51
|
Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Cañon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 2014; 30:410-22. [PMID: 25127056 DOI: 10.1016/j.devcel.2014.06.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 11/15/2022]
Abstract
The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.
Collapse
Affiliation(s)
- Teresa Rayon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sergio Menchero
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andres Nieto
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | - Miguel Crespo
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Susana Cañon
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Hiroshi Sasaki
- Institute of Molecular Embryology and Genetics, Department of Cell Fate Control, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Miguel Manzanares
- Stem Cell Biology Program, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
52
|
Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 2014; 394:142-55. [PMID: 24997360 DOI: 10.1016/j.ydbio.2014.06.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages.
Collapse
|
53
|
Rivera-Pérez JA, Hadjantonakis AK. The Dynamics of Morphogenesis in the Early Mouse Embryo. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a015867. [PMID: 24968703 DOI: 10.1101/cshperspect.a015867] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARYOver the past two decades, our understanding of mouse development from implantation to gastrulation has grown exponentially with an upsurge of genetic, molecular, cellular, and morphogenetic information. New discoveries have exalted the role of extraembryonic tissues in orchestrating embryonic patterning and axial specification. At the same time, the identification of unexpected morphogenetic processes occurring during mouse gastrulation has challenged established dogmas and brought new insights into the mechanisms driving germ layer formation. In this article, we summarize the key findings that have reinvigorated the contemporary view of early postimplantation mammalian development.
Collapse
Affiliation(s)
- Jaime A Rivera-Pérez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
54
|
Kojima Y, Tam OH, Tam PPL. Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 2014; 34:65-75. [PMID: 24954643 DOI: 10.1016/j.semcdb.2014.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/29/2023]
Abstract
The timing of developmental events during early mouse development has been investigated in embryos that have been subject to experimental manipulation of cell number and tissue mass. These phenomenological studies revealed that the timing of preimplantation events, such as compaction, formation of blastocyst cavity and lineage allocation is correlated with the rounds of cleavage division or DNA replication of the blastomeres. Timing of postimplantation processes, such as formation of proamniotic cavity and onset of gastrulation is sensitive to cell number and probably the tissue mass, which may be measured by a mechanosensory signaling mechanism. Developmental changes in these two physical attributes are correlated with the cell proliferative activity and the growth trajectory of the whole embryo prior to the transit to organogenesis. During organogenesis, timing of morphogenesis appears to be regulated by individual devices that could be uncoupled during compensatory growth. Insights of the timing mechanism may be gleaned from the analysis of genomic activity associated with the transition through developmental milestones.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Oliver H Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
57
|
Torday JS. On the evolution of development. TRENDS IN DEVELOPMENTAL BIOLOGY 2014; 8:17-37. [PMID: 25729239 PMCID: PMC4339279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Perhaps development is more than just morphogenesis. We now recognize that the conceptus expresses epigenetic marks that heritably affect it phenotypically, indicating that the offspring are to some degree genetically autonomous, and that ontogeny and phylogeny may coordinately determine the fate of such marks. This scenario mechanistically links ecology, ontogeny and phylogeny together as an integrated mechanism for evolution for the first time. As a functional example, the Parathyroid Hormone-related Protein (PTHrP) signaling duplicated during the Phanerozoic water-land transition. The PTHrP signaling pathway was critical for the evolution of the skeleton, skin barrier, and lung function, based on experimental evidence, inferring that physiologic stress can profoundly affect adaptation through internal selection, giving seminal insights to how and why vertebrates were able to evolve from water to land. By viewing evolution from its inception in unicellular organisms, driven by competition between pro- and eukaryotes, the emergence of complex biologic traits from the unicellular cell membrane offers a novel way of thinking about the process of evolution from its beginnings, rather than from its consequences as is traditionally done. And by focusing on the epistatic balancing mechanisms for calcium and lipid homeostasis, the evolution of unicellular organisms, driven by competition between pro- and eukaryotes, gave rise to the emergence of complex biologic traits derived from the unicellular plasma lemma, offering a unique way of thinking about the process of evolution. By exploiting the cellular-molecular mechanisms of lung evolution as ontogeny and phylogeny, the sequence of events for the evolution of the skin, kidney and skeleton become more transparent. This novel approach to the evolution question offers equally novel insights to the primacy of the unicellular state, hologenomics and even a priori bioethical decisions.
Collapse
|
59
|
Leseva M, Santostefano KE, Rosenbluth AL, Hamazaki T, Terada N. E2f6-mediated repression of the meiotic Stag3 and Smc1β genes during early embryonic development requires Ezh2 and not the de novo methyltransferase Dnmt3b. Epigenetics 2013; 8:873-84. [PMID: 23880518 PMCID: PMC3883790 DOI: 10.4161/epi.25522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/12/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
The E2f6 transcriptional repressor is an E2F-family member essential for the silencing of a group of meiosis-specific genes in somatic tissues. Although E2f6 has been shown to associate with both polycomb repressive complexes (PRC) and the methyltransferase Dnmt3b, the cross-talk between these repressive machineries during E2f6-mediated gene silencing has not been clearly demonstrated yet. In particular, it remains largely undetermined when and how E2f6 establishes repression of meiotic genes during embryonic development. We demonstrate here that the inactivation of a group of E2f6 targeted genes, including Stag3 and Smc1β, first occurs at the transition from mouse embryonic stem cells (ESCs) to epiblast stem cells (EpiSCs), which represent pre- and post-implantation stages, respectively. This process was accompanied by de novo methylation of their promoters. Of interest, despite a clear difference in DNA methylation status, E2f6 was similarly bound to the proximal promoter regions both in ESCs and EpiSCs. Neither E2f6 nor Dnmt3b overexpression in ESCs decreased meiotic gene expression or increased DNA methylation, indicating that additional factors are required for E2f6-mediated repression during the transition. When the SET domain of Ezh2, a core subunit of the PRC2 complex, was deleted, however, repression of Stag3 and Smc1β during embryoid body differentiation was largely impaired, indicating that the event required the enzymatic activity of Ezh2. In addition, repression of Stag3 and Smc1β occurred in the absence of Dnmt3b. The data presented here suggest a primary role of PRC2 in E2f6-mediated gene silencing of the meiotic genes.
Collapse
Affiliation(s)
- Milena Leseva
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| | | | - Amy L Rosenbluth
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| | - Takashi Hamazaki
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
- Department of Pediatrics; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Naohiro Terada
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| |
Collapse
|
60
|
Wallingford MC, Angelo JR, Mager J. Morphogenetic analysis of peri-implantation development. Dev Dyn 2013; 242:1110-20. [PMID: 23728800 DOI: 10.1002/dvdy.23991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/07/2013] [Accepted: 05/19/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although successful implantation is required for development in placental mammals, the molecular and morphogenetic events that define peri-implantation remain largely unexplored. RESULTS Here we present detailed morphological and immunohistochemical analysis of mouse embryos between embryonic day 3.75 and 5.25 of gestation, during the implantation process in vivo. We examined expression patterns of key transcription factors (Sox2, Oct4, Nanog, Cdx2, Gata6, Sox17, and Yy1) during pre- and postimplantation development. Additionally, we examined morphogenetic changes through analysis of ZO-1, Laminin, and E-Cadherin localization. The results presented reveal novel changes in gene expression and morphogenetic events during peri-implantation in utero. Here we show: (1) molecular and morphological changes in primitive endoderm cells as they transition from a salt and pepper distribution to a sheet covering the inner cell mass; (2) tissue-specific GATA6 levels; and (3) a striking pattern of SOX17 that is suggestive of a functional role either directing or permitting implantation at specific sites in the uterine epithelium. CONCLUSIONS A growing number of knockout mice display peri-implantation lethality, and the data presented herein identify key morphogenetic landmarks that can be used to characterize mutant phenotypes, as well as further our basic understanding of peri-implantation development.
Collapse
Affiliation(s)
- Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|