51
|
Hormonal and thermal induction of sex reversal in the bearded dragon (Pogona vitticeps, Agamidae). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
52
|
Using blood and non-invasive shed skin samples to identify sex of caenophidian snakes based on multiplex PCR assay. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Rovatsos M, Altmanová M, Johnson Pokorná M, Augstenová B, Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus
) and the evolution of snake sex chromosomes. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
| | - Marie Altmanová
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Martina Johnson Pokorná
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Barbora Augstenová
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology; Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
54
|
Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett GW, Booth W. The Discovery of XY Sex Chromosomes in a Boa and Python. Curr Biol 2017; 27:2148-2153.e4. [DOI: 10.1016/j.cub.2017.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
55
|
Laopichienpong N, Tawichasri P, Chanhome L, Phatcharakullawarawat R, Singchat W, Kantachumpoo A, Muangmai N, Suntrarachun S, Matsubara K, Peyachoknagul S, Srikulnath K. A novel method of caenophidian snake sex identification using molecular markers based on two gametologous genes. Ecol Evol 2017; 7:4661-4669. [PMID: 28690796 PMCID: PMC5496543 DOI: 10.1002/ece3.3057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Sex identification provides important information for ecological and evolutionary studies, as well as benefiting snake conservation management. Traditional methods such as cloacal probing or cloacal popping are counterproductive for sex identification concerning very small species, resulting in difficulties in the management of their breeding programs. In this study, the nucleotide sequences of gametologous genes (CTNNB1 and WAC genes) were used for the development of molecular sexing markers in caenophidian snakes. Two candidate markers were developed with the two primer sets, and successfully amplified by a single band on the agarose gel in male (ZZ) and two bands, differing in fragment sizes, in female (ZW) of 16 caenophidian snakes for CTNNB1 and 12 caenophidian snakes for WAC. Another candidate marker was developed with the primer set to amplify the specific sequence for CTNNB1W homolog, and the PCR products were successfully obtained in a female‐specific 250‐bp DNA bands. The three candidate PCR sexing markers provide a simple sex identification method based on the amplification of gametologous genes, and they can be used to facilitate effective caenophidian snake conservation and management programs.
Collapse
Affiliation(s)
- Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Animal Breeding and Genetics Consortium of Kasetsart University (ABG - KU) Bangkok Thailand
| | - Panupong Tawichasri
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Animal Breeding and Genetics Consortium of Kasetsart University (ABG - KU) Bangkok Thailand
| | - Lawan Chanhome
- Snake Farm Queen Saovabha Memorial Institute The Thai Red Cross Society Bangkok Thailand
| | | | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Animal Breeding and Genetics Consortium of Kasetsart University (ABG - KU) Bangkok Thailand
| | - Attachai Kantachumpoo
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Animal Breeding and Genetics Consortium of Kasetsart University (ABG - KU) Bangkok Thailand.,Center for Advanced Studies in Tropical Natural Resources National Research University-Kasetsart University Thailand (CASTNARNRU-KUThailand) Kasetsart University Bangkok Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology Faculty of Fisheries Kasetsart University Bangkok Thailand
| | - Sunutcha Suntrarachun
- Department of Research and Development Queen Saovabha Memorial Institute The Thai Red Cross Society Bangkok Thailand
| | - Kazumi Matsubara
- Research Center for Bioinformatics and Biosciences National Research Institute of Fisheries Science Japan Fisheries Research and Education Agency Yokohama Kanagawa Japan
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Center for Advanced Studies in Tropical Natural Resources National Research University-Kasetsart University Thailand (CASTNARNRU-KUThailand) Kasetsart University Bangkok Thailand.,Department of Biology Faculty of Science Naresuan University Phitsanulok Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG) Department of Genetics Faculty of Science Kasetsart University Bangkok Thailand.,Animal Breeding and Genetics Consortium of Kasetsart University (ABG - KU) Bangkok Thailand.,Center for Advanced Studies in Tropical Natural Resources National Research University-Kasetsart University Thailand (CASTNARNRU-KUThailand) Kasetsart University Bangkok Thailand
| |
Collapse
|
56
|
Literman R, Radhakrishnan S, Tamplin J, Burke R, Dresser C, Valenzuela N. Development of sexing primers in Glyptemys insculpta and Apalone spinifera turtles uncovers an XX/XY sex-determining system in the critically-endangered bog turtle Glyptemys muhlenbergii. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0711-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
57
|
Rovatsos M, Praschag P, Fritz U, Kratochvšl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Sci Rep 2017; 7:42150. [PMID: 28186115 PMCID: PMC5301483 DOI: 10.1038/srep42150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
Turtles demonstrate variability in sex determination ranging from environmental sex determination (ESD) to highly differentiated sex chromosomes. However, the evolutionary dynamics of sex determining systems in this group is not well known. Differentiated ZZ/ZW sex chromosomes were identified in two species of the softshell turtles (Trionychidae) from the subfamily Trionychinae and Z-specific genes were identified in a single species. We tested Z-specificity of a subset of these genes by quantitative PCR comparing copy gene numbers in male and female genomes in 10 species covering the phylogenetic diversity of trionychids. We demonstrated that differentiated ZZ/ZW sex chromosomes are conserved across the whole family and that they were already present in the common ancestor of the extant trionychids. As the sister lineage, Carettochelys insculpta, possess ESD, we can date the origin of the sex chromosomes in trionychids between 200 Mya (split of Trionychidae and Carettochelyidae) and 120 Mya (basal splitting of the recent trionychids). The results support the evolutionary stability of differentiated sex chromosomes in some lineages of ectothermic vertebrates. Moreover, our approach determining sex-linkage of protein coding genes can be used as a reliable technique of molecular sexing across trionychids useful for effective breeding strategy in conservation projects of endangered species.
Collapse
Affiliation(s)
- Michail Rovatsos
- Faculty of Science, Charles University, Department of Ecology, Viničná 7, 12844 Praha 2, Czech Republic
| | - Peter Praschag
- Turtle Island, Turtle Conservation Center, Am Katzelbach 98, 8054 Graz, Austria
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany
| | - Lukáš Kratochvšl
- Faculty of Science, Charles University, Department of Ecology, Viničná 7, 12844 Praha 2, Czech Republic
| |
Collapse
|
58
|
Rovatsos M, Kratochvíl L. Molecular sexing applicable in 4000 species of lizards and snakes? From dream to real possibility. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology Faculty of Science Charles University in Prague Viničná 7 12844 Prague Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology Faculty of Science Charles University in Prague Viničná 7 12844 Prague Czech Republic
| |
Collapse
|
59
|
Sequential Turnovers of Sex Chromosomes in African Clawed Frogs ( Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination. G3-GENES GENOMES GENETICS 2016; 6:3625-3633. [PMID: 27605520 PMCID: PMC5100861 DOI: 10.1534/g3.116.033423] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles.
Collapse
|
60
|
Rovatsos M, Johnson Pokorná M, Altmanová M, Kratochvíl L. Mixed-Up Sex Chromosomes: Identification of Sex Chromosomes in the X1X1X2X2/X1X2Y System of the Legless Lizards of the Genus Lialis (Squamata: Gekkota: Pygopodidae). Cytogenet Genome Res 2016; 149:282-289. [DOI: 10.1159/000450734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
Geckos in general show extensive variability in sex determining systems, but only male heterogamety has been demonstrated in the members of their legless family Pygopodidae. In the pioneering study published more than 45 years ago, multiple sex chromosomes of the type X1X1X2X2/X1X2Y were described in Burton's legless lizard (Lialisburtonis) based on conventional cytogenetic techniques. We conducted cytogenetic analyses including comparative genomic hybridization and fluorescence in situ hybridization (FISH) with selected cytogenetic markers in this species and the previously cytogenetically unstudied Papua snake lizard (Lialis jicari) to better understand the nature of these sex chromosomes and their differentiation. Both species possess male heterogamety with an X1X1X2X2/X1X2Y sex chromosome system; however, the Y and one of the X chromosomes are not small chromosomes as previously reported in L. burtonis, but the largest macrochromosomal pair in the karyotype. The Y chromosomes in both species have large heterochromatic blocks with extensive accumulations of GATA and AC microsatellite motifs. FISH with telomeric probe revealed an exclusively terminal position of telomeric sequences in L. jicari (2n = 42 chromosomes in females), but extensive interstitial signals, potentially remnants of chromosomal fusions, in L.burtonis (2n = 34 in females). Our study shows that even largely differentiated and heteromorphic sex chromosomes might be misidentified by conventional cytogenetic analyses and that the application of more sensitive cytogenetic techniques for the identification of sex chromosomes is beneficial even in the classical examples of multiple sex chromosomes.
Collapse
|
61
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
62
|
Matsubara K, Nishida C, Matsuda Y, Kumazawa Y. Sex chromosome evolution in snakes inferred from divergence patterns of two gametologous genes and chromosome distribution of sex chromosome-linked repetitive sequences. ZOOLOGICAL LETTERS 2016; 2:19. [PMID: 27570632 PMCID: PMC5002183 DOI: 10.1186/s40851-016-0056-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The discovery of differentially organized sex chromosome systems suggests that heteromorphic sex chromosomes evolved from a pair of homologous chromosomes. Whereas karyotypes are highly conserved in alethinophidian snakes, the degeneration status of the W chromosomes varies among species. The Z and W chromosomes are morphologically homomorphic in henophidian species, whereas in snakes belonging to caenophidian families the W chromosomes are highly degenerated. Snakes therefore are excellent animal models in which to study sex chromosome evolution. Herein, we investigated the differentiation processes for snake sex chromosomes using both coding and repetitive sequences. We analyzed phylogenetic relationships of CTNNB1 and WAC genes, localized to the centromeric and telomeric regions, respectively, of the long arms on snake sex chromosomes, and chromosome distribution of sex chromosome-linked repetitive sequences in several henophidian and caenophidian species. RESULTS Partial or full-length coding sequences of CTNNB1 and WAC were identified for Z homologs of henophidian species from Tropidophiidae, Boidae, Cylindrophiidae, Xenopeltidae, and Pythonidae, and for Z and W homologs of caenophidian species from Acrochordidae, Viperidae, Elapidae, and Colubridae. Female-specific sequences for the two genes were not found in the henophidian (boid and pythonid) species examined. Phylogenetic trees constructed using each gene showed that the Z and W homologs of the caenophidian species cluster separately. The repetitive sequence isolated from the W chromosome heterochromatin of the colubrid Elaphe quadrivirgata and a microsatellite motif (AGAT)8 were strongly hybridized with W chromosomes of the viperid and colubrid species examined. CONCLUSION Our phylogenetic analyses suggest that the cessation of recombination between the Z and W homologs of CTNNB1 and WAC predated the diversification of the caenophidian families. As the repetitive sequences on the W chromosomes were shared among viperid and colubrid species, heterochromatinization of the proto-W chromosome appears to have occurred before the splitting of these two groups. These results collectively suggest that differentiation of the proto-Z and proto-W chromosomes extended to wide regions on the sex chromosomes in the common ancestor of caenophidian families during a relatively short period.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501 Japan
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
- Current affiliation: Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa 236-8648 Japan
| | - Chizuko Nishida
- Department of Biological Science, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810 Japan
| | - Yoichi Matsuda
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501 Japan
| |
Collapse
|
63
|
Viana PF, Ribeiro LB, Souza GM, Chalkidis HDM, Gross MC, Feldberg E. Is the Karyotype of Neotropical Boid Snakes Really Conserved? Cytotaxonomy, Chromosomal Rearrangements and Karyotype Organization in the Boidae Family. PLoS One 2016; 11:e0160274. [PMID: 27494409 PMCID: PMC4975421 DOI: 10.1371/journal.pone.0160274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Boids are primitive snakes from a basal lineage that is widely distributed in Neotropical region. Many of these species are both morphologically and biogeographically divergent, and the relationship among some species remains uncertain even with evolutionary and phylogenetic studies being proposed for the group. For a better understanding of the evolutionary relationship between these snakes, we cytogenetically analysed 7 species and 3 subspecies of Neotropical snakes from the Boidae family using different chromosomal markers. The karyotypes of Boa constrictor occidentalis, Corallus hortulanus, Eunectes notaeus, Epicrates cenchria and Epicrates assisi are presented here for the first time with the redescriptions of the karyotypes of Boa constrictor constrictor, B. c. amarali, Eunectes murinus and Epicrates crassus. The three subspecies of Boa, two species of Eunectes and three species of Epicrates exhibit 2n = 36 chromosomes. In contrast, C. hortulanus presented a totally different karyotype composition for the Boidae family, showing 2n = 40 chromosomes with a greater number of macrochromosomes. Furthermore, chromosomal mapping of telomeric sequences revealed the presence of interstitial telomeric sites (ITSs) on many chromosomes in addition to the terminal markings on all chromosomes of all taxa analysed, with the exception of E. notaeus. Thus, we demonstrate that the karyotypes of these snakes are not as highly conserved as previously thought. Moreover, we provide an overview of the current cytotaxonomy of the group.
Collapse
Affiliation(s)
- Patrik F. Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
- * E-mail:
| | - Leila B. Ribeiro
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
| | | | | | - Maria Claudia Gross
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Rua General Rodrigo Otávio Num. 3000, Mini-Campus Coroado, CEP: 66077070 Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araujo 2936, Petrópolis, CEP: 69067-375 Manaus, AM, Brazil
| |
Collapse
|
64
|
Sabath N, Itescu Y, Feldman A, Meiri S, Mayrose I, Valenzuela N. Sex determination, longevity, and the birth and death of reptilian species. Ecol Evol 2016; 6:5207-20. [PMID: 27551377 PMCID: PMC4984498 DOI: 10.1002/ece3.2277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 11/08/2022] Open
Abstract
Vertebrate sex-determining mechanisms (SDMs) are triggered by the genotype (GSD), by temperature (TSD), or occasionally, by both. The causes and consequences of SDM diversity remain enigmatic. Theory predicts SDM effects on species diversification, and life-span effects on SDM evolutionary turnover. Yet, evidence is conflicting in clades with labile SDMs, such as reptiles. Here, we investigate whether SDM is associated with diversification in turtles and lizards, and whether alterative factors, such as lifespan's effect on transition rates, could explain the relative prevalence of SDMs in turtles and lizards (including and excluding snakes). We assembled a comprehensive dataset of SDM states for squamates and turtles and leveraged large phylogenies for these two groups. We found no evidence that SDMs affect turtle, squamate, or lizard diversification. However, SDM transition rates differ between groups. In lizards TSD-to-GSD surpass GSD-to-TSD transitions, explaining the predominance of GSD lizards in nature. SDM transitions are fewer in turtles and the rates are similar to each other (TSD-to-GSD equals GSD-to-TSD), which, coupled with TSD ancestry, could explain TSD's predominance in turtles. These contrasting patterns can be explained by differences in life history. Namely, our data support the notion that in general, shorter lizard lifespan renders TSD detrimental favoring GSD evolution in squamates, whereas turtle longevity permits TSD retention. Thus, based on the macro-evolutionary evidence we uncovered, we hypothesize that turtles and lizards followed different evolutionary trajectories with respect to SDM, likely mediated by differences in lifespan. Combined, our findings revealed a complex evolutionary interplay between SDMs and life histories that warrants further research that should make use of expanded datasets on unexamined taxa to enable more conclusive analyses.
Collapse
Affiliation(s)
- Niv Sabath
- Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv 69978 Israel
| | - Yuval Itescu
- Department of Zoology Tel Aviv University Tel Aviv 69978 Israel
| | - Anat Feldman
- Department of Zoology Tel Aviv University Tel Aviv 69978 Israel
| | - Shai Meiri
- Department of Zoology Tel Aviv University Tel Aviv 69978 Israel
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv 69978 Israel
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames Iowa 50011
| |
Collapse
|
65
|
Sex allocation and secondary sex ratio in Cuban boa (Chilabothrus angulifer): mother's body size affects the ratio between sons and daughters. Naturwissenschaften 2016; 103:48. [PMID: 27216175 DOI: 10.1007/s00114-016-1369-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Secondary sex ratios of animals with genetically determined sex may considerably deviate from equality. These deviations may be attributed to several proximate and ultimate factors. Sex ratio theory explains some of them as strategic decisions of mothers improving their fitness by selective investment in sons or daughters, e.g. local resource competition hypothesis (LRC) suggests that philopatric females tend to produce litters with male-biased sex ratios to avoid future competition with their daughters. Until now, only little attention has been paid to examine predictions of sex ratio theory in snakes possessing genetic sex determination and exhibiting large variance in allocation of maternal investment. Cuban boa is an endemic viviparous snake producing large-bodied newborns (∼200 g). Extremely high maternal investment in each offspring increases importance of sex allocation. In a captive colony, we collected breeding records of 42 mothers, 62 litters and 306 newborns and examined secondary sex ratios (SR) and sexual size dimorphism (SSD) of newborns. None of the examined morphometric traits of neonates appeared sexually dimorphic. The sex ratio was slightly male biased (174 males versus 132 females) and litter sex ratio significantly decreased with female snout-vent length. We interpret this relationship as an additional support for LRC as competition between mothers and daughters increases with similarity of body sizes between competing snakes.
Collapse
|
66
|
Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol Ecol 2016; 25:3120-6. [DOI: 10.1111/mec.13635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology; Faculty of Science; Charles University in Prague; Viničná 7 128 44 Prague Czech Republic
| | - Jasna Vukić
- Department of Ecology; Faculty of Science; Charles University in Prague; Viničná 7 128 44 Prague Czech Republic
| | - Marie Altmanová
- Department of Ecology; Faculty of Science; Charles University in Prague; Viničná 7 128 44 Prague Czech Republic
| | - Martina Johnson Pokorná
- Department of Ecology; Faculty of Science; Charles University in Prague; Viničná 7 128 44 Prague Czech Republic
- Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Jiří Moravec
- Department of Zoology; National Museum; Václavské nám. 68 115 79 Prague Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology; Faculty of Science; Charles University in Prague; Viničná 7 128 44 Prague Czech Republic
| |
Collapse
|
67
|
Mammalian X homolog acts as sex chromosome in lacertid lizards. Heredity (Edinb) 2016; 117:8-13. [PMID: 26980341 DOI: 10.1038/hdy.2016.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/16/2015] [Accepted: 02/02/2016] [Indexed: 01/13/2023] Open
Abstract
Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation.
Collapse
|