51
|
Tragust S, Ugelvig LV, Chapuisat M, Heinze J, Cremer S. Pupal cocoons affect sanitary brood care and limit fungal infections in ant colonies. BMC Evol Biol 2013; 13:225. [PMID: 24125481 PMCID: PMC3854126 DOI: 10.1186/1471-2148-13-225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.
Collapse
Affiliation(s)
- Simon Tragust
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
- Animal Ecology I, University of Bayreuth, 95440 Bayreuth, Germany
| | - Line V Ugelvig
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Michel Chapuisat
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jürgen Heinze
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Sylvia Cremer
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
52
|
|
53
|
Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathog 2013; 9:e1003102. [PMID: 23326229 PMCID: PMC3542111 DOI: 10.1371/journal.ppat.1003102] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023] Open
Abstract
The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae), was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to conserve energy meanwhile increasing the "distance" of infectious and target individuals. Our study has obvious implications for bio-pesticides management of crowded pests, and for understanding disease epidemics and adaptiveness of pathogens.
Collapse
|
54
|
Ugelvig LV, Cremer S. Effects of social immunity and unicoloniality on host-parasite interactions in invasive insect societies. Funct Ecol 2012. [DOI: 10.1111/1365-2435.12013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Line V. Ugelvig
- IST Austria (Institute of Science and Technology Austria); Am Campus 1, A-3400 Klosterneuburg Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria); Am Campus 1, A-3400 Klosterneuburg Austria
| |
Collapse
|
55
|
|
56
|
King KC, Lively CM. Does genetic diversity limit disease spread in natural host populations? Heredity (Edinb) 2012; 109:199-203. [PMID: 22713998 PMCID: PMC3464021 DOI: 10.1038/hdy.2012.33] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the 'monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding 'diversity thresholds.'
Collapse
Affiliation(s)
- K C King
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
57
|
Konrad M, Vyleta ML, Theis FJ, Stock M, Tragust S, Klatt M, Drescher V, Marr C, Ugelvig LV, Cremer S. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol 2012; 10:e1001300. [PMID: 22509134 PMCID: PMC3317912 DOI: 10.1371/journal.pbio.1001300] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates. Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”). Close social contact facilitates pathogen transmission in societies, often causing epidemics. In contrast to this, we show that limited transmission of a fungal pathogen in ant colonies can be beneficial for the host, because it promotes “social immunisation” of healthy group members. We found that ants exposed to the fungus are heavily groomed by their healthy nestmates. Grooming removes a significant number of fungal conidiospores from the body surface of exposed ants and reduces their risk of falling sick. At the same time, previously healthy nestmates are themselves exposed to a small number of conidiospores, triggering low-level infections. These micro-infections are not deadly, but result in upregulated expression of a specific set of immune genes and pathogen-specific protective immune stimulation. Pathogen transfer by social interactions is therefore the underlying mechanism of social immunisation against fungal infections in ant societies. There is a similarity between such natural social immunisation and human efforts to induce immunity against deadly diseases, such as smallpox. Before vaccination with dead or attenuated strains was invented, immunity in human societies was induced by actively transferring low-level infections (“variolation”), just like in ants.
Collapse
Affiliation(s)
- Matthias Konrad
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Meghan L. Vyleta
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Miriam Stock
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Simon Tragust
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
- Evolution, Behaviour & Genetics, University of Regensburg, Regensburg, Germany
| | - Martina Klatt
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
- Evolution, Behaviour & Genetics, University of Regensburg, Regensburg, Germany
| | - Verena Drescher
- Evolution, Behaviour & Genetics, University of Regensburg, Regensburg, Germany
| | - Carsten Marr
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Line V. Ugelvig
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Sylvia Cremer
- Evolutionary Biology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
58
|
Chouvenc T, Su NY. When subterranean termites challenge the rules of fungal epizootics. PLoS One 2012; 7:e34484. [PMID: 22470575 PMCID: PMC3314638 DOI: 10.1371/journal.pone.0034484] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/02/2012] [Indexed: 11/18/2022] Open
Abstract
Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Department of Entomology and Nematology, University of Florida, Fort Lauderdale, Florida, United States of America.
| | | |
Collapse
|
59
|
Hovestadt T, Thomas JA, Mitesser O, Elmes GW, Schönrogge K. Unexpected benefit of a social parasite for a key fitness component of its ant host. Am Nat 2011; 179:110-23. [PMID: 22173464 DOI: 10.1086/663203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous invertebrates inhabit social insect colonies, including the hoverfly genus Microdon, whose larvae typically live as brood predators. Formica lemani ant colonies apparently endure Microdon mutabilis infections over several years, despite losing a considerable fraction of young, and may even produce more gynes. We present a model for resource allocation within polygynous ant colonies, which assumes that whether an ant larva switches development into a worker or a gyne depends on the quantity of food received randomly from workers. Accordingly, Microdon predation promotes gyne development by increasing resource availability for surviving broods. Several model predictions are supported by empirical data. (i) Uninfected colonies seldom produce gynes. (ii) Infected colonies experience a short-lived peak in gyne production leading to a bimodal distribution in gyne production. (iii) Low brood : worker ratio is the critical mechanism controlling gyne production. (iv) Brood : worker ratio reduction must be substantial for increased gyne production to become noticeable.
Collapse
Affiliation(s)
- Thomas Hovestadt
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7179, 1 Avenue du Petit Château, 91800 Brunoy, France.
| | | | | | | | | |
Collapse
|
60
|
Holman L, Stürup M, Trontti K, Boomsma JJ. Random sperm use and genetic effects on worker caste fate in Atta colombica leaf-cutting ants. Mol Ecol 2011; 20:5092-102. [PMID: 22053996 DOI: 10.1111/j.1365-294x.2011.05338.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sperm competition can produce fascinating adaptations with far-reaching evolutionary consequences. Social taxa make particularly interesting models, because the outcome of sexual selection determines the genetic composition of groups, with attendant sociobiological consequences. Here, we use molecular tools to uncover some of the mechanisms and consequences of sperm competition in the leaf-cutting ant Atta colombica, a species with extreme worker size polymorphism. Competitive PCR allowed quantification of the relative numbers of sperm stored by queens from different males, and offspring genotyping revealed how sperm number translated into paternity of eggs and adult workers. We demonstrate that fertilization success is directly related to sperm numbers, that stored sperm are well-mixed and that egg paternity is constant over time. Moreover, worker size was found to have a considerable genetic component, despite expectations that genetic effects on caste fate should be minor in species with a low degree of polyandry. Our data suggest that sexual conflict over paternity is largely resolved by the lifetime commitment between mates generated by long-term sperm storage, and show that genetic variation for caste can persist in societies with comparatively high relatedness.
Collapse
Affiliation(s)
- Luke Holman
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
61
|
Vojvodic S, Jensen AB, Markussen B, Eilenberg J, Boomsma JJ. Genetic variation in virulence among chalkbrood strains infecting honeybees. PLoS One 2011; 6:e25035. [PMID: 21966406 PMCID: PMC3178585 DOI: 10.1371/journal.pone.0025035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12-14% mortality while those from the other clade induced 71-92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Centre for Social Evolution, Faculty of Life Sciences, Department of Agriculture and Ecology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
62
|
Graystock P, Hughes WOH. Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands. Behav Ecol Sociobiol 2011. [DOI: 10.1007/s00265-011-1242-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Allen C, Valles SM, Strong CA. Multiple virus infections occur in individual polygyne and monogyne Solenopsis invicta ants. J Invertebr Pathol 2011; 107:107-11. [DOI: 10.1016/j.jip.2011.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 11/30/2022]
|
64
|
Vitikainen E, Haag-Liautard C, Sundström L. INBREEDING AND REPRODUCTIVE INVESTMENT IN THE ANT FORMICA EXSECTA. Evolution 2011; 65:2026-37. [DOI: 10.1111/j.1558-5646.2011.01273.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M. The expression and impact of antifungal grooming in ants. J Evol Biol 2011; 24:954-64. [PMID: 21306465 DOI: 10.1111/j.1420-9101.2011.02230.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies.
Collapse
Affiliation(s)
- A Reber
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|