51
|
Harder LD, Aizen MA. Floral adaptation and diversification under pollen limitation. Philos Trans R Soc Lond B Biol Sci 2010; 365:529-43. [PMID: 20047878 DOI: 10.1098/rstb.2009.0226] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity.
Collapse
Affiliation(s)
- Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|
52
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
53
|
Vaughton G, Ramsey M. Pollinator-mediated selfing erodes the flexibility of the best-of-both-worlds mating strategy in Bulbine vagans. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01648.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Suitor S, Potts BM, Brown PH, Gracie AJ, Gore PL. The relationship of the female reproductive success of Eucalyptus globulus to the endogenous properties of the flower. ACTA ACUST UNITED AC 2009; 22:37-44. [PMID: 20033454 DOI: 10.1007/s00497-008-0089-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/24/2008] [Indexed: 11/30/2022]
Abstract
Low capsule and seed set is a major factor limiting seed production in Eucalyptus globulus seed orchards. Controlled pollination studies showed that the reproductive success (number of seeds produced per flower pollinated) was primarily determined by the female. We aimed to identify the factors contributing to the differences in reproductive success between female genotypes in terms of the physical and anatomical properties of the flower. We studied pairs of genotypes of high and low reproductive success from each of three races (Furneaux Group, Strzelecki Ranges and Western Otways) growing in a seed orchard. Controlled pollinations were performed on six females and along with flower physical measurements, pollen tube growth and seed set were assessed. Overall tree reproductive success was positively correlated with flower size, ovule numbers, style size, cross-sectional area of conductive tissue within the style (all of which were inter-correlated) and the proportion of pollen tubes reaching the bottom of the style. Significant positive correlations of reproductive success and flower physical properties between different ramets of the same genotypes across seasons suggests a genetic basis to the variation observed. The majority of pollen tube attrition occurred within the first millimetre of the cut style and appeared to be associated with differences in style physiology. When examined as pairs within races the difference in reproductive success for the Western Otways pair was simply explained by differences in flower size and the number of ovules per flower. Physical features did not differ significantly for the Strzelecki Ranges pair, but the proportion of pollen tubes reaching the bottom of the style was lower in the less reproductively successful genotype, suggesting an endogenous physiological constraint to pollen tube growth. The difference in reproductive success between the females from the Furneaux Group was associated with a combination of these factors.
Collapse
Affiliation(s)
- Shaun Suitor
- Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Hobart, TAS, Australia.
| | | | | | | | | |
Collapse
|
55
|
Mena-Alí JI, Keser LH, Stephenson AG. The effect of sheltered load on reproduction in Solanum carolinense, a species with variable self-incompatibility. ACTA ACUST UNITED AC 2009; 22:63-71. [PMID: 20033457 DOI: 10.1007/s00497-008-0092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
In previous studies, we have investigated the strength of self-incompatibility (SI) in Solanum carolinense, a highly successful weed with a fully functional SI system that inhabits early successional and other disturbed habitats. We have found that the SI response in S. carolinense is a plastic trait-its strength being affected by the age of the flowers, and the presence of developing fruits and that there are genetic differences among families in their self-fertility. However, in species with a fully functional SI response, selfing would not be that common. As a result, deleterious recessives scattered though the genome of horsenettle are only occasionally exposed to selection. It has been suggested that deleterious recessives accumulate near S-alleles in strong SI species because the S-locus is located in a non-recombining region of the genome and because strong S-alleles are never in the homozygous state, thus sheltering some of the genetic load near the S-locus from selection. We performed a series of laboratory and greenhouse experiments to determine the extent to which sheltered load adds to the overall magnitude of inbreeding depression in horsenettle. Specifically, we amplified and sequenced the S-alleles from 16 genets collected from a large population in Pennsylvania and performed a series of controlled self-pollinations. We then grew the selfed progeny in the greenhouse; recorded various measures of growth and reproductive output; and amplified and sequenced their S-allele(s). We found that the heterozygous progeny of self-pollinations produce more flowers and have a greater ability to set both self and cross seed than S-homozygous progeny. We also found evidence of variation in the magnitude of load among S-alleles. These results suggest that sheltered load might slow the fixation of weak (partially compatible) S-alleles in this population, thus adding to the maintenance of a mixed mating system rather than leading to the fixation of the selfing alleles.
Collapse
Affiliation(s)
- Jorge I Mena-Alí
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
56
|
Developmental and environmental factors affecting level of self-incompatibility response in Brassica rapa L. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0071-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Busch JW, Schoen DJ. The evolution of self-incompatibility when mates are limiting. TRENDS IN PLANT SCIENCE 2008; 13:128-36. [PMID: 18296103 DOI: 10.1016/j.tplants.2008.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 05/23/2023]
Abstract
Self-incompatibility (SI) is a genetic barrier to inbreeding that is broadly distributed in angiosperms. In finite populations of SI plants, the loss of S-allele diversity can limit plant reproduction by reducing the availability of compatible mates. Many studies have shown that small or fragmented plant populations suffer from mate limitation. The advent of molecular typing of S-alleles in many species has paved the way to address quantitatively the importance of mate limitation, and to provide greater insight into why and how SI systems breakdown frequently in nature. In this review, we highlight the ecological factors that contribute to mate limitation in SI taxa, discuss their consequences for the evolution and functioning of SI, and propose new empirical research directions.
Collapse
Affiliation(s)
- Jeremiah W Busch
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC H3A 1B1, Canada.
| | | |
Collapse
|
58
|
Mena-Ali JI, Keser LH, Stephenson AG. Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol Biol 2008; 8:10. [PMID: 18199336 PMCID: PMC2244599 DOI: 10.1186/1471-2148-8-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/16/2008] [Indexed: 11/29/2022] Open
Abstract
Background Solanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S-alleles. The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. We performed a series of greenhouse and field experiments to determine the magnitude of inbreeding depression in S. carolinense, whether inbreeding depression varies by family, and whether the estimates of inbreeding depression vary under field and greenhouse conditions. We performed a series of controlled self- and cross-pollinations on 16 genets collected from a large population in Pennsylvania to obtain progeny with different levels of inbreeding. We grew the selfed and outcrossed progeny in the greenhouse and under field conditions and recorded various measures of growth and reproductive output. Results In the greenhouse study we found (1) a reduction in flower, fruit and seed production per fruit in inbred (selfed) progeny when compared to outbred (outcrossed) progeny; (2) a reduction in growth of resprouts obtained from rhizome cuttings of selfed progeny; and (3) an increase in the ability to self-fertilize in the selfed progeny. In the field, we found that (1) outcrossed progeny produced more leaves than their selfed siblings; (2) herbivory seems to add little to inbreeding depression; and (3) outcrossed plants grew faster and were able to set more fruits than selfed plants. Conclusion Solanum carolinense experiences low levels of inbreeding depression under greenhouse conditions and slightly more inbreeding depression under our field conditions. The combined effects of low levels of inbreeding depression and plasticity in the strength of SI suggest that the production of selfed progeny may play an important role in the establishment of new populations of S. carolinense.
Collapse
Affiliation(s)
- Jorge I Mena-Ali
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
59
|
Abstract
BACKGROUND AND AIMS The probability that seeds will be fertilized from self- versus cross-pollen depends strongly on whether plants have self-incompatibility systems, and how these systems influence the fate of pollen tubes. METHODS In this study of breeding systems in Eucalyptus urophylla and Eucalyptus grandis, epifluorescence microscopy was used to study pollen tube growth in styles following self- and cross-pollinations. KEY RESULTS Pollen tubes from self-pollen took significantly longer than those from cross-pollen to grow to the base of the style in both E. urophylla (120 h vs. 96 h) and E. grandis (96 h vs. 72 h). In addition, both species exhibited reduced seed yields following self-pollination compared with cross-pollination. CONCLUSIONS The present observations suggest that, in addition to a late-acting self-incompatibility barrier, cryptic self-incompatibility could be a mechanism responsible for the preferential out-crossing system in these two eucalypt species.
Collapse
Affiliation(s)
- Tasmien N Horsley
- School of Biological and Conservation Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| | | |
Collapse
|
60
|
Pla M, La Paz JL, Peñas G, García N, Palaudelmàs M, Esteve T, Messeguer J, Melé E. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study. Transgenic Res 2007; 15:219-28. [PMID: 16604462 DOI: 10.1007/s11248-005-4945-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/08/2005] [Indexed: 10/24/2022]
Abstract
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.
Collapse
Affiliation(s)
- Maria Pla
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, Campus Montilivi, Escola Politècnica Superior (edif.1), Girona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Mena-Ali JI, Stephenson AG. Segregation analyses of partial self-incompatibility in self and cross progeny of Solanum carolinense reveal a leaky S-allele. Genetics 2007; 177:501-10. [PMID: 17660567 PMCID: PMC2013699 DOI: 10.1534/genetics.107.073775] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural populations of self-incompatible species often exhibit marked phenotypic variation among individuals in the strength of self-incompatibility (SI). In previous studies, we found that the strength of the SI response in Solanum carolinense, a weedy invasive with RNase-mediated SI, is a plastic trait. Selfing can be particularly important for weeds and other successional species that typically undergo repeated colonization and local extinction events and whose population sizes are often small. We applied a PCR-based protocol to identify the S-alleles present in 16 maternal genotypes and their offspring and performed a two-generation greenhouse study to determine whether variation in the strength of SI is due to the existence of weak and strong S-alleles differing in their ability to recognize and reject self-pollen. We found that allele S9 sets significantly more self seed than the other S-alleles in the population we sampled and that its ability to self is not dependent on interactions with other S-alleles. Our data suggest that the observed variations in self-fertility are likely due to factors that directly influence the expression of SI by altering the translation, turnover, or activity of the S-RNase. The variability in the strength of SI among individuals that we have observed in this and our previous studies raises the possibility that plasticity in the strength of SI in S. carolinense may play a role in the colonization and establishment of this weedy species.
Collapse
Affiliation(s)
- Jorge I Mena-Ali
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
62
|
Lankinen A, Armbruster WS. Pollen competition reduces inbreeding depression in Collinsia heterophylla (Plantaginaceae). J Evol Biol 2007; 20:737-49. [PMID: 17305839 DOI: 10.1111/j.1420-9101.2006.01233.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested two predictions of the hypothesis that competition between self-pollen may mitigate negative genetic effects of inbreeding in plants: (1) intense competition among self-pollen increases offspring fitness; and (2) pollen competition reduces the measured strength of inbreeding depression. We used Collinsia heterophylla (Plantaginaceae), an annual with a mixed mating system, to perform controlled crosses in which we varied both the size of the pollen load and the source of pollen (self vs. outcross). Fitness of selfed offspring was higher in the high pollen-load treatment. Our second prediction was also upheld: inbreeding depression was, on average, lower when large pollen loads were applied (11%) relative to the low pollen-load treatment (28%). The reduction was significant for two fitness components relatively late in the life-cycle: number of surviving seedlings and pollen-tube growth rate in vitro. These findings suggest that intermittent inbreeding, which leads to self-fertilization in plants with genetic loads, may select for traits that enhance pollen competition.
Collapse
Affiliation(s)
- A Lankinen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
63
|
Valdivia ER, Wu Y, Li LC, Cosgrove DJ, Stephenson AG. A group-1 grass pollen allergen influences the outcome of pollen competition in maize. PLoS One 2007; 2:e154. [PMID: 17225858 PMCID: PMC1764715 DOI: 10.1371/journal.pone.0000154] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022] Open
Abstract
Worldwide, 400 million people suffer from hay fever and seasonal asthma. The major causative agents of these allergies are pollen specific proteins called the group-1 grass pollen allergens. Although details of their antigenicity have been studied for 40 years with an eye towards immunotherapy, their function in the plant has drawn scant attention. Zea m 1 constitutes a class of abundant grass pollen allergens coded for by several genes that loosen the walls of grass cells, including the maize stigma and style. We have examined the impact of a transposon insertion into one of these genes (EXPB1, the most abundant isoform of Zea m 1) on the production of Zea m 1 protein, pollen viability, and pollen tube growth, both in vitro and in vivo. We also examined the effect of the insertional mutation on the competitive ability of the pollen by experimentally varying the sizes of the pollen load deposited onto stigmas using pollen from heterozygous plants and then screening the progeny for the presence of the transposon using PCR. We found that the insertional mutation reduced the levels of Zea m 1 in maize pollen, but had no effect on pollen viability, in vitro pollen tube growth or the proportion of progeny sired when small pollen loads are deposited onto stigmas. However, when large pollen loads are deposited onto the stigmas, the transposon mutation is vastly underrepresented in the progeny, indicating that this major pollen allergen has a large effect on pollen tube growth rates in vivo, and plays an important role in determining the outcome of the pollen-pollen competition for access to the ovules. We propose that the extraordinary abundance (4% of the extractable protein in maize pollen) of this major pollen allergen is the result of selection for a trait that functions primarily in providing differential access to ovules.
Collapse
Affiliation(s)
- Elene R. Valdivia
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yajun Wu
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lian-Chao Li
- Proteomics and Mass Spectrometry Core Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel J. Cosgrove
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew G. Stephenson
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
64
|
Stone JL, Sasuclark MA, Blomberg CP. Variation in the self-incompatibility response within and among populations of the tropical shrub Witheringia solanacea (Solanaceae). AMERICAN JOURNAL OF BOTANY 2006; 93:592-598. [PMID: 21646220 DOI: 10.3732/ajb.93.4.592] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Breakdown of genetically enforced self-incompatibility (SI), an extremely common and important evolutionary transition in plants, has conventionally been conceived as a qualitative rather than a quantitative change. We evaluated qualitative and quantitative variation in SI for four populations of Witheringia solanacea in Costa Rica, examining growth of self-pollen tubes in pollinations of buds and mature flowers. We also measured levels of RNase production in styles to determine whether enzyme production was correlated with differences in self-rejection. The two small populations contained both self-compatible (SC) individuals and obligate outcrossers (female or SI). Plants in the two large populations were uniformly SI as revealed by pollen tube growth, although several of these individuals sporadically set seed autogamously. Stylar RNase activity did not differ significantly between bud and mature flowers, but self-pollen tube growth did differ, suggesting that a gene product in addition to S-RNase is responsible for developmental onset of SI. Population-level differences in RNase activity were consistent with differences in the strength of the rejection response in bud pollinations, suggesting that a threshold level of S-RNase, in combination with other factors, is necessary for SI. Our results support a growing body of evidence that not only qualitative variation in SI, but also quantitative variation may be functionally significant.
Collapse
Affiliation(s)
- Judy L Stone
- Department of Biology, 5720 Mayflower Hill Dr., Colby College, Waterville, Maine 04901 USA
| | | | | |
Collapse
|
65
|
Abstract
Pollen competition and selection have significant evolutionary consequences, but very little is known about how they can be modulated. We have examined in cherry (Prunus avium L.) how pollen performance is affected by the genotype of the pollen and by the environmental conditions under which it grows, namely the pistilar tissue and temperature. The different pollen donor genotypes tested in this work differed in their behaviour both in vitro and in vivo and this behaviour was modulated depending on the female recipient they grew on. Furthermore, there was a significant temperature-genotype interaction that affected the pollen tube population census that succeeded in reaching the base of the style. The combination of these three factors, while enabling a capacity of response to variations in environmental pressures, could maintain variability in pollen performance avoiding the fixation of the genes that control pollen tube growth rate.
Collapse
Affiliation(s)
- A Hedhly
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain.
| | | | | |
Collapse
|
66
|
Lamborn E, Cresswell JE, Macnair MR. The potential for adaptive evolution of pollen grain size in Mimulus guttatus. THE NEW PHYTOLOGIST 2005; 167:289-96. [PMID: 15948850 DOI: 10.1111/j.1469-8137.2005.01403.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We tested whether pollen grain size (PGS) shows heritable variation in three independent populations of Mimulus guttatus by imposing artificial selection for this character. In addition, we looked for correlated responses to selection in a range of 15 other floral characters. Heritable variation in PGS was found in all three populations, with heritabilities of between 19 and 40% (average 30%). After three generations, upward and downward lines differed on average by 30% in pollen volume. No consistent patterns of correlated response were found in other characters, indicating that PGS can respond to selective forces acting on PGS alone. Possible selection mechanisms on PGS in this species could include intermale selection, if large pollen grains produce more competitive gametophytes; or optimization of patterns of resource allocation, if local mate competition varies.
Collapse
Affiliation(s)
- Ellen Lamborn
- School of Biological and Chemical Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, Devon EX4 4PS, UK
| | | | | |
Collapse
|
67
|
The division of the generative nucleus and the formation of callose plugs in pollen tubes of Aechmea fasciata (Bromeliaceae) cultured in vitro. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0243-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Stephenson AG, Leyshon B, Travers SE, Hayes CN, Winsor JA. INTERRELATIONSHIPS AMONG INBREEDING, HERBIVORY, AND DISEASE ON REPRODUCTION IN A WILD GOURD. Ecology 2004. [DOI: 10.1890/04-0005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
69
|
Vallejo-Marín M, Uyenoyama MK. ON THE EVOLUTIONARY COSTS OF SELF-INCOMPATIBILITY: INCOMPLETE REPRODUCTIVE COMPENSATION DUE TO POLLEN LIMITATION. Evolution 2004; 58:1924-35. [PMID: 15521452 DOI: 10.1111/j.0014-3820.2004.tb00480.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pollen limitation affects plants with diverse reproductive systems and ecologies. In self-incompatible (SI) species, pollen limitation may preclude full reproductive compensation for prezygotic rejection of pollen. We present a model designed to explore the effects of incomplete reproductive compensation on evolutionary changes at a modifier locus that regulates the level of SI expression. Our results indicate that incomplete reproductive compensation greatly increases the evolutionary costs of SI, particularly in populations with low S-allele diversity. The evolutionary fate of modifiers of SI expression depends on the rate at which they are transmitted to future generations as well as the effects of SI on offspring number and quality. Partial SI expression can represent a stable condition rather than an evolutionarily transient state between full expression and full suppression. This unanticipated result provides the first theoretical support for the evolutionary stability of such mixed mating systems, the existence of which has recently been documented.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708-0338, USA.
| | | |
Collapse
|
70
|
Bernasconi G, Ashman TL, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B. Evolutionary ecology of the prezygotic stage. Science 2004; 303:971-5. [PMID: 14963320 DOI: 10.1126/science.1092180] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The life cycles of sexually reproducing animals and flowering plants begin with male and female gametes and their fusion to form a zygote. Selection at this earliest stage is crucial for offspring quality and raises similar evolutionary issues, yet zoology and botany use dissimilar approaches. There are striking parallels in the role of prezygotic competition for sexual selection on males, cryptic female choice, sexual conflict, and against selfish genetic elements and genetic incompatibility. In both groups, understanding the evolution of sex-specific and reproductive traits will require an appreciation of the effects of prezygotic competition on fitness.
Collapse
Affiliation(s)
- G Bernasconi
- Institute of Environmental Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Vallejo-Marín M, Uyenoyama MK. ON THE EVOLUTIONARY COSTS OF SELF-INCOMPATIBILITY: INCOMPLETE REPRODUCTIVE COMPENSATION DUE TO POLLEN LIMITATION. Evolution 2004. [DOI: 10.1554/04-277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Mechanisms regulating gene flow in flowering plants. Papers of a discussion meeting held at The Royal Society, 4-5 December 2002. Philos Trans R Soc Lond B Biol Sci 2003; 358:989-1170. [PMID: 12831463 PMCID: PMC1693192 DOI: 10.1098/rstb.2003.1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|