the relationship between parasite load and genetic diversity at selectively neutral, non-coding markers (microsatellites) and adaptive genetic variation at a functionally important part of the MHC in six independent natural populations of Brandt’s voles (Lasiopodomys brandtii) from two regions of the Xilingol Grassland area of Inner Mongolia. Results Two-hundred and fifty-two voles were screened for gastrointestinal parasites, and were assessed for genetic variation. Parasite screening was done through non-invasive fecal egg counts, while allelic diversity was determined via single-stranded conformation polymorphism and DNA sequencing. We detected eight distinct helminth egg morphotypes. A total of 10 microsatellite loci were genotyped and 19 unique MHC class II B alleles were isolated. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB. Neutral and adaptive genetic diversity differed between the six vole populations. To test the main pathogen-driven selection hypotheses for the maintenance of host MHC diversity and parasite species-specific co-evolutionary effects, multivariate approaches (generalized linear mixed models) were used to test for associations between the MHC class II DRB genotype and infections with nematodes. We found no evidence for heterozygote advantage, and overall heterozygosity was lower than expected in the MHC alleles. We identified an association between the parasite load and specific MHC alleles in the voles, and this pattern varied between geographic regions. Conclusions The results suggest that MHC variability in Brandt’s voles is maintained by rare allele advantage and fluctuating selection, but the data failed to show any heterozygote advantage effect. Our results add to a growing body of evidence showing that the mode and relative strength of pathogen-driven selection acting on MHC diversity varies within specific wild populations. In addition, our study contributes to the understanding of what maintains MHC diversity, of host-pathogen coevolution and of how genetic diversity is maintained in voles.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
85
|
Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity (Edinb) 2013; 111:44-56. [PMID: 23572124 PMCID: PMC3692317 DOI: 10.1038/hdy.2013.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 11/09/2022] Open
Abstract
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Collapse
Affiliation(s)
- A J Osborne
- Centre for Reproduction and Genomics, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
86
|
Yao YF, Zhao JJ, Dai QX, Li JY, Zhou L, Wang YT, Ni QY, Zhang MW, Xu HL. Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana). ACTA ACUST UNITED AC 2013; 82:113-21. [PMID: 23745600 DOI: 10.1111/tan.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 11/26/2022]
Abstract
Tibetan macaque (Macaca thibetana), an endangered primate species endemic to China, have been used as experimental animal model for various human diseases. Major histocompatibility complex (MHC) genes play a crucial role in the susceptibility and/or resistance to many human diseases, but little is known about Tibetan macaques. To gain an insight into the MHC background and to facilitate the experimental use of Tibetan macaques, the second exon of Mhc-DQB1 gene was sequenced in a cohort of wild Tibetan macaques living in the Sichuan province of China. A total of 23 MhcMath-DQB1 alleles were identified for the first time, illustrating a marked allelic polymorphism at the DQB1 locus for these macaques. Most of the sequences (74%) observed in this study belong to DQB1*06 (9 alleles) and DQB1*18 (8 alleles) lineages, and the rest (26%) belong to DQB1*15 (3 alleles) and DQB1*17 (3 alleles) lineages. The most frequent alleles detected among these macaques were MhcMath-DQB1*15:02:02 (17.9%), followed by Math-DQB1*06:06, 17:03 and 18:01, which were detected in 9 (16.1%) of the monkeys, respectively. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the peptide-binding region, suggesting balancing selection for maintaining polymorphisms at the MHC class II DQB1 locus. Phylogenetic analyses confirms the trans-species model of evolution of the Mhc-DQB1 genes in non-human primates, and in particular, the extensive allele sharing is observed between Tibetan and other macaque species.
Collapse
Affiliation(s)
- Y-F Yao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lindholm AK, Musolf K, Weidt A, König B. Mate choice for genetic compatibility in the house mouse. Ecol Evol 2013; 3:1231-47. [PMID: 23762510 PMCID: PMC3678478 DOI: 10.1002/ece3.534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022] Open
Abstract
In house mice, genetic compatibility is influenced by the t haplotype, a driving selfish genetic element with a recessive lethal allele, imposing fundamental costs on mate choice decisions. Here, we evaluate the cost of genetic incompatibility and its implication for mate choice in a wild house mice population. In laboratory reared mice, we detected no fertility (number of embryos) or fecundity (ability to conceive) costs of the t, and yet we found a high cost of genetic incompatibility: heterozygote crosses produced 40% smaller birth litter sizes because of prenatal mortality. Surprisingly, transmission of t in crosses using +/t males was influenced by female genotype, consistent with postcopulatory female choice for + sperm in +/t females. Analysis of paternity patterns in a wild population of house mice showed that +/t females were more likely than +/+ females to have offspring sired by +/+ males, and unlike +/+ females, paternity of their offspring was not influenced by +/t male frequency, further supporting mate choice for genetic compatibility. As the major histocompatibility complex (MHC) is physically linked to the t, we investigated whether females could potentially use variation at the MHC to identify male genotype at the sperm or individual level. A unique MHC haplotype is linked to the t haplotype. This MHC haplotype could allow the recognition of t and enable pre- and postcopulatory mate choice for genetic compatibility. Alternatively, the MHC itself could be the target of mate choice for genetic compatibility. We predict that mate choice for genetic compatibility will be difficult to find in many systems, as only weak fertilization biases were found despite an exceptionally high cost of genetic incompatibility.
Collapse
Affiliation(s)
- Anna K Lindholm
- Institute of Evolutionary Biology und Environmental Studies, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
88
|
|
89
|
Stiebens VA, Merino SE, Chain FJJ, Eizaguirre C. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing. BMC Evol Biol 2013; 13:95. [PMID: 23627726 PMCID: PMC3655109 DOI: 10.1186/1471-2148-13-95] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/17/2013] [Indexed: 11/17/2022] Open
Abstract
Background In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. Methods We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. Results MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Conclusions Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.
Collapse
Affiliation(s)
- Victor A Stiebens
- Department of Evolutionary Ecology of Marine Fishes, GEOMAR
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | | | | | | |
Collapse
|
90
|
Sepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc Biol Sci 2013; 280:20130134. [PMID: 23516242 DOI: 10.1098/rspb.2013.0134] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host-parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite-Mhc associations in the wild.
Collapse
Affiliation(s)
- Irem Sepil
- Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
91
|
Daum JM, Davis LR, Bigler L, Woodhams DC. Hybrid advantage in skin peptide immune defenses of water frogs (Pelophylax esculentus) at risk from emerging pathogens. INFECTION GENETICS AND EVOLUTION 2012; 12:1854-64. [DOI: 10.1016/j.meegid.2012.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 02/08/2023]
|
92
|
Sepil I, Lachish S, Sheldon BC. Mhc-linked survival and lifetime reproductive success in a wild population of great tits. Mol Ecol 2012. [DOI: 10.1111/mec.12123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Irem Sepil
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Shelly Lachish
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Ben C. Sheldon
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| |
Collapse
|
93
|
Tick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:1-9. [PMID: 24533310 PMCID: PMC3862501 DOI: 10.1016/j.ijppaw.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Ticks are of vast importance to livestock health, and contribute to conflicts between wildlife conservation and agricultural interests; but factors driving tick infestation patterns on wild hosts are not well understood. We studied tick infestation patterns on free-ranging African buffalo (Syncercus caffer), asking (i) is there evidence for niche segregation among tick species?; and (ii) how do host characteristics affect variation in tick abundance among hosts? We identified ticks and estimated tick burdens on 134 adult female buffalo from two herds at Kruger National Park, South Africa. To assess niche segregation, we evaluated attachment site preferences and tested for correlations between abundances of different tick species. To investigate which host factors may drive variability in tick abundance, we measured age, body condition, reproductive and immune status in all hosts, and examined their effects on tick burdens. Two tick species were abundant on buffalo, Amblyomma hebraeum and Rhipicephalus evertsi evertsi. A. hebraeum were found primarily in the inguinal and axillary regions; R. e. evertsi attached exclusively in the perianal area. Abundances of A. hebraeum and R. e. evertsi on the host were unrelated. These results suggest spatial niche segregation between A. hebraeum and R. e. evertsi on the buffalo. Buffalo with stronger innate immunity, and younger buffalo, had fewer ticks. Buffalo with low body condition scores, and pregnant buffalo, had higher tick burdens, but these effects varied between the two herds we sampled. This study is one of the first to link ectoparasite abundance patterns and immunity in a free-ranging mammalian host population. Based on independent abundances of A. hebraeum and R. e. evertsi on individual buffalo, we would expect no association between the diseases these ticks transmit. Longitudinal studies linking environmental variability with host immunity are needed to understand tick infestation patterns and the dynamics of tick-borne diseases in wildlife.
Collapse
|
94
|
Cross HB, Campbell-Palmer R, Girling S, Rosell F. The Eurasian beaver (Castor fiber) is apparently not a host to blood parasites in Norway. Vet Parasitol 2012; 190:246-8. [DOI: 10.1016/j.vetpar.2012.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 11/26/2022]
|
95
|
Affiliation(s)
- Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Ithaca New York 14853-2701 USA
- CMPG Lab; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
| | - Sarah E. Perkins
- Cardiff School of Biosciences; Biomedical Sciences Building Museum Avenue Cardiff CF10 3AX UK
| |
Collapse
|
96
|
Bronson PG, Mack SJ, Erlich HA, Slatkin M. A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric. Hum Mol Genet 2012; 22:252-61. [PMID: 23065702 DOI: 10.1093/hmg/dds424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Balancing selection has maintained human leukocyte antigen (HLA) allele diversity, but it is unclear whether this selection is symmetric (all heterozygotes are comparable and all homozygotes are comparable in terms of fitness) or asymmetric (distinct heterozygote genotypes display greater fitness than others). We tested the hypothesis that HLA is under asymmetric balancing selection in populations by estimating allelic branch lengths from genetic sequence data encoding peptide-binding domains. Significant deviations indicated changes in the ratio of terminal to internal branch lengths. Such deviations could arise even if no individual alleles present a strikingly altered branch length (e.g. if there is an overall distortion, with all or many terminal branches being longer than expected). DQ and DP loci were also analyzed as haplotypes. Using allele frequencies for 419 distinct populations in 10 geographical regions, we examined population differentiation in alleles within and between regions, and the relationship between allelic branch length and frequency. The strongest evidence for asymmetrical balancing selection was observed for HLA-DRB1, HLA-B and HLA-DPA1, with significant deviation (P ≤ 1.1 × 10(-4)) in about half of the populations. There were significant results at all loci except HLA-DQB1/DQA1. We observed moderate genetic variation within and between geographic regions, similar to the rest of the genome. Branch length was not correlated with allele frequency. In conclusion, sequence data suggest that balancing selection in HLA is asymmetric (some heterozygotes enjoy greater fitness than others). Because HLA polymorphism is crucial for pathogen resistance, this may manifest as a frequency-dependent selection with fluctuation in the fitness of specific heterozygotes over time.
Collapse
Affiliation(s)
- Paola G Bronson
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | | | |
Collapse
|
97
|
MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9611-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
98
|
Borg ÅA, Pedersen SA, Jensen H, Westerdahl H. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories. Ecol Evol 2012; 1:145-59. [PMID: 22393491 PMCID: PMC3287304 DOI: 10.1002/ece3.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 12/24/2022] Open
Abstract
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.
Collapse
Affiliation(s)
- Åsa Alexandra Borg
- Centre for Conservation Biology, Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Sindre Andre Pedersen
- Centre for Conservation Biology, Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Henrik Jensen
- Centre for Conservation Biology, Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | | |
Collapse
|
99
|
van Rensburg AJ, Bloomer P, Ryan PG, Hansson B. Ancestral polymorphism at the major histocompatibility complex (MHCIIß) in the Nesospiza bunting species complex and its sister species (Rowettia goughensis). BMC Evol Biol 2012; 12:143. [PMID: 22894748 PMCID: PMC3483275 DOI: 10.1186/1471-2148-12-143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 07/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is an important component of the vertebrate immune system and is frequently used to characterise adaptive variation in wild populations due to its co-evolution with pathogens. Passerine birds have an exceptionally diverse MHC with multiple gene copies and large numbers of alleles compared to other avian taxa. The Nesospiza bunting species complex (two species on Nightingale Island; one species with three sub-species on Inaccessible Island) represents a rapid adaptive radiation at a small, isolated archipelago, and is thus an excellent model for the study of adaptation and speciation. In this first study of MHC in Nesospiza buntings, we aim to characterize MHCIIß variation, determine the strength of selection acting at this gene region and assess the level of shared polymorphism between the Nesospiza species complex and its putative sister taxon, Rowettia goughensis, from Gough Island. RESULTS In total, 23 unique alleles were found in 14 Nesospiza and 2 R. goughensis individuals encoding at least four presumably functional loci and two pseudogenes. There was no evidence of ongoing selection on the peptide binding region (PBR). Of the 23 alleles, 15 were found on both the islands inhabited by Nesospiza species, and seven in both Nesospiza and Rowettia; indications of shared, ancestral polymorphism. A gene tree of Nesospiza MHCIIß alleles with several other passerine birds shows three highly supported Nesospiza-specific groups. All R. goughensis alleles were shared with Nesospiza, and these alleles were found in all three Nesospiza sequence groups in the gene tree, suggesting that most of the observed variation predates their phylogenetic split. CONCLUSIONS Lack of evidence of selection on the PBR, together with shared polymorphism across the gene tree, suggests that population variation of MHCIIß among Nesospiza and Rowettia is due to ancestral polymorphism rather than local selective forces. Weak or no selection pressure could be attributed to low parasite load at these isolated Atlantic islands. The deep divergence between the highly supported Nesospiza-specific sequence Groups 2 and 3, and the clustering of Group 3 close to the distantly related passerines, provide strong support for preserved ancestral polymorphism, and present evidence of one of the rare cases of extensive ancestral polymorphism in birds.
Collapse
Affiliation(s)
- Alexandra Jansen van Rensburg
- Molecular Ecology and Evolution Program, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Program, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Peter G Ryan
- Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa
| | - Bengt Hansson
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, SE-22362, Lund, Sweden
| |
Collapse
|
100
|
Schad J, Dechmann DKN, Voigt CC, Sommer S. Evidence for the 'good genes' model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS One 2012; 7:e37101. [PMID: 22615910 PMCID: PMC3353892 DOI: 10.1371/journal.pone.0037101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The 'good genes' model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the 'good genes' model.
Collapse
Affiliation(s)
- Julia Schad
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Genetics, Berlin, Germany
| | - Dina K. N. Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Ecology, Berlin, Germany
| | - Simone Sommer
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Genetics, Berlin, Germany
| |
Collapse
|