51
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
52
|
Knippel RJ, Zackular JP, Moore JL, Celis AI, Weiss A, Washington MK, DuBois JL, Caprioli RM, Skaar EP. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection. PLoS Pathog 2018; 14:e1007486. [PMID: 30576368 PMCID: PMC6303022 DOI: 10.1371/journal.ppat.1007486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming anaerobic bacterium that infects the colon, causing symptoms ranging from infectious diarrhea to fulminant colitis. In the last decade, the number of C. difficile infections has dramatically risen, making it the leading cause of reported hospital acquired infection in the United States. Bacterial toxins produced during C. difficile infection (CDI) damage host epithelial cells, releasing erythrocytes and heme into the gastrointestinal lumen. The reactive nature of heme can lead to toxicity through membrane disruption, membrane protein and lipid oxidation, and DNA damage. Here we demonstrate that C. difficile detoxifies excess heme to achieve full virulence within the gastrointestinal lumen during infection, and that this detoxification occurs through the heme-responsive expression of the heme activated transporter system (HatRT). Heme-dependent transcriptional activation of hatRT was discovered through an RNA-sequencing analysis of C. difficile grown in the presence of a sub-toxic concentration of heme. HatRT is comprised of a TetR family transcriptional regulator (hatR) and a major facilitator superfamily transporter (hatT). Strains inactivated for hatR or hatT are more sensitive to heme toxicity than wild-type. HatR binds heme, which relieves the repression of the hatRT operon, whereas HatT functions as a heme efflux pump. In a murine model of CDI, a strain inactivated for hatT displayed lower pathogenicity in a toxin-independent manner. Taken together, these data suggest that HatR senses intracellular heme concentrations leading to increased expression of the hatRT operon and subsequent heme efflux by HatT during infection. These results describe a mechanism employed by C. difficile to relieve heme toxicity within the host, and set the stage for the development of therapeutic interventions to target this bacterial-specific system.
Collapse
Affiliation(s)
- Reece J. Knippel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Joseph P. Zackular
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jessica L. Moore
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Arianna I. Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States of America
| | - Andy Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States of America
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
53
|
Abstract
Gallstone disease is caused by multiple pathogenic factors and is common worldwide. Most studies have focused on the significance of the biliary microbiome in gallstone pathogenesis. Areas covered: In this study, the epidemiology of gallstone diseases and the existence, composition, origin, and mechanisms of the biliary microbiota were reviewed. Mechanisms involved in promoting the formation of different types of gallstones were also emphasized. The antibiotic susceptibility of the biliary microbiota is briefly discussed because it may guide clinical strategies. Expert commentary: The biliary microbiome facilitates the formation of brown pigment stones. Although glycoprotein (mucin) may be pivotal for many promoting substances to coagulate and integrate relevant components, new mechanisms involving prostaglandins, oxysterols, oxygen free radicals, and lipopolysaccharides have been discovered. Furthermore, specific bacterial species such as Helicobacter and Salmonella are involved in the pathogenesis of cholesterol gallstones. Recently, metabolomics of the biliary microbiome has been used to determine the detailed mechanisms that promote gallstone formation. Previously, the bacterial effects involved in the pathogenesis of brown pigment stones have not been analyzed in detail. Whether the administration of antibiotics is related to prophylaxis for gallstone formation and gallstone-associated infections remains unclear.
Collapse
Affiliation(s)
- Yining Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China.,b Joint Programme of Nanchang University and Queen Mary University of London , Nanchang , China
| | - Miao Qi
- a Department of Gastroenterology , The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China.,b Joint Programme of Nanchang University and Queen Mary University of London , Nanchang , China
| | - Cheng Qin
- a Department of Gastroenterology , The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China.,b Joint Programme of Nanchang University and Queen Mary University of London , Nanchang , China
| | - Junbo Hong
- a Department of Gastroenterology , The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China
| |
Collapse
|
54
|
Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like mtr Efflux Pump Locus. mBio 2018; 9:mBio.02281-18. [PMID: 30482834 PMCID: PMC6282211 DOI: 10.1128/mbio.02281-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Historically, after introduction of an antibiotic for treatment of gonorrhea, strains of N. gonorrhoeae emerge that display clinical resistance due to spontaneous mutation or acquisition of resistance genes. Genetic exchange between members of the Neisseria genus occurring by transformation can cause significant changes in gonococci that impact the structure of an antibiotic target or expression of genes involved in resistance. The results presented here provide a framework for understanding how mosaic-like DNA sequences from commensal Neisseria that recombine within the gonococcal mtr efflux pump locus function to decrease bacterial susceptibility to antimicrobials, including antibiotics used in therapy of gonorrhea. Recent reports suggest that mosaic-like sequences within the mtr (multiple transferable resistance) efflux pump locus of Neisseria gonorrhoeae, likely originating from commensal Neisseria sp. by transformation, can increase the ability of gonococci to resist structurally diverse antimicrobials. Thus, acquisition of numerous nucleotide changes within the mtrR gene encoding the transcriptional repressor (MtrR) of the mtrCDE efflux pump-encoding operon or overlapping promoter region for both along with those that cause amino acid changes in the MtrD transporter protein were recently reported to decrease gonococcal susceptibility to numerous antimicrobials, including azithromycin (Azi) (C. B. Wadsworth, B. J. Arnold, M. R. A. Satar, and Y. H. Grad, mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18). We performed detailed genetic and molecular studies to define the mechanistic basis for why such strains can exhibit decreased susceptibility to MtrCDE antimicrobial substrates, including Azi. We report that a strong cis-acting transcriptional impact of a single nucleotide change within the −35 hexamer of the mtrCDE promoter as well gain-of-function amino acid changes at the C-terminal region of MtrD can mechanistically account for the decreased antimicrobial susceptibility of gonococci with a mosaic-like mtr locus.
Collapse
|
55
|
Handing JW, Ragland SA, Bharathan UV, Criss AK. The MtrCDE Efflux Pump Contributes to Survival of Neisseria gonorrhoeae From Human Neutrophils and Their Antimicrobial Components. Front Microbiol 2018; 9:2688. [PMID: 30515136 PMCID: PMC6256084 DOI: 10.3389/fmicb.2018.02688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The mucosal inflammatory response to Neisseria gonorrhoeae (Gc) is characterized by recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils by limiting the ability of neutrophils to make antimicrobial products and by expressing factors that defend against these products. The multiple transferable resistance (Mtr) system is a tripartite efflux pump, comprised of the inner membrane MtrD, the periplasmic attachment protein MtrC, and the outer membrane channel MtrE. Gc MtrCDE exports a diverse array of substrates, including certain detergents, dyes, antibiotics, and host-derived antimicrobial peptides. Here we report that MtrCDE contributes to the survival of Gc after exposure to adherent, chemokine-treated primary human neutrophils, specifically in the extracellular milieu. MtrCDE enhanced survival of Gc in neutrophil extracellular traps and in the supernatant from neutrophils that had undergone degranulation (granule exocytosis), a process that releases antimicrobial proteins into the extracellular milieu. The extent of degranulation was unaltered in neutrophils exposed to parental or mtr mutant Gc. MtrCDE expression contributed to Gc defense against some neutrophil-derived antimicrobial peptides but not others. These findings demonstrate that the Mtr system contributes to Gc survival after neutrophil challenge, a key feature of the host immune response to acute gonorrhea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Urmila V Bharathan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
56
|
Escobedo-Guerra MR, Katoku-Herrera M, Lopez-Hurtado M, Gutierrez-Trujillo R, Guerra-Infante FM. Use of the mtrR Gene for Rapid Molecular Diagnosis of Neisseria gonorrhoeae and Identification of the Reduction of Susceptibility to Antibiotics in Endocervical Swabs. Mol Diagn Ther 2018; 22:361-368. [PMID: 29589256 DOI: 10.1007/s40291-018-0328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neisseria gonorrhoeae is one of the main etiological agents of sexually transmitted diseases. The asymptomatic course of the infection and its resistance to antibiotics can lead to pelvic inflammatory disease and infertility. OBJECTIVES We developed a polymerase chain reaction (PCR) test using the methyltetrahydrofolate homocysteine methyltransferase reductase (mtrR) gene to identify N. gonorrhoeae and detect reduced susceptibility to antibiotics. MATERIAL AND METHODS We analysed 250 samples of endocervical exudate from infertile women with a negative diagnosis of N. gonorrhoeae. We designed NGmtr primers to detect N. gonorrhoeae and identify the antibiotic-resistant strain. RESULTS Of the 250 samples, 60 (24%) tested positive for N. gonorrhoeae using real-time PCR. Our study was validated using the HO primers and the Seeplex STD6 ACE System, with a 100% correlation. Furthermore, the NGmtr primers are specific for N. gonorrhoeae and not for other species. Additionally, the curves generated by real-time PCR differed between wild and variant strains (10.93%). The dissociation temperatures for the wild and variant strains were 86.5 and 89 °C, respectively. CONCLUSIONS The NGmtr primers enabled us to identify N. gonorrhoeae strains with or without reduction of susceptibility to antibiotics. Therefore, this work constitutes a tool that will facilitate the diagnosis of this infection for a low cost and improve patient quality of life.
Collapse
Affiliation(s)
- Marcos R Escobedo-Guerra
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Mitzuko Katoku-Herrera
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Marcela Lopez-Hurtado
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Rodrigo Gutierrez-Trujillo
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología, Instituto Nacional de Perinatología, Montes Urales No. 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, Mexico City, Mexico.
| |
Collapse
|
57
|
Horikawa T, Hung LW, Kim HB, Shaya D, Kim CY, Terwilliger TC, Yamashita E, Aoki M, Okada U, Murakami S. BpeB, a major resistance-nodulation-cell division transporter from Burkholderia cenocepacia: construct design, crystallization and preliminary structural analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:710-716. [PMID: 30387776 PMCID: PMC6213979 DOI: 10.1107/s2053230x18013547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 11/11/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that infects cystic fibrosis patients, causing pneumonia and septicemia. B. cenocepacia has intrinsic antibiotic resistance against monobactams, aminoglycosides, chloramphenicol and fluoroquinolones that is contributed by a homologue of BpeB, which is a member of the resistance-nodulation-cell division (RND)-type multidrug-efflux transporters. Here, the cloning, overexpression, purification, construct design for crystallization and preliminary X-ray diffraction analysis of this BpeB homologue from B. cenocepacia are reported. Two truncation variants were designed to remove possible disordered regions based on comparative sequence and structural analysis to salvage the wild-type protein, which failed to crystallize. The 17-residue carboxyl-terminal truncation yielded crystals that diffracted to 3.6 Å resolution. The efflux function measured using minimal inhibitory concentration assays indicated that the truncation decreased, but did not eliminate, the efflux activity of the transporter.
Collapse
Affiliation(s)
- Tomonari Horikawa
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Li-Wei Hung
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Heung-Bok Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Shaya
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Chang-Yub Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas C. Terwilliger
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Maho Aoki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Ui Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
58
|
Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018; 9:mBio.01419-18. [PMID: 30087172 PMCID: PMC6083905 DOI: 10.1128/mbio.01419-18] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mosaic interspecifically acquired alleles of the multiple transferable resistance (mtr) efflux pump operon correlate with increased resistance to azithromycin in Neisseria gonorrhoeae in epidemiological studies. However, whether and how these alleles cause resistance is unclear. Here, we use population genomics, transformations, and transcriptional analyses to dissect the relationship between variant mtr alleles and azithromycin resistance. We find that the locus encompassing the mtrR transcriptional repressor and the mtrCDE pump is a hot spot of interspecific recombination introducing alleles from Neisseria meningitidis and Neisseria lactamica into N. gonorrhoeae, with multiple rare haplotypes in linkage disequilibrium at mtrD and the mtr promoter region. Transformations demonstrate that resistance to azithromycin, as well as to other antimicrobial compounds such as polymyxin B and crystal violet, is mediated through epistasis between these two loci and that the full-length mosaic mtrD allele is required. Gene expression profiling reveals the mechanism of resistance in mosaics couples novel mtrD alleles with promoter mutations that increase expression of the pump. Overall, our results demonstrate that epistatic interactions at mtr gained from multiple neisserial species has contributed to increased gonococcal resistance to diverse antimicrobial agents.IMPORTANCENeisseria gonorrhoeae is the sexually transmitted bacterial pathogen responsible for more than 100 million cases of gonorrhea worldwide each year. The incidence of resistance to the macrolide azithromycin has increased in the past decade; however, a large proportion of the genetic basis of resistance remains unexplained. This study is the first to conclusively demonstrate the acquisition of macrolide resistance through mtr alleles from other Neisseria species, demonstrating that commensal Neisseria bacteria are a reservoir for antibiotic resistance to macrolides, extending the role of interspecies mosaicism in resistance beyond what has been previously described for cephalosporins. Ultimately, our results emphasize that future fine-mapping of genome-wide interspecies mosaicism may be valuable in understanding the pathways to antimicrobial resistance. Our results also have implications for diagnostics and public health surveillance and control, as they can be used to inform the development of sequence-based tools to monitor and control the spread of antibiotic-resistant gonorrhea.
Collapse
|
59
|
cis- and trans-Acting Factors Influence Expression of the norM-Encoded Efflux Pump of Neisseria gonorrhoeae and Levels of Gonococcal Susceptibility to Substrate Antimicrobials. Antimicrob Agents Chemother 2018; 62:AAC.00821-18. [PMID: 29891604 DOI: 10.1128/aac.00821-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022] Open
Abstract
The gonococcal NorM efflux pump exports substrates with a cationic moiety, including quaternary ammonium compounds such as berberine (BE) and ethidium bromide (EB) as well as antibiotics such as ciprofloxacin and solithromycin. The norM gene is part of a four-gene operon that is transcribed from a promoter containing a polynucleotide tract of 6 or 7 thymidines (T's) between the -10 and -35 hexamers; the majority of gonococcal strains analyzed in this study contained a T-6 sequence. Primer extension analysis showed that regardless of the length of the poly(T) tract, the same transcriptional start site (TSS) was used for expression of norM Interestingly, the T-6 tract correlated with a higher level of both norM expression and gonococcal resistance to NorM substrates BE and EB. Analysis of expression of genes downstream of norM showed that the product of the tetR-like gene has the capacity to activate expression of norM as well as murB, which encodes an acetylenolpyroylglucosamine reductase predicted to be involved in the early steps of peptidoglycan synthesis. Moreover, loss of the TetR-like transcriptional regulator modestly increased gonococcal susceptibility to NorM substrates EB and BE. We conclude that both cis- and trans-acting regulatory systems can regulate expression of the norM operon and influence levels of gonococcal susceptibility to antimicrobials exported by NorM.
Collapse
|
60
|
The Growing Threat of Gonococcal Blindness. Antibiotics (Basel) 2018; 7:antibiotics7030059. [PMID: 30002340 PMCID: PMC6164567 DOI: 10.3390/antibiotics7030059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-resistant gonorrhea is now a reality, as well as the consequences of untreatable infections. Gonococcal eye infections result in blindness if not properly treated; they accounted for the vast majority of infections in children in homes for the blind in the pre-antibiotic era. Neisseria gonorrhoeae infects the eyes of infants born to mothers with gonorrhea and can also infect the eyes of adults. Changes in sexual practices may account for the rise in adult gonococcal eye infections, although some cases seem to have occurred with no associated genital infection. As gonorrhea becomes increasingly difficult to treat, the consequences for the treatment of gonococcal blindness must be considered as well. Monocaprin was shown to be effective in rapidly killing N. gonorrhoeae, and is non-irritating in ocular models. Repeated passage in sub-lethal monocaprin induces neither resistance in gonococci nor genomic mutations that are suggestive of resistance. Here, we show that 1 mM monocaprin kills 100% of N. gonorrhoeae in 2 min, and is equally effective against N. meningitidis, a rare cause of ophthalmia neonatorum that is potentially lethal. Monocaprin at 1 mM also completely kills Staphylococcus aureus after 60 min, and 25 mM kills 80% of Pseudomonas aeruginosa after 360 min. Previously, 1 mM monocaprin was shown to eliminate Chlamydia trachomatis in 5 min. Monocaprin is, therefore, a promising active ingredient in the treatment and prophylaxis of keratitis, especially considering the growing threat of gonococcal blindness due to antimicrobial resistance.
Collapse
|
61
|
Gonococcal MtrE and its surface-expressed Loop 2 are immunogenic and elicit bactericidal antibodies. J Infect 2018; 77:191-204. [PMID: 29902495 DOI: 10.1016/j.jinf.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The rise in multidrug resistant Neisseria gonorrhoeae poses a threat to healthcare, while the development of an effective vaccine has remained elusive due to antigenic and phase variability of surface-expressed proteins. In the current study, we identified a fully conserved surface expressed protein and characterized its suitability as a vaccine antigen. METHODS An in silico approach was used to predict surface-expressed proteins and analyze sequence conservation and phase variability. The most conserved protein and its surface-exposed Loop 2, which was displayed as both a structural and linear epitope on the oligomerization domain of C4b binding protein, were used to immunize mice. Immunogenicity was subsequently analyzed by determination of antibody titers and serum bactericidal activity. RESULTS MtrE was identified as one of the most conserved surface-expressed proteins. Furthermore, MtrE and both Loop 2-containing fusion proteins elicited high protein-specific antibody titers and particularly the two Loop 2 fusion proteins showed high anti-Loop 2 titers. In addition, antibodies raised against all three proteins were able to recognize MtrE expressed on the surface of N. gonorrhoeae and showed high MtrE-dependent bactericidal activity. CONCLUSIONS Our results show that MtrE and Loop 2 are promising novel conserved surface-expressed antigens for vaccine development against N. gonorrhoeae.
Collapse
|
62
|
Identification and Characterization of the Neisseria gonorrhoeae MscS-Like Mechanosensitive Channel. Infect Immun 2018; 86:IAI.00090-18. [PMID: 29581189 DOI: 10.1128/iai.00090-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensitive channels are ubiquitous in bacteria and provide an essential mechanism to survive sudden exposure to a hypo-osmotic environment by the sensing and release of increased turgor pressure. No mechanosensitive channels have thus far been identified and characterized for the human-specific bacterial pathogen Neisseria gonorrhoeae In this study, we identified and characterized the N. gonorrhoeae MscS-like mechanosensitive channel (Ng-MscS). Electrophysiological analyses by the patch clamp method showed that Ng-MscS is stretch activated and contains pressure-dependent gating properties. Further mutagenesis studies of critical residues forming the hydrophobic vapor lock showed that gain-of-function mutations in Ng-MscS inhibited bacterial growth. Subsequent analysis of the function of Ng-MscS in N. gonorrhoeae by osmotic down-shock assays revealed that the survival of Ng-mscS deletion mutants was significantly reduced compared with that of wild-type strains, while down-shock survival was restored upon the ectopic complementation of mscS Finally, to investigate whether Ng-MscS is important for N. gonorrhoeae during infections, competition assays were performed by using a murine vaginal tract infection model. Ng-mscS deletion mutants were outcompeted by N. gonorrhoeae wild-type strains for colonization and survival in this infection model, highlighting that Ng-MscS contributes to in vivo colonization and survival. Therefore, Ng-MscS might be a promising target for the future development of novel antimicrobials.
Collapse
|
63
|
Vincent LR, Kerr SR, Tan Y, Tomberg J, Raterman EL, Dunning Hotopp JC, Unemo M, Nicholas RA, Jerse AE. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae. mBio 2018; 9:e01905-17. [PMID: 29615507 PMCID: PMC5885032 DOI: 10.1128/mbio.01905-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror) clinical isolates (H041 and F89) into a Cros strain (FA19) by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.IMPORTANCE The emergence of ceftriaxone-resistant (Cror) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of susceptible and resistant strains that differ only in the penA gene that confers Cro resistance. We showed that mosaic penA alleles found in Cror clinical isolates are outcompeted by the Cros parent strain in vitro and in vivo but that compensatory mutations that allow ceftriaxone resistance to be maintained by increasing bacterial fitness are selected during mouse infection. One compensatory mutant that was studied in more detail had a mutation in acnB, which encodes the aconitase that functions in the tricarboxylic acid (TCA) cycle. This study illustrates that compensatory mutations can be selected during infection, which we hypothesize may allow the spread of Cro resistance in nature. This study also provides novel insights into gonococcal metabolism and physiology.
Collapse
Affiliation(s)
- Leah R Vincent
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Samuel R Kerr
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yang Tan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erica L Raterman
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Julie C Dunning Hotopp
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
64
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
65
|
Tamburrino G, Llabrés S, Vickery ON, Pitt SJ, Zachariae U. Modulation of the Neisseria gonorrhoeae drug efflux conduit MtrE. Sci Rep 2017; 7:17091. [PMID: 29213101 PMCID: PMC5719041 DOI: 10.1038/s41598-017-16995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.
Collapse
Affiliation(s)
- Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Owen N Vickery
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK.
| |
Collapse
|
66
|
Costa-Lourenço APRD, Barros Dos Santos KT, Moreira BM, Fracalanzza SEL, Bonelli RR. Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz J Microbiol 2017; 48:617-628. [PMID: 28754299 PMCID: PMC5628311 DOI: 10.1016/j.bjm.2017.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Neisseria gonorrhoeae is the agent of gonorrhea, a sexually transmitted infection with an estimate from The World Health Organization of 78 million new cases in people aged 15-49 worldwide during 2012. If left untreated, complications may include pelvic inflammatory disease and infertility. Antimicrobial treatment is usually effective; however, resistance has emerged successively through various molecular mechanisms for all the regularly used therapeutic agents throughout decades. Detection of antimicrobial susceptibility is currently the most critical aspect for N. gonorrhoeae surveillance, however poorly structured health systems pose difficulties. In this review, we compiled data from worldwide reports regarding epidemiology and antimicrobial resistance in N. gonorrhoeae, and highlight the relevance of the implementation of surveillance networks to establish policies for gonorrhea treatment.
Collapse
Affiliation(s)
| | | | - Beatriz Meurer Moreira
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Regina Bonelli
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
67
|
Donà V, Low N, Golparian D, Unemo M. Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev Mol Diagn 2017; 17:845-859. [PMID: 28741392 DOI: 10.1080/14737159.2017.1360137] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The number of genetic tests, mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae is increasing. Several of these assays are promising, but there are important shortcomings and few assays have been adequately validated and quality assured. Areas covered: Recent advances, focusing on publications since 2012, in the development and use of molecular tests to predict gonococcal AMR for surveillance and for clinical use, advantages and disadvantages of these tests and of molecular AMR prediction compared with phenotypic AMR testing, and future perspectives for effective use of molecular AMR tests for different purposes. Expert commentary: Several challenges for direct testing of clinical, especially extra-genital, specimens remain. The choice of molecular assay needs to consider the assay target, quality controls, sample types, limitations intrinsic to molecular technologies, and specific to the chosen methodology, and the intended use of the test. Improved molecular- and particularly genome-sequencing-based methods will supplement AMR testing for surveillance purposes, and translate into point-of-care tests that will lead to personalized treatments, while sparing the last available empiric treatment option (ceftriaxone). However, genetic AMR prediction will never completely replace phenotypic AMR testing, which detects also AMR due to unknown AMR determinants.
Collapse
Affiliation(s)
- Valentina Donà
- a Institute for Infectious Diseases, University of Bern , Bern , Switzerland
| | - Nicola Low
- b Institute of Social and Preventive Medicine, University of Bern , Bern , Switzerland
| | - Daniel Golparian
- c WHO Collaborating Centre for Gonorrhoea , Örebro University , Örebro , Sweden
| | - Magnus Unemo
- c WHO Collaborating Centre for Gonorrhoea , Örebro University , Örebro , Sweden
| |
Collapse
|
68
|
Wang L, Xing D, Le Van A, Jerse AE, Wang S. Structure-based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae. FEBS Open Bio 2017; 7:1196-1207. [PMID: 28781959 PMCID: PMC5537070 DOI: 10.1002/2211-5463.12267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of Neisseria gonorrhoeae, the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of N. gonorrhoeae antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting N. gonorrhoeae from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the Helicobacter pylori ferritin and antigenic peptides that correspond to the two surface-exposed loops of N. gonorrhoeae MtrE. The peptides were inserted at the N terminus or in a surface-exposed ferritin loop between helices αA and αB. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24-mer nanocage structure. Although the inserted N. gonorrhoeae peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens.
Collapse
Affiliation(s)
- Liqin Wang
- Department of Biochemistry and Molecular Biology Uniformed Services University of the Health Sciences Bethesda MD USA
| | - Daniel Xing
- Department of Biochemistry and Molecular Biology Uniformed Services University of the Health Sciences Bethesda MD USA
| | - Adriana Le Van
- Department of Microbiology and Immunology Uniformed Services University of the Health Sciences Bethesda MD USA
| | - Ann E Jerse
- Department of Microbiology and Immunology Uniformed Services University of the Health Sciences Bethesda MD USA
| | - Shuishu Wang
- Department of Biochemistry and Molecular Biology Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
69
|
Wind CM, Bruisten SM, Schim van der Loeff MF, Dierdorp M, de Vries HJC, van Dam AP. A Case-Control Study of Molecular Epidemiology in Relation to Azithromycin Resistance in Neisseria gonorrhoeae Isolates Collected in Amsterdam, the Netherlands, between 2008 and 2015. Antimicrob Agents Chemother 2017; 61:e02374-16. [PMID: 28373191 PMCID: PMC5444120 DOI: 10.1128/aac.02374-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
Neisseria gonorrhoeae resistance to ceftriaxone and azithromycin is increasing, which threatens the recommended dual therapy. We used molecular epidemiology to identify N. gonorrhoeae clusters and associations with azithromycin resistance in Amsterdam, the Netherlands. N. gonorrhoeae isolates (n = 143) were selected from patients visiting the Amsterdam STI Outpatient Clinic from January 2008 through September 2015. We included all 69 azithromycin-resistant isolates (MIC ≥ 2.0 mg/liter) and 74 frequency-matched susceptible controls (MIC ≤ 0.25 mg/liter). The methods used were 23S rRNA and mtrR sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), N. gonorrhoeae multilocus variable-number tandem-repeat analysis (NG-MLVA), and a specific PCR to detect mosaic penA genes. A hierarchical cluster analysis of NG-MLVA related to resistance and epidemiological characteristics was performed. Azithromycin-resistant isolates had C2611T mutations in 23S rRNA (n = 62, 89.9%, P < 0.001) and were NG-MAST genogroup G2992 (P < 0.001), G5108 (P < 0.001), or G359 (P = 0.02) significantly more often than susceptible isolates and were more often part of NG-MLVA clusters (P < 0.001). Two resistant isolates (2.9%) had A2059G mutations, and five (7.3%) had wild-type 23S rRNA. No association between mtrR mutations and azithromycin resistance was found. Twenty-four isolates, including 10 azithromycin-resistant isolates, showed reduced susceptibility to extended-spectrum cephalosporins. Of these, five contained a penA mosaic gene. Four of the five NG-MLVA clusters contained resistant and susceptible isolates. Two clusters consisting mainly of resistant isolates included strains from men who have sex with men and from heterosexual males and females. The co-occurrence of resistant and susceptible strains in NG-MLVA clusters and the frequent occurrence of resistant strains outside of clusters suggest that azithromycin resistance develops independently from the background genome.
Collapse
Affiliation(s)
- Carolien M Wind
- STI Outpatient Clinic, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvia M Bruisten
- Public Health Laboratory, Public Health Service Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mirjam Dierdorp
- Public Health Laboratory, Public Health Service Amsterdam, Amsterdam, the Netherlands
| | - Henry J C de Vries
- STI Outpatient Clinic, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alje P van Dam
- Public Health Laboratory, Public Health Service Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology, OLVG General Hospital, Amsterdam, the Netherlands
| |
Collapse
|
70
|
Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR) of a Drug Efflux Pump Operon. mBio 2017; 8:mBio.00449-17. [PMID: 28400529 PMCID: PMC5388806 DOI: 10.1128/mbio.00449-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae contributes to gonococcal resistance to a number of antibiotics used previously or currently in treatment of gonorrhea, as well as to host-derived antimicrobials that participate in innate defense. Overexpression of the MtrCDE efflux pump increases gonococcal survival and fitness during experimental lower genital tract infection of female mice. Transcription of mtrCDE can be repressed by the DNA-binding protein MtrR, which also acts as a global regulator of genes involved in important metabolic, physiologic, or regulatory processes. Here, we investigated whether a gene downstream of mtrCDE, previously annotated gdhR in Neisseria meningitidis, is a target for regulation by MtrR. In meningococci, GdhR serves as a regulator of genes involved in glucose catabolism, amino acid transport, and biosynthesis, including gdhA, which encodes an l-glutamate dehydrogenase and is located next to gdhR but is transcriptionally divergent. We report here that in N. gonorrhoeae, expression of gdhR is subject to autoregulation by GdhR and direct repression by MtrR. Importantly, loss of GdhR significantly increased gonococcal fitness compared to a complemented mutant strain during experimental murine infection. Interestingly, loss of GdhR did not influence expression of gdhA, as reported for meningococci. This variance is most likely due to differences in promoter localization and utilization between gonococci and meningococci. We propose that transcriptional control of gonococcal genes through the action of MtrR and GdhR contributes to fitness of N. gonorrhoeae during infection.IMPORTANCE The pathogenic Neisseria species are strict human pathogens that can cause a sexually transmitted infection (N. gonorrhoeae) or meningitis or fulminant septicemia (N. meningitidis). Although they share considerable genetic information, little attention has been directed to comparing transcriptional regulatory systems that modulate expression of their conserved genes. We hypothesized that transcriptional regulatory differences exist between these two pathogens, and we used the gdh locus as a model to test this idea. For this purpose, we studied two conserved genes (gdhR and gdhA) within the locus. Despite general conservation of the gdh locus in gonococci and meningococci, differences exist in noncoding sequences that correspond to promoter elements or potential sites for interacting with DNA-binding proteins, such as GdhR and MtrR. Our results indicate that implications drawn from studying regulation of conserved genes in one pathogen are not necessarily translatable to a genetically related pathogen.
Collapse
|
71
|
Sachdev D, Kumari I, Bala M, Kumar V, Saluja D. Mutation Pattern in the Genome of Neisseria gonorrhoeae and Its Association with Multidrug-resistant Isolates from Delhi, India. Indian J Med Microbiol 2017; 35:109-112. [DOI: 10.4103/ijmm.ijmm_16_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
72
|
Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S, Ohnishi M, Lahra MM, Limnios A, Sikora AE, Wi T, Harris SR. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71:3096-3108. [PMID: 27432602 PMCID: PMC5079299 DOI: 10.1093/jac/dkw288] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/11/2016] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. METHODS The 2016 WHO reference strains (n = 14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n = 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. RESULTS The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n = 14) were presented. CONCLUSIONS The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Leonor Sánchez-Busó
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, UK
| | - Yonatan Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Diseases, Department of Microbiology, South Eastern Area Laboratory Services, The Prince of Wales Hospital, Randwick, Sydney, Australia
| | - Athena Limnios
- WHO Collaborating Centre for Sexually Transmitted Diseases, Department of Microbiology, South Eastern Area Laboratory Services, The Prince of Wales Hospital, Randwick, Sydney, Australia
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Teodora Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, UK
| |
Collapse
|
73
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
74
|
Spencer-Smith R, Roberts S, Gurung N, Snyder LAS. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer. Microb Genom 2016; 2:e000069. [PMID: 28348864 DOI: 10.1099/mgen.0.000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
DNA uptake sequences are widespread throughout the Neisseria gonorrhoeae genome. These short, conserved sequences facilitate the exchange of endogenous DNA between members of the genus Neisseria. Often the DNA uptake sequences are present as inverted repeats that are able to form hairpin structures. It has been suggested previously that DNA uptake sequence inverted repeats present 3' of genes play a role in rho-independent termination and attenuation. However, there is conflicting experimental evidence to support this role. The aim of this study was to determine the role of DNA uptake sequences in transcriptional termination. Both bioinformatics predictions, conducted using TransTermHP, and experimental evidence, from RNA-seq data, were used to determine which inverted repeat DNA uptake sequences are transcriptional terminators and in which direction. Here we show that DNA uptake sequences in the inverted repeat configuration occur in N. gonorrhoeae both where the DNA uptake sequence precedes the inverted version of the sequence and also, albeit less frequently, in reverse order. Due to their symmetrical configuration, inverted repeat DNA uptake sequences can potentially act as bi-directional terminators, therefore affecting transcription on both DNA strands. This work also provides evidence that gaps in DNA uptake sequence density in the gonococcal genome coincide with areas of DNA that are foreign in origin, such as prophage. This study differentiates for the first time, to our knowledge, between DNA uptake sequences that form intrinsic transcriptional terminators and those that do not, providing characteristic features within the flanking inverted repeat that can be identified.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.,2Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sabrina Roberts
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Neesha Gurung
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
75
|
The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2016; 60:4690-700. [PMID: 27216061 DOI: 10.1128/aac.00823-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022] Open
Abstract
During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity.
Collapse
|
76
|
Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol Cell Proteomics 2016; 15:2338-55. [PMID: 27141096 PMCID: PMC4937508 DOI: 10.1074/mcp.m116.058800] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound approach for identifying promising gonococcal antigens.
Collapse
Affiliation(s)
- Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Igor H Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Benjamin I Baarda
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Philip R Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olusegun O Soge
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington
| | - King K Holmes
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington; ‖Departments of Medicine and Global Health, University of Washington, Seattle, Washington
| | - Ann E Jerse
- **Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Magnus Unemo
- ‡‡WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;
| |
Collapse
|
77
|
Sachla AJ, Eichenbaum Z. The GAS PefCD exporter is a MDR system that confers resistance to heme and structurally diverse compounds. BMC Microbiol 2016; 16:68. [PMID: 27095127 PMCID: PMC4837585 DOI: 10.1186/s12866-016-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Background Group A streptococcus (GAS) is the etiological agent of a variety of local and invasive infections as well as post-infection complications in humans. This β-hemolytic bacterium encounters environmental heme in vivo in a concentration that depends on the infection type and stage. While heme is a noxious molecule, the regulation of cellular heme levels and toxicity is underappreciated in GAS. We previously reported that heme induces three GAS genes that are similar to the pefRCD (porphyrin regulated efflux) genes from group B streptococcus. Here, we investigate the contributions of the GAS pef genes to heme management and physiology. Results In silico analysis revealed that the PefCD proteins entail a Class-1 ABC-type transporter with homology to selected MDR systems from Gram-positive bacteria. RT-PCR experiments confirmed that the pefRCD genes are transcribed to polycistronic mRNA and that a pefC insertion inactivation mutant lost the expression of both pefC and pefD genes. This mutant was hypersensitive to heme, exhibiting significant growth inhibition already in the presence of 1 μM heme. In addition, the pefC mutant was more sensitive to several drugs and nucleic acid dyes and demonstrated higher cellular accumulation of heme in comparison with the wild type and the complemented strains. Finally, the absence of the PefCD transporter potentiated the damaging effects of heme on GAS building blocks including lipids and DNA. Conclusion We show here that in GAS, the pefCD genes encode a multi-drug efflux system that allows the bacterium to circumvent the challenges imposed by labile heme. This is the first heme resistance machinery described in GAS.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.
| |
Collapse
|
78
|
The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of "off Target" Gene (glnE) Expression. Antibiotics (Basel) 2016; 4:188-97. [PMID: 26078871 PMCID: PMC4464784 DOI: 10.3390/antibiotics4020188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MtrR is a well-characterized repressor of the Neisseria gonorrhoeaemtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called “off target” genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.
Collapse
|
79
|
Kato A, Takatani N, Use K, Uesaka K, Ikeda K, Chang Y, Kojima K, Aichi M, Ihara K, Nakahigashi K, Maeda SI, Omata T. Identification of a Cyanobacterial RND-Type Efflux System Involved in Export of Free Fatty Acids. PLANT & CELL PHYSIOLOGY 2015; 56:2467-77. [PMID: 26468506 DOI: 10.1093/pcp/pcv150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 05/28/2023]
Abstract
An RND (resistance-nodulation-division)-type transporter having the capacity to export free fatty acids (FFAs) was identified in the cyanobacterium Synechococcus elongatus strain PCC 7942 during characterization of a mutant strain engineered to produce FFAs. The basic strategy for construction of the FFA-producing mutant was a commonly used one, involving inactivation of the endogenous acyl-acyl carrier protein synthetase gene (aas) and introduction of a foreign thioesterase gene ('tesA), but a nitrate transport mutant NA3 was used as the parental strain to achieve slow, nitrate-limited growth in batch cultures. Also, a nitrogen-regulated promoter PnirA was used to drive 'tesA to maximize thioesterase expression during the nitrate-limited growth. The resulting mutant (dAS2T) was, however, incapable of growth under the conditions of nitrate limitation, presumably due to toxicity associated with FFA overproduction. Incubation of the mutant culture under the non-permissive conditions allowed for isolation of a pseudorevertant (dAS2T-pr1) capable of growth on nitrate. Genome sequence and gene expression analyses of this strain suggested that expression of an RND-type efflux system had rescued growth on nitrate. Targeted inactivation of the RND-type transporter genes in the wild-type strain resulted in loss of tolerance to exogenously added FFAs including capric, lauric, myristic, oleic and linolenic acids. Overexpression of the genes in dAS2T, on the other hand, enhanced FFA excretion and cell growth in nitrate-containing medium, verifying that the genes encode an efflux pump for FFAs. These results demonstrate the importance of the efflux system in efficient FFA production using genetically engineered cyanobacteria.
Collapse
Affiliation(s)
- Akihiro Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Japan Science and Technology Agency, CREST
| | - Kazuhide Use
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Japan Science and Technology Agency, CREST
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052 Japan Japan Science and Technology Agency, CREST Present address: Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yajun Chang
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Japan Science and Technology Agency, CREST Present address: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, PR China
| | - Kouji Kojima
- Department of Biological Chemistry, Chubu University, Kasugai, 487-8501 Japan Japan Science and Technology Agency, CREST Present address: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Makiko Aichi
- Department of Biological Chemistry, Chubu University, Kasugai, 487-8501 Japan Japan Science and Technology Agency, CREST
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602 Japan Japan Science and Technology Agency, CREST
| | - Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052 Japan Japan Science and Technology Agency, CREST
| | - Shin-Ichi Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Japan Science and Technology Agency, CREST
| | - Tatsuo Omata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Japan Science and Technology Agency, CREST
| |
Collapse
|
80
|
Delmar JA, Yu EW. The AbgT family: A novel class of antimetabolite transporters. Protein Sci 2015; 25:322-37. [PMID: 26443496 DOI: 10.1002/pro.2820] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
The AbgT family of transporters was thought to contribute to bacterial folate biosynthesis by importing the catabolite p-aminobenzoyl-glutamate for producing this essential vitamin. Approximately 13,000 putative transporters of the family have been identified. However, before our work, no structural information was available and even functional data were minimal for this family of membrane proteins. To elucidate the structure and function of the AbgT family of transporters, we recently determined the X-ray structures of the full-length Alcanivorax borkumensis YdaH and Neisseria gonorrhoeae MtrF membrane proteins. The structures reveal that these two transporters assemble as dimers with architectures distinct from all other families of transporters. Both YdaH and MtrF are bowl-shaped dimers with a solvent-filled basin extending from the cytoplasm halfway across the membrane bilayer. The protomers of YdaH and MtrF contain nine transmembrane helices and two hairpins. These structures directly suggest a plausible pathway for substrate transport. A combination of the crystal structure, genetic analysis and substrate accumulation assay indicates that both YdaH and MtrF behave as exporters, capable of removing the folate metabolite p-aminobenzoic acid from bacterial cells. Further experimental data based on drug susceptibility and radioactive transport assay suggest that both YdaH and MtrF participate as antibiotic efflux pumps, importantly mediating bacterial resistance to sulfonamide antimetabolite drugs. It is possible that many of these AbgT-family transporters act as exporters, thereby conferring bacterial resistance to sulfonamides. The AbgT-family transporters may be important targets for the rational design of novel antibiotics to combat bacterial infections.
Collapse
Affiliation(s)
- Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011.,Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
81
|
Bodoev IN, Il’ina EN. Molecular mechanisms of formation of drug resistance in Neisseria gonorrhoeae: History and prospects. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416815030027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
82
|
Karch A, Vogel U, Claus H. Role of penA polymorphisms for penicillin susceptibility in Neisseria lactamica and Neisseria meningitidis. Int J Med Microbiol 2015; 305:729-35. [DOI: 10.1016/j.ijmm.2015.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
83
|
Sparling PF. A doctor's dilemma: choices amidst change. J Clin Invest 2015; 125:3330-4. [PMID: 26241059 DOI: 10.1172/jci83584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
84
|
The Gonococcal Transcriptome during Infection of the Lower Genital Tract in Women. PLoS One 2015; 10:e0133982. [PMID: 26244506 PMCID: PMC4526530 DOI: 10.1371/journal.pone.0133982] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/04/2015] [Indexed: 11/24/2022] Open
Abstract
Gonorrhea is a highly prevalent disease resulting in significant morbidity worldwide, with an estimated 106 cases reported annually. Neisseria gonorrhoeae, the causative agent of gonorrhea, colonizes and infects the human genital tract and often evades host immune mechanisms until successful antibiotic treatment is used. The alarming increase in antibiotic-resistant strains of N. gonorrhoeae, the often asymptomatic nature of this disease in women and the lack of a vaccine directed at crucial virulence determinants have prompted us to perform transcriptome analysis to understand gonococcal gene expression patterns during natural infection. We sequenced RNA extracted from cervico-vaginal lavage samples collected from women recently exposed to infected male partners and determined the complete N. gonorrhoeae transcriptome during infection of the lower genital tract in women. On average, 3.19% of total RNA isolated from female samples aligned to the N. gonorrhoeae NCCP11945 genome and 1750 gonococcal ORFs (65% of all protein-coding genes) were transcribed. High expression in vivo was observed in genes encoding antimicrobial efflux pumps, iron response, phage production, pilin structure, outer membrane structures and hypothetical proteins. A parallel analysis was performed using the same strains grown in vitro in a chemically defined media (CDM). A total of 140 genes were increased in expression during natural infection compared to growth in CDM, and 165 genes were decreased in expression. Large differences were found in gene expression profiles under each condition, particularly with genes involved in DNA and RNA processing, iron, transposase, pilin and lipoproteins. We specifically interrogated genes encoding DNA binding regulators and iron-scavenging proteins, and identified increased expression of several iron-regulated genes, including tbpAB and fbpAB, during infection in women as compared to growth in vitro, suggesting that during infection of the genital tract in women, the gonococcus is exposed to an iron deplete environment. Collectively, we demonstrate that a large portion of the gonococcal genome is expressed and regulated during mucosal infection including genes involved in regulatory functions and iron scavenging.
Collapse
|
85
|
Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics. Antimicrob Agents Chemother 2015; 59:6444-53. [PMID: 26239980 DOI: 10.1128/aac.01289-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen.
Collapse
|
86
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|
87
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
88
|
Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Chou TH, Rajashankar KR, Shafer WM, Yu EW. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps. Cell Rep 2015; 11:61-70. [PMID: 25818299 DOI: 10.1016/j.celrep.2015.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 01/17/2023] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Feng Long
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kanagalaghatta R Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratories of Microbial Pathogenesis, VA Medical Center, Decatur, GA 30033, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
89
|
Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2015; 27:587-613. [PMID: 24982323 DOI: 10.1128/cmr.00010-14] [Citation(s) in RCA: 809] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.
Collapse
|
90
|
Bauer ME, Shafer WM. On the in vivo significance of bacterial resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3101-11. [PMID: 25701234 DOI: 10.1016/j.bbamem.2015.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) are at the front-line of host defense during infection and play critical roles both in reducing the microbial load early during infection and in linking innate to adaptive immunity. However, successful pathogens have developed mechanisms to resist AMPs. Although considerable progress has been made in elucidating AMP-resistance mechanisms of pathogenic bacteria in vitro, less is known regarding the in vivo significance of such resistance. Nevertheless, progress has been made in this area, largely by using murine models and, in two instances, human models of infection. Herein, we review progress on the use of in vivo infection models in AMP research and discuss the AMP resistance mechanisms that have been established by in vivo studies to contribute to microbial infection. We posit that in vivo infection models are essential tools for investigators to understand the significance to pathogenesis of genetic changes that impact levels of bacterial susceptibility to AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Margaret E Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive MS-420, Indianapolis, IN 46254, USA.
| | - William M Shafer
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
91
|
Diffusion of antibiotics through the PilQ secretin in Neisseria gonorrhoeae occurs through the immature, sodium dodecyl sulfate-labile form. J Bacteriol 2015; 197:1308-21. [PMID: 25605303 DOI: 10.1128/jb.02628-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In strains of Neisseria gonorrhoeae harboring the mtr and penB determinants that decrease permeation of antibiotics into the periplasm, mutation or deletion of the PilQ secretin of type IV pili increases resistance to penicillin by ∼3-fold, indicating a role for PilQ in antibiotic permeation. In this study, we examined spontaneously arising mutants with decreased susceptibility to penicillin. One class of mutants had a phenotype indistinguishable from that of a previously characterized pilQ2 mutation that interfered with the formation of SDS-resistant PilQ multimers. A second class of mutants contained frameshift mutations in genes upstream of pilQ in the pilMNOPQ operon that increased resistance to levels similar to those of the pilQ2 mutation. In-frame deletions of these genes were constructed, but only the frameshift mutations increased antibiotic resistance, suggesting that the mutations had polar effects on PilQ. Consistent with this result, titration of wild-type PilQ levels revealed a direct correlation between resistance and expression levels of PilQ. To determine which form of PilQ, the monomer or the multimer, was responsible for antibiotic permeation, we manipulated and quantified these forms in different mutants. Deletion of PilW, which is responsible for the maturation of PilQ into SDS-resistant multimers, had no effect on resistance. Moreover, Western blot analysis revealed that while SDS-resistant multimer levels were decreased by 26% in frameshift mutants, the levels of PilQ monomers were decreased by 48%. These data suggest that immature, SDS-labile complexes, not mature, SDS-resistant PilQ complexes, serve as the route of entry of antibiotics into the periplasm. IMPORTANCE The capacity of antibiotics to reach their target is crucial for their activity. In Neisseria gonorrhoeae, the PilQ secretin of type IV pili plays an important role in antibiotic influx when diffusion of antibiotics through porins is limited (e.g., in most resistant strains). On Western blots, PilQ exists both as a mature higher-order multimer and an immature, SDS-labile monomer. In this study, we examined spontaneously arising mutations in PilQ and in the genes upstream of PilQ in the pilMNOPQ operon that increase resistance to penicillin. We provide evidence that PilQ monomers associate by mass action to form immature multimers and that these complexes likely mediate the diffusion of antibiotics across the outer membrane.
Collapse
|
92
|
Li S, Su XH, Le WJ, Jiang FX, Wang BX, Rice PA. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from symptomatic men attending the Nanjing sexually transmitted diseases clinic (2011-2012): genetic characteristics of isolates with reduced sensitivity to ceftriaxone. BMC Infect Dis 2014; 14:622. [PMID: 25427572 PMCID: PMC4263019 DOI: 10.1186/s12879-014-0622-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/07/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Evolving gonococcal antimicrobial resistance (AMR) poses a serious threat to public health. The aim of this study was to: update antimicrobial susceptibility data of Neisseria gonorrhoeae recently isolated in Nanjing, China and identify specific deteminants of antimicrobial resistance and gentoypes of isolates with decreased sensitivity to ceftriaxone. METHODS 334 N. gonorrhoeae isolates were collected consecutively from symptomatic men attending the Nanjing STD Clinic between April 2011 and December 2012. The minimum inhibitory concentrations (MICs) for penicillin, tetracycline, ciprofloxacin, spectinomycin and ceftriaxone were determined by agar plate dilution for each isolate. Penicillinase-producing N. gonorrhoeae (PPNG) and tetracycline-resistant N. gonorrhoeae (TRNG) were examined and typed for β-lactamase and tetM encoding plasmids respectively. Isolates that displayed elevated MICs to ceftriaxone (MIC ≥0.125 mg/L) were also tested for mutations in penA, mtrR, porB1b, ponA and pilQ genes and characterized by Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST). RESULTS 98.8% (330/334) of N. gonorrhoeae isolates were resistant to ciprofloxacin; 97.9% (327/334) to tetracycline and 67.7% (226/334) to penicillin. All isolates were susceptible to ceftriaxone (MIC ≤0.25 mg/L) and spectinomycin (MIC ≤32 mg/L). Plasmid mediated resistance was exhibited by 175/334 (52%) of isolates: 120/334 (36%) of isolates were PPNG and 104/334 (31%) were TRNG. 90.0% (108/120) of PPNG isolates carried the Asia type β-lactamase encoding plasmid and 96% (100/104) of TRNG isolates carried the Dutch type tetM containing plasmid. Elevated MICs for ceftriaxone were present in 15 (4.5%) isolates; multiple mutations were found in penA, mtrR, porB1b and ponA genes. The 15 isolates were distributed into diverse NG-MAST sequence types; four different non-mosaic penA alleles were identified, including one new type. CONCLUSIONS N. gonorrhoeae isolates in Nanjing generally retained similar antimicrobial resistance patterns to isolates obtained five years ago. Fluctuations in resistance plasmid profiles imply that genetic exchange among gonococcal strains is ongoing and is frequent. Ceftriaxone and spectinomycin remain treatments of choice of gonorrhea in Nanjing, however, decreased susceptibility to ceftriaxone and rising MICs for spectinomycin of N. gonorrhoeae isolates underscore the importance of maintaining surveillance for AMR (both phenotypic and genotypic).
Collapse
Affiliation(s)
- Sai Li
- STD Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Xiao-Hong Su
- STD Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Wen-Jing Le
- STD Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Fa-Xing Jiang
- Department of Dermatology, Anhui Provincial Hospital, Hefei, 230001, China.
| | - Bao-Xi Wang
- STD Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01602, USA.
| |
Collapse
|
93
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
94
|
Overproduction of the MtrCDE efflux pump in Neisseria gonorrhoeae produces unexpected changes in cellular transcription patterns. Antimicrob Agents Chemother 2014; 59:724-6. [PMID: 25367915 DOI: 10.1128/aac.04148-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The global consequence of drug efflux gene overexpression in bacteria has not been specifically analyzed because strains showing high-level expression typically have mutations in genes encoding regulatory proteins that control other genes. Results from a transcriptional profiling study performed with a strain of Neisseria gonorrhoeae that is capable of high-level transcription of the mtrCDE efflux pump operon independently of control by cognate regulatory proteins revealed that its overexpression has ramifications for systems other than drug efflux.
Collapse
|
95
|
In Vitro selection of Neisseria gonorrhoeae mutants with elevated MIC values and increased resistance to cephalosporins. Antimicrob Agents Chemother 2014; 58:6986-9. [PMID: 25199775 DOI: 10.1128/aac.03082-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Neisseria gonorrhoeae with mosaic penA genes bearing novel point mutations in penA have been isolated from ceftriaxone treatment failures. Such isolates exhibit significantly higher MIC values to third-generation cephalosporins. Here we report the in vitro isolation of two mutants with elevated MICs to cephalosporins. The first possesses a point mutation in the transpeptidase region of the mosaic penA gene, and the second contains an insertion mutation in pilQ.
Collapse
|
96
|
Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, Yu EW. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. PLoS One 2014; 9:e97475. [PMID: 24901251 PMCID: PMC4046963 DOI: 10.1371/journal.pone.0097475] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/20/2014] [Indexed: 01/08/2023] Open
Abstract
Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel.
Collapse
Affiliation(s)
- Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | | | - Feng Long
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Jared A. Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Sylvia V. Do
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, VA Medical Center, Decatur, Georgia, United States of America
| | - Edward W. Yu
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
97
|
Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 2014; 13:1299-317. [PMID: 24607996 PMCID: PMC4014286 DOI: 10.1074/mcp.m113.029538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 02/28/2014] [Indexed: 01/29/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.
Collapse
Affiliation(s)
- Ryszard A. Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Igor H. Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Jacob V. Weber
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Philip R. Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Aleksandra E. Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
98
|
Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2014; 58:3556-9. [PMID: 24733458 DOI: 10.1128/aac.00038-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The contribution of drug efflux pumps in clinical isolates of Neisseria gonorrhoeae that express extensively drug-resistant or multidrug-resistant phenotypes has heretofore not been examined. Accordingly, we assessed the effect on antimicrobial resistance of loss of the three gonococcal efflux pumps associated with a known capacity to export antimicrobials (MtrC-MtrD-MtrE, MacA-MacB, and NorM) in such clinical isolates. We report that the MIC of several antimicrobials, including seven previously and currently recommended for treatment was significantly impacted.
Collapse
|
99
|
Yoo JS, Seong WK, Kim TS, Park YK, Oh HB, Yoo CK. Comparative Proteome Analysis of the Outer Membrane Proteins ofin Vitro-Induced Multi-Drug ResistantNeisseria gonorrhoeae. Microbiol Immunol 2013; 51:1171-7. [DOI: 10.1111/j.1348-0421.2007.tb04012.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeong Sik Yoo
- Divison of Antimicrobial Resistance, Centers for Infectious Diseases; Korea Centers for Disease Control and Prevention, Nokbun 5; Seoul Republic of Korea
- Department of Bioscience, Graduate School of Biotechnology; Korea University; Seoul Republic of Korea
| | - Won Keun Seong
- Division of Biosafety Evaluation and Control; Korea Centers for Disease Control and Prevention, Nokbun 5; Seoul Republic of Korea
| | - Tong Soo Kim
- Division of Malaria and Parasitic Diseases, Center for Immunology & Pathology; National Institute of Health, Korea Centers for Disease Control and Prevention, Nokbun 5; Seoul Republic of Korea
| | - Yong Keun Park
- Department of Bioscience, Graduate School of Biotechnology; Korea University; Seoul Republic of Korea
| | - Hee-Bok Oh
- Divison of Antimicrobial Resistance, Centers for Infectious Diseases; Korea Centers for Disease Control and Prevention, Nokbun 5; Seoul Republic of Korea
| | - Cheon Kwon Yoo
- Division of Biosafety Evaluation and Control; Korea Centers for Disease Control and Prevention, Nokbun 5; Seoul Republic of Korea
| |
Collapse
|
100
|
Petrova M, Shcherbatova N, Gorlenko Z, Mindlin S. A new subgroup of the IS3 family and properties of its representative member ISPpy1. MICROBIOLOGY-SGM 2013; 159:1900-1910. [PMID: 23832000 DOI: 10.1099/mic.0.068676-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, we described a novel insertion element, ISPpy1, isolated from a permafrost strain of Psychrobacter maritimus. In this work, we demonstrated that ISPpy1 is a member of a novel subgroup of the IS3 family of insertion sequences (ISs) that was not identified and characterized previously. IS elements of this subgroup termed the ISPpy1 subgroup are broadly distributed among different taxa of Eubacteria, including Geobacteraceae, Chlorobiaceae, Desulfobacteraceae, Methylobacteriaceae, Nitrosomonadaceae and Cyanobacteria. While displaying characteristic features of the IS3-family elements, ISPpy1 subgroup elements exhibit some unusual features. In particular, most of them have longer terminal repeats with unconventional ends and frameshifting box with an atypical organization, and, unlike many other IS3-family elements, do not exhibit any distinct IS specificity. We studied the transposition and mutagenic properties of a representative member of this subgroup, ISPpy1 and showed that in contrast to the original P. maritimus host, in a heterologous host, Escherichia coli K-12, it is able to translocate with extremely high efficiency into the chromosome, either by itself or as a part of a composite transposon containing two ISPpy1 copies. The majority of transposants carry multiple chromosomal copies (up to 12) of ISPpy1. It was discovered that ISPpy1 is characterized by a marked mutagenic activity in E. coli: its chromosomal insertions generate various types of mutations, including auxotrophic, pleiotropic and rifampicin-resistance mutations. The distribution of IS elements of the novel subgroup among different bacteria, their role in the formation of composite transposons and the horizontal transfer of genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Zhosephine Gorlenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|