51
|
Shi C, Yan C, Sui Y, Sun Y, Guo D, Chen Y, Jin T, Peng X, Ma L, Xia X. Thymoquinone Inhibits Virulence Related Traits of Cronobacter sakazakii ATCC 29544 and Has Anti-biofilm Formation Potential. Front Microbiol 2017; 8:2220. [PMID: 29234307 PMCID: PMC5712421 DOI: 10.3389/fmicb.2017.02220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine whether thymoquinone, the principal active ingredient in the volatile oil of Nigella sativa seeds, could suppress certain virulence traits of Cronobacter sakazakii ATCC 29544 which contribute to infection. Sub-inhibitory concentrations of thymoquinone significantly decreased motility, quorum sensing, and endotoxin production of C. sakazakii ATCC 29544 and biofilm formation of C. sakazakii 7-17. Thymoquinone substantially reduced the adhesion and invasion of C. sakazakii ATCC 29544 to HT-29 cells and decreased the number of intracellular bacterial cells within the RAW 264.7 macrophage cells. Thymoquinone also repressed the transcription of sixteen genes involved in the virulence. These findings suggest that thymoquinone could attenuated virulence-related traits of C. sakazakii ATCC 29544, and its effects on other C. sakazakii strains and in vivo C. sakazakii infection need further investigation.
Collapse
Affiliation(s)
- Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunhong Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Sui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yi Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Linlin Ma
- Xi'An Yurun Agricultural Products Global Sourcing Co., LTD., Xi'an, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
52
|
Gao Z, Su C, Yang X, Sun D, Zeng C, Chen M, Hu W, Zhang C. Franconibacter daqui sp. nov., a facultatively alkaliphilic species isolated from a Daqu sample. Int J Syst Evol Microbiol 2017; 67:4962-4966. [PMID: 29034856 DOI: 10.1099/ijsem.0.002358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, designated strain DL503T, was isolated from a Daqu sample and its taxonomic position determined using a polyphasic taxonomy. Strain DL503T was a Gram-stain-negative, facultatively anaerobic, non-sporulating, motile and coccoid-rod-shaped bacterium. Optimum growth occurred at 20-45 °C, pH 5.0-10.0 and 1.5 % (w/v) NaCl. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Franconibacter, showing highest levels of similarity with respect to Franconibacter pulveris JCM 16471T (98.94 %) and Franconibacter helveticus DSM 18396T (98.39 %). Cells contained the quinones Q-8 and MK-8, and the polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified polar lipids and three unidentified amino lipids. The DNA G+C content was 53.3 mol% and the major fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 4 (C17 : 1 iso I and/or C17 : 1 anteiso B) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The DNA-DNA relatedness values between strain DL503T and its close relatives, including F. pulveris JCM 16471T and F. helveticus DSM 18396T, were 51.5±0.5 % and 45.2±1.1 %, respectively. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Franconibacter, for which the name Franconibacter daqui sp. nov. is proposed. The type strain is DL503T (=LMG 29914T=CGMCC 1.15944T).
Collapse
Affiliation(s)
- Ziqing Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chenglin Su
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xueying Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Di Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Zeng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
53
|
Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Sar P, Kazy SK. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Ogrodzki P, Forsythe SJ. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR- cas Array and Capsular Profiling. Front Microbiol 2017; 8:1875. [PMID: 29033918 PMCID: PMC5626840 DOI: 10.3389/fmicb.2017.01875] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors.
Collapse
Affiliation(s)
- Pauline Ogrodzki
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | |
Collapse
|
55
|
Scharinger EJ, Dietrich R, Wittwer T, Märtlbauer E, Schauer K. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2. Front Microbiol 2017; 8:1826. [PMID: 28979257 PMCID: PMC5611382 DOI: 10.3389/fmicb.2017.01826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 01/28/2023] Open
Abstract
The ubiquitous and opportunistic pathogen Cronobacter sakazakii is responsible for severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants associated with ingestion of contaminated powdered infant formula (PIF). The current ISO method for isolation and detection of Cronobacter spp. is laborious, time-consuming and expensive. In this study, a multiplexed lateral flow test strip was developed to rapidly detect and simultaneously serotype O1 and O2 C. sakazakii serotypes. The assay is based on two monoclonal antibodies (MAb) that specifically bind to the lipopolysaccharides (LPS) of these pathogens. The test strip provides results very quickly; C. sakazakii could be detected in pure culture within 15 min with a sensitivity of 107 CFU/ml. After non-selective enrichment for 18 h as low as one Cronobacter cell per g PIF could be detected. Moreover, the established lateral flow assay (LFA) offers excellent specificity showing no cross-reactivity with other C. sakazakii serotypes, Cronobacter species or Enterobacteriaceae tested. These characteristics, together with several advantages such as speed, simplicity in performance, low analysis cost, and no requirement of specialized skills or sophisticated equipment make the developed multiplexed LFA suitable for reliable detection and serotyping of C. sakazakii serotypes O1 and O2.
Collapse
Affiliation(s)
- Eva J. Scharinger
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Richard Dietrich
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | | | - Erwin Märtlbauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität MünchenOberschleißheim, Germany
| |
Collapse
|
56
|
Shi L, Liang Q, Zhan Z, Feng J, Zhao Y, Chen Y, Huang M, Tong Y, Wu W, Chen W, Li X, Yin Z, Wang J, Zhou D. Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections. Virulence 2017; 9:110-120. [PMID: 28771073 PMCID: PMC5955447 DOI: 10.1080/21505594.2017.1356537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cronobacter sakazakii 505108 was isolated from a sputum specimen of a neonate with severe pneumonia. C. sakazakii 505108 co-harbors 3 resistance plasmids of the IncHI2, IncX3, and IncFIB incomparability groups, respectively. These 3 plasmids have acquired several accessory modules, which carry an extremely large number of resistance genes, especially including those involved in resistance to carbapenems, aminoglycoside, tetracyclines, and phenicols and sulphonamide/trimethoprim. These plasmid-borne antibiotic resistance genes were associated with insertion sequences, integrons, and transposons, indicating that the assembly and mobilization of the corresponding accessory modules with complex chimera structures are facilitated by transposition and/or homologous recombination. This is the first report of fully sequence plasmids in clinical Cronobacter, which provides a deeper insight into plasmid-mediated multi-drug resistance in Cronobacter from hospital settings.
Collapse
Affiliation(s)
- Lining Shi
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Quanhui Liang
- b Department of Clinical Laboratory , The First People's Hospital of Foshan , Foshan , China
| | - Zhe Zhan
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jiao Feng
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yachao Zhao
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yong Chen
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Mei Huang
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Yigang Tong
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Weili Wu
- d Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing , China
| | - Weijun Chen
- d Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing , China
| | - Xiaojun Li
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Zhe Yin
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jinglin Wang
- b Department of Clinical Laboratory , The First People's Hospital of Foshan , Foshan , China
| | - Dongsheng Zhou
- c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| |
Collapse
|
57
|
Berthold-Pluta A, Garbowska M, Stefańska I, Pluta A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol 2017; 65:221-230. [DOI: 10.1016/j.fm.2017.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
58
|
Novel Method for Reliable Identification of Siccibacter and Franconibacter Strains: from "Pseudo-Cronobacter" to New Enterobacteriaceae Genera. Appl Environ Microbiol 2017; 83:AEM.00234-17. [PMID: 28455327 DOI: 10.1128/aem.00234-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/12/2017] [Indexed: 11/20/2022] Open
Abstract
In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method.IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease.
Collapse
|
59
|
Hu S, Yu Y, Wu X, Xia X, Xiao X, Wu H. Simultaneous detection and identification of pathogenic Cronobacter
species by high-resolution melting analysis in powdered infant formulas. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuangfang Hu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Yigang Yu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Xinwei Wu
- Department of Microbiology; Guangzhou Center for Disease Control and Prevention; Qide Road No. 2 Guangzhou Guangdong 510440 China
| | - Xingzhou Xia
- College of Food Science and Technology; Guangdong Ocean University; Zhanjiang Guangdong 524088 China
| | - Xinglong Xiao
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Hui Wu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
60
|
Tall BD, Gangiredla J, Grim CJ, Patel IR, Jackson SA, Mammel MK, Kothary MH, Sathyamoorthy V, Carter L, Fanning S, Iversen C, Pagotto F, Stephan R, Lehner A, Farber J, Yan QQ, Gopinath GR. Use of a Pan-Genomic DNA Microarray in Determination of the Phylogenetic Relatedness among Cronobacter spp. and Its Use as a Data Mining Tool to Understand Cronobacter Biology. MICROARRAYS 2017; 6:microarrays6010006. [PMID: 28273858 PMCID: PMC5374366 DOI: 10.3390/microarrays6010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/24/2022]
Abstract
Cronobacter (previously known as Enterobacter sakazakii) is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. These organisms cause a variety of illnesses such as meningitis, necrotizing enterocolitis, and septicemia in neonates and infants, and urinary tract, wound, abscesses or surgical site infections, septicemia, and pneumonia in adults. The total gene content of 379 strains of Cronobacter spp. and taxonomically-related isolates was determined using a recently reported DNA microarray. The Cronobacter microarray as a genotyping tool gives the global food safety community a rapid method to identify and capture the total genomic content of outbreak isolates for food safety, environmental, and clinical surveillance purposes. It was able to differentiate the seven Cronobacter species from one another and from non-Cronobacter species. The microarray was also able to cluster strains within each species into well-defined subgroups. These results also support previous studies on the phylogenic separation of species members of the genus and clearly highlight the evolutionary sequence divergence among each species of the genus compared to phylogenetically-related species. This review extends these studies and illustrates how the microarray can also be used as an investigational tool to mine genomic data sets from strains. Three case studies describing the use of the microarray are shown and include: (1) the determination of allelic differences among Cronobacter sakazakii strains possessing the virulence plasmid pESA3; (2) mining of malonate and myo-inositol alleles among subspecies of Cronobacter dublinensis strains to determine subspecies identity; and (3) lastly using the microarray to demonstrate sequence divergence and phylogenetic relatedness trends for 13 outer-membrane protein alleles among 240 Cronobacter and phylogenetically-related strains. The goal of this review is to describe microarrays as a robust tool for genomics research of this assorted and important genus, a criterion toward the development of future preventative measures to eliminate this foodborne pathogen from the global food supply.
Collapse
Affiliation(s)
- Ben D Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Christopher J Grim
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Isha R Patel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Scott A Jackson
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
- Complex Microbial Systems Group Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Mark K Mammel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Mahendra H Kothary
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Venugopal Sathyamoorthy
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Laurenda Carter
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin, Belfield, Dublin D04 N2E5, Ireland.
| | - Carol Iversen
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, UK.
| | - Franco Pagotto
- Food Directorate, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland.
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland.
| | - Jeffery Farber
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qiong Q Yan
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin, Belfield, Dublin D04 N2E5, Ireland.
| | - Gopal R Gopinath
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| |
Collapse
|
61
|
Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ, Chase HR, Lee B, Park E, Yoo Y, Chung T, Finkelstein SB, Negrete FJ, Patel IR, Carter L, Sathyamoorthy V, Fanning S, Tall BD. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp. Front Microbiol 2017; 8:134. [PMID: 28232819 PMCID: PMC5299011 DOI: 10.3389/fmicb.2017.00134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/19/2017] [Indexed: 02/02/2023] Open
Abstract
Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Q Yan
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, WHO Collaborating Centre for Cronobacter, University College, Dublin Dublin, Ireland
| | | | - Boram Lee
- U. S. Food and Drug Administration Laurel, MD, USA
| | - Eunbi Park
- U. S. Food and Drug Administration Laurel, MD, USA
| | - YeonJoo Yoo
- U. S. Food and Drug Administration Laurel, MD, USA
| | | | | | | | - Isha R Patel
- U. S. Food and Drug Administration Laurel, MD, USA
| | | | | | - Séamus Fanning
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, WHO Collaborating Centre for Cronobacter, University College, Dublin Dublin, Ireland
| | - Ben D Tall
- U. S. Food and Drug Administration Laurel, MD, USA
| |
Collapse
|
62
|
Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A, Kasai D, Yamazoe A, Fujita N, Ezaki T, Fukuda M. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J GEN APPL MICROBIOL 2017; 63:1-10. [DOI: 10.2323/jgam.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenta Yonezuka
- Department of Bioengineering, Nagaoka University of Technology
| | - Jun Shimodaira
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Michiro Tabata
- Department of Bioengineering, Nagaoka University of Technology
| | - Shoko Ohji
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Akira Hosoyama
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology
| | - Atsushi Yamazoe
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Nobuyuki Fujita
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Takayuki Ezaki
- Department of Microbiology, Gifu University Graduate School of Medicine
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
63
|
Munson E, Carroll KC. What's in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J Clin Microbiol 2017; 55:24-42. [PMID: 27795334 PMCID: PMC5228236 DOI: 10.1128/jcm.01379-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
64
|
Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575-5599. [DOI: 10.1099/ijsem.0.001485] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
65
|
Du XJ, Zhang X, Li P, Xue R, Wang S. Screening of genes involved in interactions with intestinal epithelial cells in Cronobacter sakazakii. AMB Express 2016; 6:74. [PMID: 27637944 PMCID: PMC5023641 DOI: 10.1186/s13568-016-0246-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
Cronobacter sakazakii possesses a significant ability to adhere to and invade epithelial cells in its host. However, the molecular mechanisms underlying this process are poorly understood. In the current study, the adhesive and invasive capabilities of 56 C. sakazakii strains against human epithelial cells were evaluated, and one of them was selected for construction of a mutant library using the Tn5 transposon. In a systematic analysis of the adhesive and invasive capabilities of 1084 mutants, 10 mutants that showed more than a 50 % reduction in adhesion or invasion were obtained. Tail-PCR was used to sequence the flanking regions of the inserted transposon and 8 different genes (in 10 different mutants) were identified that encoded an exonuclease subunit, a sugar transporter, a transcriptional regulator, two flagellar biosynthesis proteins, and three hypothetical proteins. Raman spectroscopy was used to analyze variations in the biochemical components of the mutants, and the results showed that there were fewer amide III proteins, protein -CH deformations, nucleic acids and tyrosines and more phenylalanine, carotenes, and fatty acids in the mutants than in the wild type strain. Real-time PCR was used to further confirm the involvement of the genes in the adhesive and invasive abilities of C. sakazakii, and the results indicated that the expression levels of the 8 identified genes were upregulated 1.2- to 11.2-fold. The results of this study provide us with insight into the mechanism by which C. sakazakii infects host cells at molecular level.
Collapse
|
66
|
Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8. Appl Microbiol Biotechnol 2016; 100:311-22. [PMID: 26481623 DOI: 10.1007/s00253-015-7053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.
Collapse
|
67
|
Vlach J, Javůrková B, Karamonová L, Blažková M, Fukal L. Novel PCR-RFLP system based on rpoB gene for differentiation of Cronobacter species. Food Microbiol 2016; 62:1-8. [PMID: 27889135 DOI: 10.1016/j.fm.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/24/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens that can cause severe infections. More rapid, cost-effective and reliable methods are still required for the species identification of Cronobacter spp. In this study, we present a novel PCR-RFLP-based method that uses a newly designed pair of primers for the PCR-amplification of a partial rpoB gene sequence (1635 bp). The amplified products of DNA from 80 Cronobacter strains were separately digested with three restriction endonucleases (Csp6I, HinP1I, MboI). Using the obtained restriction patterns, a PCR-RFLP identification system was created to enable differentiation between all seven currently-known Cronobacter species. The functionality of our method was successfully verified on real food samples. Moreover, the relationships between the Cronobacter species were determined via a phylogenetic tree created from the RFLP patterns.
Collapse
Affiliation(s)
- Jiří Vlach
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Barbora Javůrková
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Ludmila Karamonová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Martina Blažková
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic.
| | - Ladislav Fukal
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
68
|
Structural characterization of the O-polysaccharide isolated from Franconibacter helveticus LMG23732(T). Carbohydr Res 2016; 431:39-41. [PMID: 27288973 DOI: 10.1016/j.carres.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Abstract
The bacterial strain Franconibacter helveticus LMG 23732(T) was previously misidentified as the neonatal pathogen Cronobacter zurichensis. O-polysaccharide (OPS) is a part of lipopolysaccharide (LPS), which is an important cell envelope compound of Gram-negative bacteria. OPS isolated from the bacterium Franconibacter helveticus LMG23732(T) was characterized by chemical analyses as well as 1D and 2D NMR experiments. Compositional analyses indicated the presence of glucose and unusual 6-deoxy sugar - 6-deoxy-talose (6-dTal). The studied strain produced OPS, which consists of 6-l-dTalp in main chain and terminal d-Glcp as a branch: This is the first structural determination of the OPS isolated from genus Franconibacter.
Collapse
|
69
|
Al-Nabulsi AA, Osaili TM, Mahmoud KZ, Ayyash MM, Olaimat AN, Shaker RR, Holley RA. Modeling the combined effect of NaCl and pH againstCronobacterspp. using response surface methodology. J Food Saf 2016. [DOI: 10.1111/jfs.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Tareq M. Osaili
- Department of Nutrition and Food Technology; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Kamel Z. Mahmoud
- Department of Animal Production; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Mutamed M. Ayyash
- Department of Food Science; United Arab Emirates University; Al-Ain 15551 UAE
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics; Hashemite University; Zarqa JO
| | - Reyad R. Shaker
- Department of Clinical Nutrition; University of Sharjah; P.O.BOX 27272 Sharjah AE 27272
| | - Richard A. Holley
- Department of Food Science; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
70
|
Jackson EE, Forsythe SJ. Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol 2016; 16:146. [PMID: 27401027 PMCID: PMC4940867 DOI: 10.1186/s12866-016-0768-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022] Open
Abstract
Background Microbiological criteria applied to powdered infant formula (PIF) require the absence of all Cronobacter spp. Consequently, misidentification of isolates from finished products can lead to significant financial losses for manufacturers and could increase the risk of neonatal infection. Biochemical identification of suspect isolates using commercially available test panels is recommended for use by PIF manufacturers by both the US FDA and ISO standard methods for Cronobacter species; however, phenotyping can be unreliable, particularly for a genus such as Cronobacter where the taxonomy has been subject to frequent changes. This study compared the predicted identification by commonly used phenotyping kits (API20E and ID32E) for over 240 strains of Cronobacter from diverse sources, which had been identified using DNA sequence analysis. In 2015, the databases associated with the API20E and ID32E biochemical test panels were updated, including the recognition of the Cronobacter genus. Thus, the identifications from multiple versions the databases were compared to each other and to identifications based on DNA sequencing methods. Results Using previous versions of the API20E database, 90.0 % of strains (216/240) resulted in a match for the species identification; however, version 5.0 produced matches for only 82.3 % of strains (237/288). Similarly, the update to version 4.0 in the ID32E database caused the percentage of matches to drop from 88.9 % (240/270) to 43.2 % (139/322). A smaller study showed that the Vitek GN system identified all 14 strains, belonging all seven Cronobacter species, as members of the ‘C. sakazakii group,’ but also attributed three strains of Franconibacter helveticus and F. pulveris to this group. In silco analysis of a PCR-based method targeting ompA predicted that amplification would only occur with Cronobacter species and this method may be a feasible alternative to biochemical phenotyping. Conclusions These results indicate that commercially available biochemical test panels are not sufficiently reliable for speciation of Cronobacter isolates. Although DNA-sequence based methods would be the more reliable approach; however, this is not currently feasible for many food microbiology laboratories. Instead, a previously published PCR-based method targeting ompA is suggested as an alternative for identification of Cronobacter species based on in silico analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0768-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily E Jackson
- Pathogen Research Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Stephen J Forsythe
- Pathogen Research Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
71
|
Eshwar AK, Tall BD, Gangiredla J, Gopinath GR, Patel IR, Neuhauss SCF, Stephan R, Lehner A. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp. PLoS One 2016; 11:e0158428. [PMID: 27355472 PMCID: PMC4927158 DOI: 10.1371/journal.pone.0158428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/04/2022] Open
Abstract
Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as “virulence plasmids” in Cronobacter and underpinned the importantce of two putative virulence factors—cpa and zpx—in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens.
Collapse
Affiliation(s)
- Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Gopal R. Gopinath
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Isha R. Patel
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, United States of America
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
72
|
Wang M, Arbatsky NP, Xu L, Shashkov AS, Wang L, Knirel YA. O antigen of FranconibacterpulverisG3872 (O1) is a 4-deoxy-d-arabino-hexose-containing polysaccharide synthesized by the ABC-transporter-dependent pathway. MICROBIOLOGY-SGM 2016; 162:1103-1113. [PMID: 27166227 DOI: 10.1099/mic.0.000307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Franconibacter (Enterobacter, Cronobacter) pulveris bacteria share several typical characteristics with, and hence pose a challenge for the detection of, Cronobacter sakazakii, an emerging opportunistic pathogen, which can cause severe infections in neonates. A structurally variable O-specific polysaccharide (OPS) called O antigen provides the major basis for the typing of Gram-negative bacteria. We investigated the structure and genetics of the O antigen of F. pulveris G3872 (designated O1). An OPS was isolated by mild alkaline degradation of the LPS, whereas the same polysaccharide and its oligosaccharide fragments were obtained by mild acid degradation. Studies by sugar analysis and NMR spectroscopy showed that the OPS contained d-ribose, l-rhamnose (l-Rha) and a rarely occurring monosaccharide 4-deoxy-d-arabino-hexose, and the OPS structure was established. The O-antigen gene cluster of F. pulveris G3872 between JUMPStart and gnd genes includes putative genes for glycosyltransferases, ATP-binding cassette (ABC)-transporter genes wzm and wzt, and genes for the synthesis of l-Rha, but no genes for the synthesis of 4-deoxy-d-arabino-hexose. A mutation test with the wzm gene confirmed that the OPS is synthesized and exported by the ABC-transporter-dependent pathway. A trifunctional transferase was suggested to catalyse formation of two glycosidic linkages and add a methyl group to the non-reducing end of the OPS to terminate the chain elongation. A carbohydrate-binding module that presumably recognizes the terminal methyl-modified monosaccharide was found at the C-terminus of Wzt. Primers specific for F. pulveris G3872 were designed based on the wzm gene, which has potential to be used for identification and detection of the O1 serogroup.
Collapse
Affiliation(s)
- Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lingling Xu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
73
|
Li CY, Zhou YL, Ji J, Gu CT. Reclassification of Enterobacter oryziphilus and Enterobacter oryzendophyticus as Kosakonia oryziphila comb. nov. and Kosakonia oryzendophytica comb. nov. Int J Syst Evol Microbiol 2016; 66:2780-2783. [PMID: 27045188 DOI: 10.1099/ijsem.0.001054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The taxonomic positions of Enterobacter oryziphilus and Enterobacter oryzendophyticus were re-examined on the basis of concatenated partial rpoB, atpD, gyrB and infB gene sequence analysis. The reconstructed phylogenetic tree based upon concatenated partial rpoB, atpD, gyrB and infB gene sequences clearly showed that E. oryziphilus and E. oryzendophyticus and all defined species of the genus Kosakonia form a clade separate from other genera of the family Enterobacteriaceae, and, therefore, these species of the genus Enterobacter should be transferred to the genus Kosakonia. E. oryziphilus and E. oryzendophyticus are reclassified as K. oryziphila comb. nov. (type strain REICA_142T=LMG 26429T=NCCB 100393T) and K. oryzendophytica comb. nov. (type strain REICA_082T=LMG 26432T=NCCB 100390T), respectively.
Collapse
Affiliation(s)
- Chun Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Liang Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Ji
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun Tao Gu
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.,Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
74
|
Scharinger EJ, Dietrich R, Kleinsteuber I, Märtlbauer E, Schauer K. Simultaneous Rapid Detection and Serotyping of Cronobacter sakazakii Serotypes O1, O2, and O3 by Using Specific Monoclonal Antibodies. Appl Environ Microbiol 2016; 82:2300-2311. [PMID: 26850303 PMCID: PMC4959477 DOI: 10.1128/aem.04016-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/30/2016] [Indexed: 01/08/2023] Open
Abstract
Cronobacter sakazakii is a foodborne pathogen associated with rare but often lethal infections in neonates. Powdered infant formula (PIF) represents the most frequent source of infection. Out of the identified serotypes (O1 to O7), O1, O2, and O3 are often isolated from clinical and PIF samples. Serotype-specific monoclonal antibodies (MAbs) suitable for application in enzyme immunoassays (EIAs) for the rapid detection of C. sakazakii have not yet been developed. In this study, we created specific MAbs with the ability to bind toC. sakazakii of serotypes O1, O2, and O3. Characterization by indirect EIAs, immunofluorescence, motility assays, and immunoblotting identified lipopolysaccharide (LPS) and exopolysaccharide (EPS) as the antigenic determinants of the MAbs. The established sandwich EIAs were highly sensitive and were able to detect between 2 × 10(3)and 9 × 10(6)CFU/ml. Inclusivity tests confirmed that 93% of serotype O1 strains, 100% of O2 strains, and 87% of O3 strains were detected at low cell counts. No cross-reactivity with >100 strains of Cronobacter spp. and other Enterobacter iaceae was observed, except for that with C. sakazakii serotype O3 and Cronobacter muytjensii serotype O1. Moreover, the sandwich EIAs detected C. sakazakii in PIF samples artificially contaminated with 1 to 10 bacterial cells per 10 g of sample after 15 h of preenrichment. The use of these serotype-specific MAbs not only allows the reliable detection of C. sakazakii strains but also enables simultaneous serotyping in a simple sandwich EIA method.
Collapse
Affiliation(s)
- Eva J Scharinger
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Richard Dietrich
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Ina Kleinsteuber
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| |
Collapse
|
75
|
Orieskova M, Kajsik M, Szemes T, Holy O, Forsythe S, Turna J, Drahovska H. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains. Antonie van Leeuwenhoek 2016; 109:405-14. [DOI: 10.1007/s10482-016-0645-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/02/2016] [Indexed: 11/29/2022]
|
76
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
77
|
Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. Int J Food Microbiol 2016; 217:130-6. [DOI: 10.1016/j.ijfoodmicro.2015.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/29/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023]
|
78
|
Doijad S, Imirzalioglu C, Yao Y, Pati NB, Falgenhauer L, Hain T, Foesel BU, Abt B, Overmann J, Mirambo MM, Mshana SE, Chakraborty T. Enterobacter bugandensis sp. nov., isolated from neonatal blood. Int J Syst Evol Microbiol 2015; 66:968-974. [PMID: 26637818 DOI: 10.1099/ijsem.0.000821] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 17 Enterobacter-like isolates were obtained from blood during a septicaemia outbreak in a neonatal unit, Tanzania, that could not be assigned based on phenotypic test to any existing Enterobacter species. Eight representative outbreak isolates were investigated in detail. Fermentation characteristics, biochemical assays and fatty acid profiles for taxonomic analysis were determined and supplemented with information derived from whole genome sequences. Phenotypic and morphological tests revealed that these isolates were Gram-stain-negative, rod-shaped, highly motile and facultatively anaerobic. The fatty acid profile was similar to those of the type strains for all recognized Enterobacter species, with quantitative differences in C17 : 0, C18 : 1ω7c and C17 : 0 cyclo fatty acids. Whole genome sequencing was used to identify taxonomically relevant characteristics, i.e. for 16S rRNA gene sequence analysis, multi-locus sequence analysis (MLSA), in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI). Draft genomes were approximately 4.9 Mb in size with a G+C content of 56.0 mol%. The 16S rRNA gene sequence of these eight isolates showed >97 % similarity to all Enterobacter species, while MLSA clustered them closely with the type strains of Enterobacter xiangfangensis and Enterobacter hormaechei. These eight strains showed less than 70 % isDDH identity with the type strains of Enterobacter species. In addition, less than 95 % ANI to the type strains of Enterobacter species was observed. From these results, it is concluded that these isolates possess sufficient characteristics to differentiate them from all recognized Enterobacter species, and should therefore be considered as representing a novel species. The name Enterobacter bugandensis sp. nov. is proposed with EB-247T ( = DSM 29888T = NCCB 100573T) as the type strain.
Collapse
Affiliation(s)
- Swapnil Doijad
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Can Imirzalioglu
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Yancheng Yao
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Niladri Bhusan Pati
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Linda Falgenhauer
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| | - Bärbel U Foesel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, and German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Birte Abt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, and German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, and German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Mariam M Mirambo
- Department of Microbiology, Weill Bugando School of Medicine, PO Box 1464, Mwanza, Tanzania
| | - Stephen E Mshana
- Department of Microbiology, Weill Bugando School of Medicine, PO Box 1464, Mwanza, Tanzania
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Justus-Liebig University, Germany
| |
Collapse
|
79
|
Kämpfer P, McInroy JA, Glaeser SP. Enterobacter muelleri sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2015; 65:4093-4099. [PMID: 26294947 DOI: 10.1099/ijsem.0.000547] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A beige-pigmented, oxidase-negative bacterial strain (JM-458T), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458T with sequences of the type strains of closely related species of the genus Enterobacter showed that it shared highest sequence similarity with Enterobacter mori (98.7 %), Enterobacter hormaechei (98.3 %), Enterobacter cloacae subsp. dissolvens, Enterobacter ludwigii and Enterobacter asburiae (all 98.2 %). 16S rRNA gene sequence similarities to all other Enterobacter species were below 98 %. Multilocus sequence analysis based on concatenated partial rpoB, gyrB, infB and atpD gene sequences showed a clear distinction of strain JM-458T from its closest related type strains. The fatty acid profile of the strain consisted of C16 : 0, C17 : 0 cyclo, iso-C15 : 0 2-OH/C16 : 1ω7c and C18 : 1ω7c as major components. DNA-DNA hybridizations between strain JM-458T and the type strains of E. mori, E. hormaechei and E. ludwigii resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA-DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458T represents a novel species of the genus Enterobacter, for which the name Enterobacter muelleri sp. nov. is proposed. The type strain is JM-458T ( = DSM 29346T = CIP 110826T = LMG 28480T = CCM 8546T).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
80
|
Facey PD, Méric G, Hitchings MD, Pachebat JA, Hegarty MJ, Chen X, Morgan LVA, Hoeppner JE, Whitten MMA, Kirk WDJ, Dyson PJ, Sheppard SK, Del Sol R. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis. Genome Biol Evol 2015; 7:2188-202. [PMID: 26185096 PMCID: PMC4558854 DOI: 10.1093/gbe/evv136] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea.
Collapse
Affiliation(s)
- Paul D Facey
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Guillaume Méric
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Matthew D Hitchings
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Justin A Pachebat
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, United Kingdom
| | - Matt J Hegarty
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, United Kingdom
| | - Xiaorui Chen
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Laura V A Morgan
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - James E Hoeppner
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Miranda M A Whitten
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - William D J Kirk
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Paul J Dyson
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| | - Sam K Sheppard
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom MRC CLIMB Consortium, Institute of Life Science, Swansea University, United Kingdom Department of Zoology, University of Oxford, United Kingdom
| | - Ricardo Del Sol
- Institute of Life Sciences, College of Medicine, Swansea University, United Kingdom
| |
Collapse
|
81
|
Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell-cell aggregation. Food Microbiol 2015; 52:97-105. [PMID: 26338122 DOI: 10.1016/j.fm.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/12/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022]
Abstract
Cronobacter species are emerging food-borne pathogens that cause severe sepsis, meningitis, and necrotizing entercolitis in neonates and infants. Bacterial pathogens such as Escherichia coli and Salmonella species produce extracellular cellulose which has been shown to be involved in rugosity, biofilm formation, and host colonization. In this study the distribution and prevalence of cellulose synthase operon genes (bcsABZC) were determined by polymerase chain reaction (PCR) analysis in 231 Cronobacter strains isolated from clinical, food, environmental, and unknown sources. Furthermore, bcsA and bcsB isogenic mutants were constructed in Cronobacter sakazakii BAA894 to determine their roles. In calcofluor binding assays bcsA and bcsB mutants did not produce cellulose, and their colonial morphotypes were different to that of the parent strain. Biofilm formation and bacterial cell-cell aggregation were significantly reduced in bcsA and bcsB mutants compared to the parental strain. bcsA or bcsAB PCR-negative strains of C. sakazakii did not bind calcofluor, and produced less biofilm and cell-cell aggregation compared to strains possessing bcsAB genes. These data indicated that Cronobacter bcsABZC were present in all clinical isolates and most of food and environmental isolates. bcsA and bcsB genes of Cronobacter were necessary to produce cellulose, and were involved in biofilm formation and cell-cell aggregation.
Collapse
|
82
|
Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 2015; 38:293-9. [DOI: 10.1016/j.syapm.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
83
|
Yan Q, Wang J, Gangiredla J, Cao Y, Martins M, Gopinath GR, Stephan R, Lampel K, Tall BD, Fanning S. Comparative Genotypic and Phenotypic Analysis of Cronobacter Species Cultured from Four Powdered Infant Formula Production Facilities: Indication of Pathoadaptation along the Food Chain. Appl Environ Microbiol 2015; 81:4388-402. [PMID: 25911470 PMCID: PMC4475896 DOI: 10.1128/aem.00359-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022] Open
Abstract
Cronobacter species are opportunistic pathogens commonly found in the environment. Among the seven Cronobacter species, Cronobacter sakazakii sequence type 4 (ST-4) is predominantly associated with recorded cases of infantile meningitis. This study reports on a 26-month powdered infant formula (PIF) surveillance program in four production facilities located in distinct geographic regions. The objective was to identify the ST(s) in PIF production environments and to investigate the phenotypic features that support their survival. Of all 168 Cronobacter isolates, 133 were recovered from a PIF production environment, 31 were of clinical origin, and 4 were laboratory type strains. Sequence type 1 (n = 84 isolates; 63.9%) was the dominant type in PIF production environments. The majority of these isolates clustered with an indistinguishable pulsotype and persisted for at least an 18-month period. Moreover, DNA microarray results identified two phylogenetic lineages among ST-4 strains tested. Thereafter, the ST-1 and -4 isolates were phenotypically compared. Differences were noted based on the phenotypes expressed by these isolates. The ST-1 PIF isolates produced stronger biofilms at both 28°C and 37°C, while the ST-4 clinical isolates exhibited greater swimming activity and increased binding to Congo red dye. Given the fact that PIF is a low-moisture environment and that the clinical environment provides for an interaction between the pathogen and its host, these differences may be consistent with a form of pathoadaptation. These findings help to extend our current understanding of the epidemiology and ecology of Cronobacter species in PIF production environments.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Juan Wang
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Jayanthi Gangiredla
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, OARSA, Silver Spring, Maryland, USA
| | - Yu Cao
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marta Martins
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gopal R Gopinath
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, OARSA, Silver Spring, Maryland, USA
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Keith Lampel
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, OARSA, Silver Spring, Maryland, USA
| | - Ben D Tall
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, OARSA, Silver Spring, Maryland, USA
| | - Séamus Fanning
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
84
|
Fehr A, Eshwar AK, Neuhauss SCF, Ruetten M, Lehner A, Vaughan L. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis. Emerg Microbes Infect 2015; 4:e29. [PMID: 26060602 PMCID: PMC4451267 DOI: 10.1038/emi.2015.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 11/22/2022]
Abstract
Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827T, a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 104 CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo.
Collapse
Affiliation(s)
- Alexander Fehr
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Maja Ruetten
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| |
Collapse
|
85
|
Xu X, Li C, Wu Q, Zhang J, Huang J, Yang G. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int J Food Microbiol 2015; 204:17-23. [PMID: 25828706 DOI: 10.1016/j.ijfoodmicro.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
Abstract
Cronobacter spp. are foodborne pathogens that cause rare but life-threatening diseases in neonates and infants; they can also cause disease in adults. Cronobacter spp. contamination of ready-to-eat (RTE) foods has been reported previously. However, to date, the prevalence and contamination levels of these bacteria in RTE foods in China have not yet been determined. Therefore, the aim of this study was to investigate the prevalence of Cronobacter spp. in RTE foods marketed in China. Two-hundred and eighty RTE food samples were collected from different producers and retailers and analyzed using quantitative methods. The isolates obtained were identified to the species level based on fusA sequences, and were subtyped using a PCR-based serotyping technique. Selected isolates were further characterized by multilocus sequence typing (MLST) and antimicrobial sensitivity determination. Of 280 samples tested, 52 (18.6%) were positive for Cronobacter spp. The contamination levels were less than 110 MPN/g for 78.8% (41/52) of the samples. The results of the O-antigen serotyping for 111 isolates showed that Cronobacter sakazakii serogroup O2 (28 isolates) was the most prevalent serotype. MLST analyses produced 41 sequence types (STs), including 20 novel STs. ST8 was the most prevalent ST (9 isolates) followed by ST4 (5 isolates). Antimicrobial sensitivity testing showed that 84.5% and 46.5% of the isolates were resistant to penicillin G and cephalothin, respectively; in contrast, all of the tested isolates were susceptible to cefotaxime, ciprofloxacin, tetracycline, and nalidixic acid. To the best of our knowledge, this is the first report on Cronobacter spp. prevalence in RTE foods in China, and the findings of our study nonetheless suggested that Cronobacter spp. contamination of Chinese RTE foods poses a potential risk for the consumer. Thus, the study highlights the significance of developing more effective control strategies during the manufacturing process.
Collapse
Affiliation(s)
- Xiaoke Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Chengsi Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Jiahui Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Guangzhu Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Public Laboratory for Applied and New Technology of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| |
Collapse
|
86
|
Shashkov AS, Wang M, Turdymuratov EM, Hu S, Arbatsky NP, Guo X, Wang L, Knirel YA. Structural and genetic relationships of closely related O-antigens of Cronobacter spp. and Escherichia coli: C. sakazakii G2594 (serotype O4)/E. coli O103 and C. malonaticus G3864 (serotype O1)/E. coli O29. Carbohydr Res 2015; 404:124-31. [DOI: 10.1016/j.carres.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
|
87
|
Influence of FkpA variants on survival and replication of Cronobacter spp. in human macrophages. Res Microbiol 2015; 166:186-95. [PMID: 25724920 DOI: 10.1016/j.resmic.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/21/2022]
Abstract
Members of the genus Cronobacter are responsible for cases of meningitis and bacteremia with high fatality rates in neonates. Macrophage uptake of invading microbes is an innate process, and it has been proposed that macrophage infectivity potentiator (Mip) like proteins enhance the ability of pathogens to survive within macrophages. Cronobacter harbor the mip-like gene fkpA, but its role in intracellular survival of these bacteria in human macrophages has not yet been studied. Application of gentamicin exclusion assays and human THP-1 macrophage cells revealed significant differences in the capablility of Cronobacter species to survive and replicate within macrophages. Analysis to the amino acid level revealed both length and sequence variations in FkpA proteins among species. In this study, we addressed the possible influence of FkpA variants in intracellular survival of Cronobacter spp. in human macrophages, by knocking out the fkpA genes in two different Cronobacter strains and subsequent complementation with variants of the fkpA genes. Our results provide strong evidence that, in Cronobacter spp., FkpA must be considered a virulence factor, but its influence on macrophage survival and replication varies among strains and/or species due to the presence of amino acid variations.
Collapse
|
88
|
Jackson EE, Masood N, Ibrahim K, Urvoy N, Hariri S, Forsythe SJ. Description of Siccibacter colletis sp. nov., a novel species isolated from plant material, and emended description of Siccibacter turicensis. Int J Syst Evol Microbiol 2015; 65:1335-1341. [PMID: 25667396 DOI: 10.1099/ijs.0.000108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A re-evaluation of the taxonomic position of two strains, 1383(T) and 2249, isolated from poppy seeds and tea leaves, which had been identified as Siccibacter turicensis (formerly Cronobacter zurichensis ), was carried out. The analysis included phenotypic characterization, 16S rRNA gene sequencing, multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, fusA, glnS, gyrB and infB; 2034 bp) and ribosomal MLSA (53 loci; 22 511 bp). 16S rRNA gene sequence analysis and MLSA showed that the strains formed an independent phylogenetic lineage, with Siccibacter turicensis LMG 23730(T) as the closest neighbour. Average nucleotide identity analysis and phenotypic analysis confirmed that these strains represent a novel species, for which the name Siccibacter colletis sp. nov. is proposed. The type strain is 1383(T) ( = NCTC 14934(T) = CECT 8567(T) = LMG 28204(T)). An emended description of Siccibacter turicensis is also provided.
Collapse
Affiliation(s)
- Emily E Jackson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Naqash Masood
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Khaled Ibrahim
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Noémie Urvoy
- Université Paris Est Créteil, Département Génie Biologique, 61 Avenue du Général de Gaulle, 94000 Creteil, France
| | - Sumyya Hariri
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Stephen J Forsythe
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
89
|
Feeney A, Kropp KA, O’Connor R, Sleator RD. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes 2015; 5:711-8. [PMID: 25562731 PMCID: PMC4615781 DOI: 10.4161/19490976.2014.983774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.
Collapse
Affiliation(s)
- Audrey Feeney
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Kai A Kropp
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roxana O’Connor
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland,Correspondence to: Roy D Sleator;
| |
Collapse
|
90
|
|
91
|
Tall BD, Gangiredla J, Gopinath GR, Yan Q, Chase HR, Lee B, Hwang S, Trach L, Park E, Yoo Y, Chung T, Jackson SA, Patel IR, Sathyamoorthy V, Pava-Ripoll M, Kotewicz ML, Carter L, Iversen C, Pagotto F, Stephan R, Lehner A, Fanning S, Grim CJ. Development of a Custom-Designed, Pan Genomic DNA Microarray to Characterize Strain-Level Diversity among Cronobacter spp. Front Pediatr 2015; 3:36. [PMID: 25984509 PMCID: PMC4415424 DOI: 10.3389/fped.2015.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/08/2015] [Indexed: 11/13/2022] Open
Abstract
Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species:Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite toward the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas.
Collapse
Affiliation(s)
- Ben Davies Tall
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Gopal R Gopinath
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Qiongqiong Yan
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland ; WHO Collaborating Centre for Cronobacter , Dublin , Ireland
| | - Hannah R Chase
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Boram Lee
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Seongeun Hwang
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Larisa Trach
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Eunbi Park
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - YeonJoo Yoo
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - TaeJung Chung
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Scott A Jackson
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Isha R Patel
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Venugopal Sathyamoorthy
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Monica Pava-Ripoll
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , College Park, MD , USA
| | - Michael L Kotewicz
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Laurenda Carter
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| | - Carol Iversen
- College of Life Sciences, University of Dundee , Dundee , UK
| | - Franco Pagotto
- Food Directorate, Bureau of Microbial Hazards/Health Canada , Ottawa, ON , Canada
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich , Zurich , Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich , Zurich , Switzerland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland ; WHO Collaborating Centre for Cronobacter , Dublin , Ireland
| | - Christopher J Grim
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration , Laurel, MD , USA
| |
Collapse
|
92
|
Yan Q, Fanning S. Strategies for the identification and tracking of cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr 2015; 3:38. [PMID: 26000266 PMCID: PMC4419663 DOI: 10.3389/fped.2015.00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023] Open
Abstract
Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD-Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
93
|
Forsythe SJ, Dickins B, Jolley KA. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics 2014; 15:1121. [PMID: 25515150 PMCID: PMC4377842 DOI: 10.1186/1471-2164-15-1121] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/11/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections RESULTS Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. CONCLUSIONS The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
Collapse
Affiliation(s)
- Stephen J Forsythe
- />School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Benjamin Dickins
- />School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Keith A Jolley
- />Department of Zoology, University of Oxford, Oxford, OX1 3PS UK
| |
Collapse
|