51
|
Leitão AL, Enguita FJ. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiol Res 2014; 169:652-65. [PMID: 24636745 DOI: 10.1016/j.micres.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| |
Collapse
|
52
|
Liao X, Fang W, Lin L, Lu HL, Leger RJS. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 2013; 8:e78118. [PMID: 24205119 PMCID: PMC3804458 DOI: 10.1371/journal.pone.0078118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
Abstract
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (ΔMrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.
Collapse
Affiliation(s)
- Xinggang Liao
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangcai Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
53
|
Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:258. [PMID: 23908658 PMCID: PMC3726867 DOI: 10.3389/fpls.2013.00258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/25/2013] [Indexed: 05/03/2023]
Abstract
Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and an N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergence soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial organism to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12's agrochemically important traits.
Collapse
Affiliation(s)
- David J. Studholme
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Beverley Harris
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Kate Le Cocq
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Rebecca Winsbury
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Venura Perera
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Lauren Ryder
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Jane L. Ward
- Plant Biology and Crop Science, Rothamsted ResearchHarpenden, UK
| | - Michael H. Beale
- Plant Biology and Crop Science, Rothamsted ResearchHarpenden, UK
| | - Chris R. Thornton
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Murray Grant
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| |
Collapse
|
54
|
PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013; 14:138. [PMID: 23445374 PMCID: PMC3618310 DOI: 10.1186/1471-2164-14-138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/23/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
Collapse
|
55
|
Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:105-29. [PMID: 23915132 DOI: 10.1146/annurev-phyto-082712-102353] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India.
| | | | | | | | | |
Collapse
|
56
|
|
57
|
Boettger D, Hertweck C. Molecular Diversity Sculpted by Fungal PKS-NRPS Hybrids. Chembiochem 2012; 14:28-42. [DOI: 10.1002/cbic.201200624] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 12/22/2022]
|
58
|
Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 2012; 79:18-31. [PMID: 23064341 DOI: 10.1128/aem.02339-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established. After 96 h of cultivation, 18 different iron chelators were detected. Four of those (dimerum acid, fusigen, coprogen, and ferricrocin) were identified by measuring authentic standards. cis-Fusarinine, fusarinine A and B, and des-diserylglycylferrirhodin were annotated based on high-accuracy mass spectral analysis. In total, at least 10 novel iron-containing metabolites of the hydroxamate type were found. On average Trichoderma spp. produced 12 to 14 siderophores, with 6 common to all species tested. The highest number (15) of siderophores was detected for the most common environmental opportunistic and strongly fungicidic species, Trichoderma harzianum, which, however, did not have any unique compounds. The tropical species T. reesei had the most distinctive pattern, producing one unique siderophore (cis-fusarinine) and three others that were present only in T. harzianum and not in other species. The diversity of siderophores did not directly correlate with the antifungal potential of the species tested. Our data suggest that the high diversity of siderophores produced by Trichoderma spp. might be the result of further modifications of the nonribosomal peptide synthetase (NRPS) products and not due to diverse NRPS-encoding genes.
Collapse
|
59
|
Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 2012; 52:522-9. [PMID: 24293705 DOI: 10.1007/s12088-012-0308-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.
Collapse
|
60
|
Boettger D, Bergmann H, Kuehn B, Shelest E, Hertweck C. Evolutionary Imprint of Catalytic Domains in Fungal PKS-NRPS Hybrids. Chembiochem 2012; 13:2363-73. [DOI: 10.1002/cbic.201200449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 12/13/2022]
|
61
|
Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M. Special issue: Trichoderma--from basic Biology to Biotechnology. MICROBIOLOGY-SGM 2012; 158:1-2. [PMID: 22210803 DOI: 10.1099/mic.0.056424-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gary E Harman
- Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, USA
| | | | | | - Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale (ArBoPaVe), Università di Napoli Federico II, Portici, Napoli, Italy
| |
Collapse
|
62
|
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (Reading) 2012; 158:35-45. [DOI: 10.1099/mic.0.053629-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Benjamin A. Horwitz
- Department of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|