51
|
Gandon S, Vale PF. The evolution of resistance against good and bad infections. J Evol Biol 2013; 27:303-12. [PMID: 24329755 DOI: 10.1111/jeb.12291] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 12/26/2022]
Abstract
Opportunities for genetic exchange are abundant between bacteria and foreign genetic elements (FGEs) such as conjugative plasmids, transposable elements and bacteriophages. The genetic novelty that may arise from these forms of genetic exchange is potentially beneficial to bacterial hosts, but there are also potential costs, which may be considerable in the case of phage infection. Some bacterial resistance mechanisms target both beneficial and deleterious forms of genetic exchange. Using a general epidemiological model, we explored under which conditions such resistance mechanisms may evolve. We considered a population of hosts that may be infected by FGEs that either confer a benefit or are deleterious to host fitness, and we analysed the epidemiological and evolutionary outcomes of resistance evolving under different cost/benefit scenarios. We show that the degree of co-infection between these two types of infection is particularly important in determining the evolutionarily stable level of host resistance. We explore these results using the example of CRISPR-Cas, a form of bacterial immunity that targets a variety of FGEs, and we show the potential role of bacteriophage infection in selecting for resistance mechanisms that in turn limit the acquisition of plasmid-borne antibiotic resistance. Finally, beyond microbes, we discuss how endosymbiotic associations may have shaped the evolution of host immune responses to pathogens.
Collapse
Affiliation(s)
- S Gandon
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE-UMR 5175, Montpellier, France
| | | |
Collapse
|
53
|
Dang TND, Zhang L, Zöllner S, Srinivasan U, Abbas K, Marrs CF, Foxman B. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. INFECTION GENETICS AND EVOLUTION 2013; 19:212-8. [DOI: 10.1016/j.meegid.2013.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 11/26/2022]
|
54
|
Ivančić-Baće I, Radovčić M, Bočkor L, Howard JL, Bolt EL. Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises RNaseHI. RNA Biol 2013; 10:770-8. [PMID: 23406879 PMCID: PMC3737335 DOI: 10.4161/rna.23876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 12/25/2022] Open
Abstract
Cas3 nuclease-helicase is part of CRISPR immunity systems in many bacteria and archaea. In type I CRISPR, Cas3 nuclease degrades invader DNA that has been base-paired to crRNA as an R-loop within a "Cascade" complex. An R-loop is a DNA-RNA hybrid that includes a displaced single-strand DNA loop. Purified Cas3 from E. coli and the archaeon M. thermautrophicus can process R-loops without DNA/RNA sequence specificity and without Cascade. This has potential to affect other aspects of microbial biology that involve R-loops. Regulatory RNAs and host cell proteins modulate replication of ColE1 plasmids (e.g., pUC) from R-loop primers. We observed that Cas3 could override endogenous control of a ColE1 replicon, stimulating uncontrolled ("runaway") replication and resulting in much higher plasmid yields. This effect was absent when using helicase-defective Cas3 (Cas3 (K320L) ) or a non-ColE1 plasmid, and was dependent on RNaseHI. Cas3 also promoted formation of plasmid multimers or concatemers, a phenotype consistent with deregulated ColE1 replication and typical of cells lacking RNaseHI. These effects of Cas3 on ColE1 plasmids are inconsistent with it unwinding R-loops in vivo, at least in this assay. We discuss a model of how Cas3 might be able to regulate RNA molecules in vivo, unless it is targeted to CRISPR defense by Cascade, or kept in check by RecG and RNaseHI.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Faculty of Science; Department of Molecular Biology; University of Zagreb; Zagreb, Croatia
| | - Marin Radovčić
- Faculty of Science; Department of Molecular Biology; University of Zagreb; Zagreb, Croatia
| | - Luka Bočkor
- Faculty of Science; Department of Molecular Biology; University of Zagreb; Zagreb, Croatia
| | | | - Edward L. Bolt
- School of Biomedical Sciences, University of Nottingham, Nottingham UK
| |
Collapse
|
55
|
Savitskaya E, Semenova E, Dedkov V, Metlitskaya A, Severinov K. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol 2013; 10:716-25. [PMID: 23619643 PMCID: PMC3737330 DOI: 10.4161/rna.24325] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 12/26/2022] Open
Abstract
In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca. 200,000 spacers acquired during E. coli type I-E CRISPR/Cas-driven plasmid elimination were analyzed. Analysis of positions of plasmid protospacers from which newly acquired spacers have been derived is inconsistent with spacer acquisition machinery sliding along the target DNA as the primary mechanism responsible for strand bias during primed spacer acquisition. Most protospacers that served as donors of newly acquired spacers during primed spacer acquisition had an AAG protospacer adjacent motif, PAM. Yet, the introduction of multiple AAG sequences in the target DNA had no effect on the choice of protospacers used for adaptation, which again is inconsistent with the sliding mechanism. Despite a strong preference for an AAG PAM during CRISPR adaptation, the AAG (and CTT) triplets do not appear to be avoided in known E. coli phages. Likewise, PAM sequences are not avoided in Streptococcus thermophilus phages, indicating that CRISPR/Cas systems may not have been a strong factor in shaping host-virus interactions.
Collapse
Affiliation(s)
- Ekaterina Savitskaya
- Institute of Molecular Genetics of the Russian Academy of Sciences; Moscow, Russia
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute for Microbiology; Rutgers, The State University of New Jersey; Piscataway, NJ USA
| | - Vladimir Dedkov
- Central Research Institute of Epidemiology; Russian Inspectorate for Protection of Consumer Right and Human Welfare; Moscow, Russia
| | | | - Konstantin Severinov
- Institute of Molecular Genetics of the Russian Academy of Sciences; Moscow, Russia
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia
- Waksman Institute for Microbiology; Rutgers, The State University of New Jersey; Piscataway, NJ USA
- Department of Molecular Biology and Biochemistry; Rutgers, The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
56
|
Arslan Z, Stratmann T, Wurm R, Wagner R, Schnetz K, Pul Ü. RcsB-BglJ-mediated activation of Cascade operon does not induce the maturation of CRISPR RNAs in E. coli K12. RNA Biol 2013; 10:708-15. [PMID: 23392250 PMCID: PMC3737329 DOI: 10.4161/rna.23765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Prokaryotic immunity against foreign nucleic acids mediated by clustered, regularly interspaced, short palindromic repeats (CRISPR) depends on the expression of the CRISPR-associated (Cas) proteins and the formation of small CRISPR RNAs (crRNAs). The crRNA-loaded Cas ribonucleoprotein complexes convey the specific recognition and inactivation of target nucleic acids. In E. coli K12, the maturation of crRNAs and the interference with target DNA is performed by the Cascade complex. The transcription of the Cascade operon is tightly repressed through H-NS-dependent inhibition of the Pcas promoter. Elevated levels of the LysR-type regulator LeuO induce the Pcas promoter and concomitantly activate the CRISPR-mediated immunity against phages. Here, we show that the Pcas promoter can also be induced by constitutive expression of the regulator BglJ. This activation is LeuO-dependent as heterodimers of BglJ and RcsB activate leuO transcription. Each transcription factor, LeuO or BglJ, induced the transcription of the Cascade genes to comparable amounts. However, the maturation of the crRNAs was activated in LeuO but not in BglJ-expressing cells. Studies on CRISPR promoter activities, transcript stabilities, crRNA processing and Cascade protein levels were performed to answer the question why crRNA maturation is defective in BglJ-expressing cells. Our results demonstrate that the activation of Cascade gene transcription is necessary but not sufficient to turn on the CRISPR-mediated immunity and suggest a more complex regulation of the type I-E CRISPR-Cas system in E. coli.
Collapse
Affiliation(s)
- Zihni Arslan
- Molecular Biology of Bacteria; Heinrich-Heine University; Düsseldorf, Germany
| | | | - Reinhild Wurm
- Molecular Biology of Bacteria; Heinrich-Heine University; Düsseldorf, Germany
| | - Rolf Wagner
- Molecular Biology of Bacteria; Heinrich-Heine University; Düsseldorf, Germany
| | - Karin Schnetz
- Institute for Genetics; University of Cologne; Cologne, Germany
| | - Ümit Pul
- Molecular Biology of Bacteria; Heinrich-Heine University; Düsseldorf, Germany
| |
Collapse
|
57
|
Kong Y, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, Alexander DC, Hao W. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis. Genome Biol Evol 2013; 5:1611-27. [PMID: 23902748 PMCID: PMC3787668 DOI: 10.1093/gbe/evt116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 01/13/2023] Open
Abstract
The study of genetic and phenotypic variation is fundamental for understanding the dynamics of bacterial genome evolution and untangling the evolution and epidemiology of bacterial pathogens. Neisseria meningitidis (Nm) is among the most intriguing bacterial pathogens in genomic studies due to its dynamic population structure and complex forms of pathogenicity. Extensive genomic variation within identical clonal complexes (CCs) in Nm has been recently reported and suggested to be the result of homologous recombination, but the extent to which recombination contributes to genomic variation within identical CCs has remained unclear. In this study, we sequenced two Nm strains of identical serogroup (C) and multi-locus sequence type (ST60), and conducted a systematic analysis with an additional 34 Nm genomes. Our results revealed that all gene content variation between the two ST60 genomes was introduced by homologous recombination at the conserved flanking genes, and 94.25% or more of sequence divergence was caused by homologous recombination. Recombination was found in genes associated with virulence factors, antigenic outer membrane proteins, and vaccine targets, suggesting an important role of homologous recombination in rapidly altering the pathogenicity and antigenicity of Nm. Recombination was also evident in genes of the restriction and modification systems, which may undermine barriers to DNA exchange. In conclusion, homologous recombination can drive both gene content variation and sequence divergence in Nm. These findings shed new light on the understanding of the rapid pathoadaptive evolution of Nm and other recombinogenic bacterial pathogens.
Collapse
Affiliation(s)
- Ying Kong
- Department of Biological Sciences, Wayne State University
| | - Jennifer H. Ma
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
| | - Keisha Warren
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Raymond S.W. Tsang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Donald E. Low
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances B. Jamieson
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David C. Alexander
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|