51
|
Sathianathan A, Ravichandran P, Lippi JM, Cohen L, Messina A, Shaju S, Swede MJ, Ginsburg DS. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II. J Biol Chem 2016; 291:21195-21207. [PMID: 27535225 DOI: 10.1074/jbc.m116.718742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
NuA4 is the only essential lysine acetyltransferase complex in Saccharomyces cerevisiae, where it has been shown to stimulate transcription initiation and elongation. Interaction with nucleosomes is stimulated by histone H3 Lys-4 and Lys-36 methylation, but the mechanism of this interaction is unknown. Eaf3, Eaf5, and Eaf7 form a subcomplex within NuA4 that may also function independently of the lysine acetyltransferase complex. The Eaf3/5/7 complex and the Rpd3C(S) histone deacetylase complex have both been shown to bind di- and trimethylated histone H3 Lys-36 stimulated by Eaf3. We investigated the role of the Eaf3/5/7 subcomplex in NuA4 binding to nucleosomes. Different phenotypes of eaf3/5/7Δ mutants support functions for the complex as both part of and independent of NuA4. Further evidence for Eaf3/5/7 within NuA4 came from mutations in the subcomplex leading to ∼40% reductions in H4 acetylation in bulk histones, probably caused by binding defects to both nucleosomes and RNA polymerase II. In vitro binding assays showed that Eaf3/5/7 specifically stimulates NuA4 binding to di- and trimethylated histone H3 Lys-36 and that this binding is important for NuA4 occupancy in transcribed ORFs. Consistent with the role of NuA4 in stimulating transcription elongation, loss of EAF5 or EAF7 resulted in a processivity defect. Overall, these results reveal the function of Eaf3/5/7 within NuA4 to be important for both NuA4 and RNA polymerase II binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marci J Swede
- Health Sciences Departments, LIU Post, Brookville, New York 11548
| | | |
Collapse
|
52
|
Combined Interactions of Plant Homeodomain and Chromodomain Regulate NuA4 Activity at DNA Double-Strand Breaks. Genetics 2015; 202:77-92. [PMID: 26564157 DOI: 10.1534/genetics.115.184432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most threatening lesions to the integrity of genomes. In yeast Saccharomyces cerevisiae, NuA4, a histone acetylation complex, is recruited to DSBs, wherein it acetylates histones H2A and H4, presumably relaxing the chromatin and allowing access to repair proteins. Two subunits of NuA4, Yng2 and Eaf3, can interact in vitro with methylated H3K4 and H3K36 via their plant homeodomain (PHD) and chromodomain. However, the roles of the two domains and how they interact in a combinatorial fashion are still poorly characterized. In this study, we generated mutations in the PHD and chromodomain that disrupt their interaction with methylated H3K4 and H3K36. We demonstrate that the combined mutations in both the PHD and chromodomain impair the NuA4 recruitment, reduce H4K12 acetylation at the DSB site, and confer sensitivity to bleomycin that induces DSBs. In addition, the double mutant cells are defective in DSB repair as judged by Southern blot and exhibit prolonged activation of phospho-S129 of H2A. Cells harboring the H3K4R, H3K4R, K36R, or set1Δ set2Δ mutant that disrupts H3K4 and H3K36 methylation also show very similar phenotypes to the PHD and chromodomain double mutant. Our results suggest that multivalent interactions between the PHD, chromodomain, and methylated H3K4 and H3K36 act in a combinatorial manner to recruit NuA4 and regulate the NuA4 activity at the DSB site.
Collapse
|
53
|
Ravens S, Yu C, Ye T, Stierle M, Tora L. Tip60 complex binds to active Pol II promoters and a subset of enhancers and co-regulates the c-Myc network in mouse embryonic stem cells. Epigenetics Chromatin 2015; 8:45. [PMID: 26550034 PMCID: PMC4636812 DOI: 10.1186/s13072-015-0039-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023] Open
Abstract
Background Tip60 (KAT5) is the histone acetyltransferase (HAT) of the mammalian Tip60/NuA4 complex. While Tip60 is important for early mouse development and mouse embryonic stem cell (mESC) pluripotency, the function of Tip60 as reflected in a genome-wide context is not yet well understood. Results Gel filtration of nuclear mESCs extracts indicate incorporation of Tip60 into large molecular complexes and exclude the existence of large quantities of “free” Tip60 within the nuclei of ESCs. Thus, monitoring of Tip60 binding to the genome should reflect the behaviour of Tip60-containing complexes. The genome-wide mapping of Tip60 binding in mESCs by chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) shows that the Tip60 complex is present at promoter regions of predominantly active genes that are bound by RNA polymerase II (Pol II) and contain the H3K4me3 histone mark. The coactivator HAT complexes, Tip60- and Mof (KAT8)-containing (NSL and MSL), show a global overlap at promoters, whereas distinct binding profiles at enhancers suggest different regulatory functions of each essential HAT complex. Interestingly, Tip60 enrichment peaks at about 200 bp downstream of the transcription start sites suggesting a function for the Tip60 complexes in addition to histone acetylation. The comparison of genome-wide binding profiles of Tip60 and c-Myc, a somatic cell reprogramming factor that binds predominantly to active genes in mESCs, demonstrate that Tip60 and c-Myc co-bind at 50–60 % of their binding sites. We also show that the Tip60 complex binds to a subset of bivalent developmental genes and defines a set of mESC-specific enhancer as well as super-enhancer regions. Conclusions Our study suggests that the Tip60 complex functions as a global transcriptional co-activator at most active Pol II promoters, co-regulates the ESC-specific c-Myc network, important for ESC self-renewal and cell metabolism and acts at a subset of active distal regulatory elements, or super enhancers, in mESCs. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarina Ravens
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Changwei Yu
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Tao Ye
- Microarrays and Deep Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, UdS, BP 10142, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Matthieu Stierle
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| | - Laszlo Tora
- Cellular Signalling and Nuclear Dynamics Programme, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg (UdS), BP 10142, 1 Rue Laurent Fries, CU de Strasbourg, 67404 Illkirch Cedex, France
| |
Collapse
|
54
|
Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes. Biochem J 2015; 472:239-48. [PMID: 26420880 DOI: 10.1042/bj20150654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/29/2015] [Indexed: 12/21/2022]
Abstract
We have a limited understanding of the site specificity of multi-subunit lysine acetyltransferase (KAT) complexes for histone-based substrates, especially in regards to the different complexes formed during nucleosome assembly. Histone complexes could be a major factor in determining the acetylation specificity of KATs. In the present study, we utilized a label-free quantitative MS-based method to determine the site specificity of acetylation catalysed by Piccolo NuA4 on (H3/H4)2 tetramer, tetramer bound DNA (tetrasome) and nucleosome core particle (NCP). Our results show that Piccolo NuA4 can acetylate multiple lysine residues on these three histone complexes, of which NCP is the most favourable, (H3/H4)2 tetramer is the second and tetrasome is the least favourable substrate for Piccolo NuA4 acetylation. Although Piccolo NuA4 preferentially acetylates histone H4 (H4K12), the site specificity of the enzyme is altered with different histone complex substrates. Our results show that before nucleosome assembly is complete, H3K14 specificity is almost equal to that of H4K12 and DNA-histone interactions suppress the acetylation ability of Piccolo NuA4. These data suggest that the H2A/H2B dimer could play a critical role in the increase in acetylation specificity of Piccolo NuA4 for NCP. This demonstrates that histone complex formation can alter the acetylation preference of Piccolo NuA4. Such findings provide valuable insight into regulating Piccolo NuA4 specificity by modulating chromatin dynamics and in turn manipulating gene expression.
Collapse
|
55
|
The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Mol Cell Biol 2015; 35:3714-25. [PMID: 26303527 DOI: 10.1128/mcb.00298-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylation is a dynamic posttranslational modification that contributes to chromatin-regulated processes, including DNA replication, repair, recombination, and gene expression. Acetylation is controlled by complexes containing opposing lysine and histone acetyltransferase (KAT and HAT) and deacetylase (KDAC and HDAC) activities. The essential MYST family Esa1 KAT acetylates core histones and many nonhistone substrates. Phenotypes of esa1 mutants include transcriptional silencing and activation defects, impaired growth at high temperatures, and sensitivity to DNA damage. The KDAC Rpd3 was previously identified as an activity opposing Esa1, as its deletion suppresses growth and silencing defects of esa1 mutants. However, loss of Rpd3 does not suppress esa1 DNA damage sensitivity. In this work, we identified Hos2 as a KDAC counteracting ESA1 in the damage response. Deletion of HOS2 resulted in changes of esa1's transcriptional response upon damage. Further, loss of HOS2 or components of the Set3 complex (Set3C) in which it acts specifically suppressed damage sensitivity and restored esa1 histone H4 acetylation. This rescue was mediated via loss of either Set3C integrity or of its binding to dimethylated histone H3K4. Our results thus add new insight into the interactions of an essential MYST acetyltransferase with diverse deacetylases to respond specifically to environmental and physiological challenges.
Collapse
|
56
|
Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo. Mol Cell Biol 2015; 35:2947-64. [PMID: 26100014 DOI: 10.1128/mcb.01524-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.
Collapse
|
57
|
Eaf1 Links the NuA4 Histone Acetyltransferase Complex to Htz1 Incorporation and Regulation of Purine Biosynthesis. EUKARYOTIC CELL 2015; 14:535-44. [PMID: 25841019 DOI: 10.1128/ec.00004-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022]
Abstract
Proper modulation of promoter chromatin architecture is crucial for gene regulation in order to precisely and efficiently orchestrate various cellular activities. Previous studies have identified the stimulatory effect of the histone-modifying complex NuA4 on the incorporation of the histone variant H2A.Z (Htz1) at the PHO5 promoter (A. Auger, L. Galarneau, M. Altaf, A. Nourani, Y. Doyon, R. T. Utley, D. Cronier, S. Allard, and J. Côté, Mol Cell Biol 28:2257-2270, 2008, http://dx.doi.org/10.1128/MCB.01755-07). In vitro studies with a reconstituted system also indicated an intriguing cross talk between NuA4 and the H2A.Z-loading complex, SWR-C (M. Altaf, A. Auger, J. Monnet-Saksouk, J. Brodeur, S. Piquet, M. Cramet, N. Bouchard, N. Lacoste, R. T. Utley, L. Gaudreau, J. Côté, J Biol Chem 285:15966-15977, 2010, http://dx.doi.org/10.1074/jbc.M110.117069). In this work, we investigated the role of the NuA4 scaffold subunit Eaf1 in global gene expression and genome-wide incorporation of Htz1. We found that loss of Eaf1 affects Htz1 levels mostly at the promoters that are normally highly enriched in the histone variant. Analysis of eaf1 mutant cells by expression array unveiled a relationship between NuA4 and the gene network implicated in the purine biosynthesis pathway, as EAF1 deletion cripples induction of several ADE genes. NuA4 directly interacts with Bas1 activation domain, a key transcription factor of adenine genes. Chromatin immunoprecipitation (ChIP) experiments demonstrate that nucleosomes on the inactive ADE17 promoter are acetylated already by NuA4 and enriched in Htz1. Upon derepression, these poised nucleosomes respond rapidly to activate ADE gene expression in a mechanism likely reminiscent of the PHO5 promoter, leading to nucleosome disassembly. These detailed molecular events depict a specific case of cross talk between NuA4-dependent acetylation and incorporation of histone variant Htz1, presetting the chromatin structure over ADE promoters for subsequent chromatin remodeling and activated transcription.
Collapse
|
58
|
Bennett G, Peterson CL. SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases. DNA Repair (Amst) 2015; 30:38-45. [PMID: 25869823 DOI: 10.1016/j.dnarep.2015.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/19/2022]
Abstract
The DNA damage response to double-strand breaks (DSBs) is critical for cellular viability. Recent work has shown that a host of chromatin regulators are recruited to a DSB, and that they are important for the DNA damage response. However, the functional relationships between different chromatin regulators at DSBs remain unclear. Here we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.X (γH2AX). Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.
Collapse
Affiliation(s)
- Gwendolyn Bennett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01606, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01606, USA.
| |
Collapse
|
59
|
Cheng X, Côté J. A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/TIP60 for nucleosome transactions. Transcription 2015; 5:e995571. [PMID: 25514756 PMCID: PMC4581353 DOI: 10.1080/21541264.2014.995571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Multiple factors are involved in the elongation stage of transcription regulation to ensure the passing of RNA polymerases while preserving appropriate nucleosome structure thereafter. The recently reported trimeric sub-module of NuA4 histone acetyltransferase complex involved in this process provides more insight into the sophisticated modulation of transcription elongation.
Collapse
Affiliation(s)
- Xue Cheng
- a St-Patrick Research Group in Basic Oncology ; Laval University Cancer Research Center and CHU de Quebec Research Center-Oncology Axis ; Hôtel-Dieu de Québec (CHU de Québec); Quebec City , QC Canada
| | | |
Collapse
|
60
|
Affiliation(s)
- Robert K McGinty
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
61
|
Protein acetylation and acetyl coenzyme a metabolism in budding yeast. EUKARYOTIC CELL 2014; 13:1472-83. [PMID: 25326522 DOI: 10.1128/ec.00189-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation.
Collapse
|
62
|
Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res 2014; 42:10960-74. [PMID: 25183522 PMCID: PMC4176166 DOI: 10.1093/nar/gku781] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trimethylation of lysine 36 of histone H3 (H3K36me3) is found to be associated with various transcription events. In Arabidopsis, the H3K36me3 level peaks in the first half of coding regions, which is in contrast to the 3'-end enrichment in animals. The MRG15 family proteins function as 'reader' proteins by binding to H3K36me3 to control alternative splicing or prevent spurious intragenic transcription in animals. Here, we demonstrate that two closely related Arabidopsis homologues (MRG1 and MRG2) are localised to the euchromatin and redundantly ensure the increased transcriptional levels of two flowering time genes with opposing functions, FLOWERING LOCUS C and FLOWERING LOCUS T (FT). MRG2 directly binds to the FT locus and elevates the expression in an H3K36me3-dependent manner. MRG1/2 binds to H3K36me3 with their chromodomain and interact with the histone H4-specific acetyltransferases (HAM1 and HAM2) to achieve a high expression level through active histone acetylation at the promoter and 5' regions of target loci. Together, this study presents a mechanistic link between H3K36me3 and histone H4 acetylation. Our data also indicate that the biological functions of MRG1/2 have diversified from their animal homologues during evolution, yet they still maintain their conserved H3K36me3-binding molecular function.
Collapse
Affiliation(s)
- Yifeng Xu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Jie Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Wan-Yi Wee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
63
|
Abstract
Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| |
Collapse
|
64
|
Rossetto D, Cramet M, Wang AY, Steunou AL, Lacoste N, Schulze JM, Côté V, Monnet-Saksouk J, Piquet S, Nourani A, Kobor MS, Côté J. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 2014; 33:1397-415. [PMID: 24843044 DOI: 10.15252/embj.201386433] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The NuA4 histone acetyltransferase complex is required for gene regulation, cell cycle progression, and DNA repair. Dissection of the 13-subunit complex reveals that the Eaf7 subunit bridges Eaf5 with Eaf3, a H3K36me3-binding chromodomain protein, and this Eaf5/7/3 trimer is anchored to NuA4 through Eaf5. This trimeric subcomplex represents a functional module, and a large portion exists in a native form outside the NuA4 complex. Gene-specific and genome-wide location analyses indicate that Eaf5/7/3 correlates with transcription activity and is enriched over the coding region. In agreement with a role in transcription elongation, the Eaf5/7/3 trimer interacts with phosphorylated RNA polymerase II and helps its progression. Loss of Eaf5/7/3 partially suppresses intragenic cryptic transcription arising in set2 mutants, supporting a role in nucleosome destabilization. On the other hand, loss of the trimer leads to an increase of replication-independent histone exchange over the coding region of transcribed genes. Taken together, these results lead to a model where Eaf5/7/3 associates with elongating polymerase to promote the disruption of nucleosomes in its path, but also their refolding in its wake.
Collapse
Affiliation(s)
- Dorine Rossetto
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Myriam Cramet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Alice Y Wang
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Anne-Lise Steunou
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Nicolas Lacoste
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julia M Schulze
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julie Monnet-Saksouk
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Amine Nourani
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Michael S Kobor
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| |
Collapse
|
65
|
Abstract
Histone acetylation is a key regulatory feature for chromatin that is established by opposing enzymatic activities of lysine acetyltransferases (KATs/HATs) and deacetylases (KDACs/HDACs). Esa1, like its human homolog Tip60, is an essential MYST family enzyme that acetylates histones H4 and H2A and other nonhistone substrates. Here we report that the essential requirement for ESA1 in Saccharomyces cerevisiae can be bypassed upon loss of Sds3, a noncatalytic subunit of the Rpd3L deacetylase complex. By studying the esa1∆ sds3∆ strain, we conclude that the essential function of Esa1 is in promoting the cellular balance of acetylation. We demonstrate this by fine-tuning acetylation through modulation of HDACs and the histone tails themselves. Functional interactions between Esa1 and HDACs of class I, class II, and the Sirtuin family define specific roles of these opposing activities in cellular viability, fitness, and response to stress. The fact that both increased and decreased expression of the ESA1 homolog TIP60 has cancer associations in humans underscores just how important the balance of its activity is likely to be for human well-being.
Collapse
|
66
|
Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TDD, Somervaille TCP. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 2014; 28:1081-91. [PMID: 24166297 PMCID: PMC3998875 DOI: 10.1038/leu.2013.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/21/2023]
Abstract
Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34(+) HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.
Collapse
Affiliation(s)
- Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - James T Lynch
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Filippo Ciceri
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
67
|
Friis RMN, Glaves JP, Huan T, Li L, Sykes BD, Schultz MC. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep 2014; 7:565-574. [PMID: 24726357 DOI: 10.1016/j.celrep.2014.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/13/2013] [Accepted: 03/10/2014] [Indexed: 01/04/2023] Open
Abstract
Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ(0)) yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA) availability, we sought interventions that suppress this ρ(0) phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG) response and the AMPK (Snf1) pathway prevents abnormal histone deacetylation in ρ(0) cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ(0) cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ(0) cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tao Huan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael C Schultz
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
68
|
Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:290-302. [PMID: 24459731 DOI: 10.1016/j.bbagrm.2011.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone variant H2A.Z is essential in higher eukaryotes and has different functions in the cell. Several studies indicate that H2A.Z is found at specific loci in the genome such as regulatory-gene regions, where it poises genes for transcription. Itsdeposition creates chromatin regions with particular structural characteristics which could favor rapid transcription activation. This review focuses on the highly regulated mechanism of H2A.Z deposition in chromatin which is essential for genome integrity. Chaperones escort H2A.Z to large ATP-dependent chromatin remodeling enzymes which are responsible for its deposition/eviction. Over the last ten years, biochemical, genetic and genomic studies helped us understand the precise role of these complexes in this process. It hasbeen suggested that a cooperation occurs between histone acetyltransferase and chromatin remodeling activities to incorporate H2A.Z in chromatin. Its regulated deposition near centromeres and telomeres also shows its implication in chromosomal structure integrity and parallels a role in DNA damage response. Thedynamics of H2A.Z deposition/eviction at specific loci was shown to be critical for genome expression andmaintenance, thus cell fate. Altogether, recent findings reassert the importance of the regulated depositionof this histone variant. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
69
|
Fierz B. Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 2014; 9:495-504. [PMID: 24497444 DOI: 10.1002/cmdc.201300487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Indexed: 11/11/2022]
Abstract
Posttranslational modifications (PTMs) of chromatin are involved in gene regulation, thereby contributing to cell differentiation, lineage determination, and organism development. Discrete chromatin states are established by the action of a large set of enzymes that catalyze the deposition, propagation, and removal of histone PTMs, thereby modulating gene expression. Given their central role in determining and maintaining cellular phenotype, as well as in controlling chromatin processes such as DNA repair, the dysregulation of these enzymes can have serious consequences, and can result in cancer and neurodegenerative diseases. Thus, such chromatin regulator proteins are promising drug targets. However, they are often present in large, modular protein complexes that specifically recognize target chromatin regions and exhibit intricate regulation through preexisting histone marks. This renders the study of their enzymatic mechanisms complex. Recent developments in the chemical production of defined chromatin substrates show great promise for improving our understanding of the activity of chromatin regulator complexes at the molecular level. Herein I discuss examples highlighting the application of synthetic chromatin to study the enzymatic mechanisms and regulatory pathways of these crucial protein complexes in detail, with potential implications for assay development in pharmacological research.
Collapse
Affiliation(s)
- Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| |
Collapse
|
70
|
Lalonde ME, Avvakumov N, Glass KC, Joncas FH, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, Tan S, Yang XJ, Kutateladze TG, Côté J. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev 2013; 27:2009-24. [PMID: 24065767 PMCID: PMC3792477 DOI: 10.1101/gad.223396.113] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | | | - France-Hélène Joncas
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nehmé Saksouk
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Michael Holliday
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Eric Paquet
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Kezhi Yan
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
| | | | | | - Song Tan
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania University, University Park, Pennsylvania 16802, USA
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
- Department of Medicine, McGill University Health Center, Montreal, Québec H3A 1A1, Canada
| | - Tatiana G. Kutateladze
- Department of Pharmacology
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| |
Collapse
|
71
|
Bojang P, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev 2013; 40:153-69. [PMID: 23831234 DOI: 10.1016/j.ctrv.2013.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/26/2023]
Abstract
Genetic mutations and gross structural defects in the DNA sequence permanently alter genetic loci in ways that significantly disrupt gene function. In sharp contrast, genes modified by aberrant epigenetic modifications remain structurally intact and are subject to partial or complete reversal of modifications that restore the original (i.e. non-diseased) state. Such reversibility makes epigenetic modifications ideal targets for therapeutic intervention. The epigenome of cancer cells is extensively modified by specific hypermethylation of the promoters of tumor suppressor genes relative to the extensive hypomethylation of repetitive sequences, overall loss of acetylation, and loss of repressive marks at microsatellite/repeat regions. In this review, we discuss emerging therapies targeting specific epigenetic modifications or epigenetic modifying enzymes either alone or in combination with other treatment regimens. The limitations posed by cancer treatments elicit unintended epigenetic modifications that result in exacerbation of tumor progression are also discussed. Lastly, a brief discussion of the specificity restrictions posed by epigenetic therapies and ways to address such limitations is presented.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville, 580 South Preston Street, Suite 221, Louisville, KY 40202, USA
| | | |
Collapse
|
72
|
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A 2013; 110:E1641-50. [PMID: 23572591 DOI: 10.1073/pnas.1218515110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method that generates a KAT protein interaction network from which we simultaneously identify both in vivo acetylation sites and in vitro acetylation sites. This modified chromatin-immunopurification coupled to an in vitro KAT assay with mass spectrometry (mChIP-KAT-MS) was applied to the Saccharomyces cerevisiae KAT nucleosome acetyltransferase of histone H4 (NuA4). Using mChIP-KAT-MS, we define the NuA4 interactome and in vitro-enriched acetylome, identifying over 70 previously undescribed physical interaction partners for the complex and over 150 acetyl lysine residues, of which 108 are NuA4-specific in vitro sites. Through this method we determine NuA4 acetylation of its own subunit Epl1 is a means of self-regulation and identify a unique link between NuA4 and the spindle pole body. Our work demonstrates that this methodology may serve as a valuable tool in connecting KATs with their cellular targets.
Collapse
|
73
|
Cai B, Wang H, Zheng H, Wang H. Detection of protein complexes from affinity purification/mass spectrometry data. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S4. [PMID: 23282282 PMCID: PMC3524315 DOI: 10.1186/1752-0509-6-s3-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Recent advances in molecular biology have led to the accumulation of large amounts of data on protein-protein interaction networks in different species. An important challenge for the analysis of these data is to extract functional modules such as protein complexes and biological processes from networks which are characterised by the present of a significant number of false positives. Various computational techniques have been applied in recent years. However, most of them treat protein interaction as binary. Co-complex relations derived from affinity purification/mass spectrometry (AP-MS) experiments have been largely ignored. Methods This paper presents a new algorithm for detecting protein complexes from AP-MS data. The algorithm intends to detect groups of prey proteins that are significantly co-associated with the same set of bait proteins. We first construct AP-MS data as a bipartite network, where one set of nodes consists of bait proteins and the other set is composed of prey proteins. We then calculate pair-wise similarities of bait proteins based on the number of their commonly shared neighbours. A hierarchical clustering algorithm is employed to cluster bait proteins based on the similarities and thus a set of 'seed' clusters is obtained. Starting from these 'seed' clusters, an expansion process is developed to identify prey proteins which are significantly associated with the same set of bait proteins. Then, a set of complete protein complexes is derived. In application to two real AP-MS datasets, we validate biological significance of predicted protein complexes by using curated protein complexes and well-characterized cellular component annotation from Gene Ontology (GO). Several statistical metrics have been applied for evaluation. Results Experimental results show that, the proposed algorithm achieves significant improvement in detecting protein complexes from AP-MS data. In comparison to the well-known MCL algorithm, our algorithm improves the accuracy rate by about 20% in detecting protein complexes in both networks and increases the F-Measure value by about 50% in Krogan_2006 network. Greater precision and better accuracy have been achieved and the identified complexes are demonstrated to match well with existing curated protein complexes. Conclusions Our study highlights the significance of taking co-complex relations into account when extracting protein complexes from AP-MS data. The algorithm proposed in this paper can be easily extended to the analysis of other biological networks which can be conveniently represented by bipartite graphs such as drug-target networks.
Collapse
Affiliation(s)
- Bingjing Cai
- School of Computing and Mathematics, Computer Sciences Research Institute, University of Ulster, N. Ireland, BT37 0QB, UK
| | | | | | | |
Collapse
|
74
|
Piccolo NuA4-catalyzed acetylation of nucleosomal histones: critical roles of an Esa1 Tudor/chromo barrel loop and an Epl1 enhancer of polycomb A (EPcA) basic region. Mol Cell Biol 2012; 33:159-69. [PMID: 23109429 DOI: 10.1128/mcb.01131-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Piccolo NuA4 is an essential yeast histone acetyltransferase (HAT) complex that targets histones H4 and H2A in nucleosome substrates. While Piccolo NuA4's catalytic subunit Esa1 alone is unable to acetylate nucleosomal histones, its accessory subunits, Yng2 and Epl1, enable Esa1 to bind to and to act on nucleosomes. We previously determined that the Tudor domain of Esa1 and the EPcA homology domain of Epl1 play critical roles in Piccolo NuA4's ability to act on the nucleosome. In this work, we pinpoint a loop within the Esa1 Tudor domain and a short basic region at the N terminus of the Epl1 EPcA domain as necessary for this nucleosomal HAT activity. We also show that this Esa1 Tudor domain loop region is positioned close to nucleosomal DNA and that the Epl1 EPcA basic region is in proximity to the N-terminal histone H2A tail, the globular region of histone H4, and also to nucleosomal DNA when Piccolo NuA4 interacts with the nucleosome. Since neither region identified is required for Piccolo NuA4 to bind to nucleosomes and yet both are needed to acetylate nucleosomes, these regions may function after the enzyme binds nucleosomes to disengage substrate histone tails from nucleosomal DNA.
Collapse
|
75
|
Deciphering how the chromatin factor RCC1 recognizes the nucleosome: the importance of individuals in the scientific discovery process. Biochem Soc Trans 2012; 40:351-6. [PMID: 22435811 DOI: 10.1042/bst20110734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nucleosome repeating unit of chromatin is the target of chromatin enzymes and factors that regulate gene activity in a eukaryotic cell. How the nucleosome is recognized by chromatin enzymes and factors is poorly understood, even though such interaction is fundamental to gene regulation and chromatin biology. My laboratory recently determined the structural basis for how the RCC1 (regulator of chromosome condensation 1) chromatin factor binds to the nucleosome, including the first atomic crystal structure of a chromatin protein complexed with the nucleosome core particle. I describe here how we developed and investigated structural models for RCC1 binding to the nucleosome using biochemical methods and how we crystallized the 300 kDa complex of RCC1 with the nucleosome core particle. This article highlights the contributions made by key laboratory members and explains our thinking and rationale during the discovery process.
Collapse
|
76
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
77
|
Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast. Proc Natl Acad Sci U S A 2012; 109:5779-84. [PMID: 22451923 DOI: 10.1073/pnas.1203453109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the "histone redundancy hypothesis" by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.
Collapse
|
78
|
Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol 2011; 32:689-703. [PMID: 22144582 DOI: 10.1128/mcb.06455-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetyltransferase complexes of the MYST family with distinct substrate specificities and functions maintain a conserved association with different ING tumor suppressor proteins. ING complexes containing the HBO1 acetylase are a major source of histone H3 and H4 acetylation in vivo and play critical roles in gene regulation and DNA replication. Here, our molecular dissection of HBO1/ING complexes unravels the protein domains required for their assembly and function. Multiple PHD finger domains present in different subunits bind the histone H3 N-terminal tail with a distinct specificity toward lysine 4 methylation status. We show that natively regulated association of the ING4/5 PHD domain with HBO1-JADE determines the growth inhibitory function of the complex, linked to its tumor suppressor activity. Functional genomic analyses indicate that the p53 pathway is a main target of the complex, at least in part through direct transcription regulation at the initiation site of p21/CDKN1A. These results demonstrate the importance of ING association with MYST acetyltransferases in controlling cell proliferation, a regulated link that accounts for the reported tumor suppressor activities of these complexes.
Collapse
|
79
|
Yuan H, Rossetto D, Mellert H, Dang W, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, Côté J, Marmorstein R. MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 2011; 31:58-70. [PMID: 22020126 DOI: 10.1038/emboj.2011.382] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 01/12/2023] Open
Abstract
The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.
Collapse
Affiliation(s)
- Hua Yuan
- Gene Expression and Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Chittuluru JR, Chaban Y, Monnet-Saksouk J, Carrozza MJ, Sapountzi V, Selleck W, Huang J, Utley RT, Cramet M, Allard S, Cai G, Workman JL, Fried MG, Tan S, Côté J, Asturias FJ. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 2011; 18:1196-203. [PMID: 21984211 PMCID: PMC3210417 DOI: 10.1038/nsmb.2128] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/27/2011] [Indexed: 11/09/2022]
Abstract
We have used electron microscopy (EM) and biochemistry to characterize the structure and nucleosome core particle (NCP) interaction of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes. The ATM-related Tra1 subunit, shared with the SAGA coactivator, forms a large domain joined to a second portion that accommodates the Piccolo catalytic subcomplex and other NuA4 subunits. EM analysis of an NuA4–NCP complex shows the NCP bound at NuA4's periphery. EM characterization of Piccolo and Piccolo–NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N-terminus of Piccolo subunit Epl1 is essential for NCP interaction, whereas subunit Yng2 apparently positions Piccolo for efficient acetylation of H4 or H2A tails. Taken together, these results provide an understanding of NuA4 subunit organization and NCP interactions.
Collapse
|
81
|
Mitchell L, Lau A, Lambert JP, Zhou H, Fong Y, Couture JF, Figeys D, Baetz K. Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLoS One 2011; 6:e25336. [PMID: 21984913 PMCID: PMC3184947 DOI: 10.1371/journal.pone.0025336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. The resulting genetic network identified a novel link between NuA4 and septin proteins, a group of highly conserved GTP-binding proteins that function in cytokinesis. We show that acetyltransferase-deficient NuA4 mutants have defects in septin collar formation resulting in the development of elongated buds through the Swe1-dependent morphogenesis checkpoint. We have discovered multiple sites of acetylation on four of the five yeast mitotic septins, Cdc3, Cdc10, Cdc12 and Shs1, and determined that NuA4 can acetylate three of the four in vitro. In vivo we find that acetylation levels of both Shs1 and Cdc10 are reduced in a catalytically inactive esa1 mutant. Finally, we determine that cells expressing a Shs1 protein with decreased acetylation in vivo have defects in septin localization that are similar to those observed in NuA4 mutants. These findings provide the first evidence that yeast septin proteins are acetylated and that NuA4 impacts septin dynamics.
Collapse
Affiliation(s)
- Leslie Mitchell
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrea Lau
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Philippe Lambert
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ying Fong
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
82
|
Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B. Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res 2011; 39:8378-91. [PMID: 21749977 PMCID: PMC3201869 DOI: 10.1093/nar/gkr535] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleosome mobilization by the ATP-dependent chromatin remodelers SWI/SNF and RSC. Tetra-acetylated H3, but not tetra-acetylated H4 tails, increased the affinity of RSC and SWI/SNF for nucleosomes while also changing the subunits of SWI/SNF that interact with the H3 tail. The enhanced recruitment of SWI/SNF due to H3 acetylation is bromodomain dependent, but is not further enhanced by additional bromodomains found in RSC. The combined effect of H3 acetylation and transcription activators is greater than either separately which suggests they act in parallel to recruit SWI/SNF. Besides enhancing recruitment, H3 acetylation increased nucleosome mobilization and H2A/H2B displacement by RSC and SWI/SNF in a bromodomain dependent manner and to a lesser extent enhanced ATP hydrolysis independent of bromodomains. H3 and H4 acetylation did not stimulate disassembly of adjacent nucleosomes in short arrays by SWI/SNF or RSC. These data illustrate how histone acetylation modulates RSC and SWI/SNF function, and provide a mechanistic insight into their collaborative efforts to remodel chromatin.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | | | | | | | | | | |
Collapse
|
83
|
Sapountzi V, Côté J. MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 2011; 68:1147-56. [PMID: 21132344 PMCID: PMC11114825 DOI: 10.1007/s00018-010-0599-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/12/2010] [Indexed: 12/01/2022]
Abstract
Covalently modifying a protein has proven to be a powerful mechanism of functional regulation. N-epsilon acetylation of lysine residues was initially discovered on histones and has been studied extensively in the context of chromatin and DNA metabolism, such as transcription, replication and repair. However, recent research shows that acetylation is more widespread than initially thought and that it regulates various nuclear as well as cytoplasmic and mitochondrial processes. In this review, we present the multitude of non-histone proteins targeted by lysine acetyltransferases of the large and conserved MYST family, and known functional consequences of this acetylation. Substrates of MYST enzymes include factors involved in transcription, heterochromatin formation and cell cycle, DNA repair proteins, gluconeogenesis enzymes and finally subunits of MYST protein complexes themselves. Discovering novel substrates of MYST proteins is pivotal for the understanding of the diverse functions of these essential acetyltransferases in nuclear processes, signaling, stress response and metabolism.
Collapse
Affiliation(s)
- Vasileia Sapountzi
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada
| |
Collapse
|
84
|
Lee JY, Wei S, Lee TH. Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes. J Biol Chem 2011; 286:11099-109. [PMID: 21282115 DOI: 10.1074/jbc.m110.192047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We characterized the effect of histone acetylation on the structure of a nucleosome and the interactions between two nucleosomes. In this study, nucleosomes reconstituted with the Selex "Widom 601" sequence were acetylated with the Piccolo NuA4 complex, which acetylates mainly H4 N-terminal tail lysine residues and some H2A/H3 N-terminal tail lysine residues. Upon the acetylation, we observed directional unwrapping of nucleosomal DNA that accompanies topology change of the DNA. Interactions between two nucleosomes in solution were also monitored to discover multiple transient dinucleosomal states that can be categorized to short-lived and long-lived (∼1 s) states. The formation of dinucleosomes is strongly Mg(2+)-dependent, and unacetylated nucleosomes favor the formation of long-lived dinucleosomes 4-fold as much as the acetylated ones. These results suggest that the acetylation of histones by Piccolo NuA4 disturbs not only the structure of a nucleosome but also the interactions between two nucleosomes. Lastly, we suggest a structural model for a stable dinucleosomal state where the two nucleosomes are separated by ∼2 nm face-to-face and rotated by 34° with respect to each other.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
85
|
Zhou BO, Wang SS, Zhang Y, Fu XH, Dang W, Lenzmeier BA, Zhou JQ. Histone H4 lysine 12 acetylation regulates telomeric heterochromatin plasticity in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001272. [PMID: 21249184 PMCID: PMC3020936 DOI: 10.1371/journal.pgen.1001272] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity.
Collapse
Affiliation(s)
- Bo O. Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan-Shan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong Fu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Dang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Brian A. Lenzmeier
- School of Science, Buena Vista University, Storm Lake, Iowa, United States of America
| | - Jin-Qiu Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
86
|
Arnold KM, Lee S, Denu JM. Processing mechanism and substrate selectivity of the core NuA4 histone acetyltransferase complex. Biochemistry 2011; 50:727-37. [PMID: 21182309 DOI: 10.1021/bi101355a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Esa1, an essential MYST histone acetyltransferase found in the yeast piccolo NuA4 complex (picNuA4), is responsible for genome-wide histone H4 and histone H2A acetylation. picNuA4 uniquely catalyzes the rapid tetra-acetylation of nucleosomal H4, though the molecular determinants driving picNuA4 efficiency and specificity have not been defined. Here, we show through rapid substrate trapping experiments that picNuA4 utilizes a nonprocessive mechanism in which picNuA4 dissociates from the substrate after each acetylation event. Quantitative mass spectral analyses indicate that picNuA4 randomly acetylates free and nucleosomal H4, with a small preference for lysines 5, 8, and 12 over lysine 16. Using a series of 24 histone mutants of H4 and H2A, we investigated the parameters affecting catalytic efficiency. Most strikingly, removal of lysine residues did not substantially affect the ability of picNuA4 to acetylate remaining sites, and insertion of an additional lysine into the H4 tail led to rapid quintuple acetylation. Conversion of the native H2A tail to an H4-like sequence resulted in enhanced multisite acetylation. Collectively, the results suggest picNuA4's site selectivity is dictated by accessibility on the nucleosome surface, the relative proximity from the histone fold domain, and a preference for intervening glycine residues with a minimal (n + 2) spacing between lysines. Functionally distinct from other HAT families, the proposed model for picNuA4 represents a unique mechanism of substrate recognition and multisite acetylation.
Collapse
Affiliation(s)
- Kevin M Arnold
- Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
87
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
88
|
Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone. Proc Natl Acad Sci U S A 2010; 107:20275-80. [PMID: 21057107 DOI: 10.1073/pnas.1009860107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determining step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (> 250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 12 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.
Collapse
|
89
|
Schulze JM, Wang AY, Kobor MS. Reading chromatin: insights from yeast into YEATS domain structure and function. Epigenetics 2010; 5:573-7. [PMID: 20657183 DOI: 10.4161/epi.5.7.12856] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying complexes typically contain signature domains that either have catalytic activity or recognize and bind to specific histone modifications such as acetylation, methylation, and phosphorylation. Despite tremendous progress in this area, much remains to be learned in particular about the mechanistic functions of less well characterized signature domains. One such module is the evolutionary conserved YEATS domain, found in a variety of chromatin-modifying and transcription complexes from yeast to human. Three yeast proteins contain a YEATS domain, including Yaf9, a subunit of both the histone variant H2A.Z deposition complex SWR1-C and the histone acetyltransferase complex NuA4. The three-dimensional structure of the YEATS domain from Yaf9 was solved recently, revealing the existence of three distinct structural regions. One region is characterized by a shallow groove that might constitute a potential acetyl-lysine binding pocket, raising questions about potential protein interaction partners of the Yaf9 YEATS domain.
Collapse
Affiliation(s)
- Julia M Schulze
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, CA
| | | | | |
Collapse
|
90
|
Scott EM, Pillus L. Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage. Genes Dev 2010; 24:1903-13. [PMID: 20810648 DOI: 10.1101/gad.1935910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme homocitrate synthase (HCS) catalyzes the first step in lysine biosynthesis, and early biochemical data placed it in the cytoplasm or mitochondria, where most amino acid synthesis occurs. It was therefore surprising when refined fractionation techniques and specific immunoreagents clearly demonstrated its localization to the nucleus. These observations raised the question of whether HCS had a function within the nucleus independent of lysine synthesis. We demonstrate that HCS encoded by LYS20 in yeast is linked to the key process of DNA damage repair through the essential MYST family histone acetyltransferase Esa1 and the H2A.Z histone variant. This discovery indicates that HCS has a role in addition to amino acid synthesis, and that it functions in nuclear activities involving chromatin regulation that are distinct from its previously established role in lysine biosynthesis. The chromatin-linked roles are dependent on nuclear localization of Lys20, but are independent of HCS catalytic activity. Thus, Lys20 appears to have evolved as a bifunctional protein that connects cellular metabolism with chromatin functions.
Collapse
Affiliation(s)
- Erin M Scott
- Division of Biological Sciences, Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
91
|
Hansen JC, Nyborg JK, Luger K, Stargell LA. Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol 2010; 224:289-99. [PMID: 20432449 DOI: 10.1002/jcp.22150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The "chromogenome" is defined as the structural and functional status of the genome at any given moment within a eukaryotic cell. This article focuses on recently uncovered relationships between histone chaperones, post-translational acetylation of histones, and modulation of the chromogenome. We emphasize those chaperones that function in a replication-independent manner, and for which three-dimensional structural information has been obtained. The emerging links between histone acetylation and chaperone function in both yeast and higher metazoans are discussed, including the importance of nucleosome-free regions. We close by posing many questions pertaining to how the coupled action of histone chaperones and acetylation influences chromogenome structure and function.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
92
|
Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S, Cramet M, Bouchard N, Lacoste N, Utley RT, Gaudreau L, Côté J. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 2010; 285:15966-77. [PMID: 20332092 DOI: 10.1074/jbc.m110.117069] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.
Collapse
Affiliation(s)
- Mohammed Altaf
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, CHUQ, Quebec City, Quebec G1R 2J6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
SWR1 complex poises heterochromatin boundaries for antisilencing activity propagation. Mol Cell Biol 2010; 30:2391-400. [PMID: 20308321 DOI: 10.1128/mcb.01106-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In eukaryotes, chromosomal processes are usually modulated through chromatin-modifying complexes that are dynamically targeted to specific regions of chromatin. In this study, we show that the chromatin-remodeling complex SWR1 (SWR1-C) uses a distinct strategy to regulate heterochromatin spreading. Swr1 binds in a stable manner near heterochromatin to prepare specific chromosomal regions for H2A.Z deposition, which can be triggered by NuA4-mediated acetylation of histone H4. We also demonstrate through experiments with Swc4, a module shared by NuA4 and SWR1-C, that the coupled actions of NuA4 and SWR1-C lead to the efficient incorporation of H2A.Z into chromatin and thereby synergize heterochromatin boundary activity. Our results support a model where SWR1-C resides at the heterochromatin boundary to maintain and amplify antisilencing activity of histone H4 acetylation through incorporating H2A.Z into chromatin.
Collapse
|
94
|
NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol Cell Biol 2009; 29:6473-87. [PMID: 19822662 DOI: 10.1128/mcb.01033-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.
Collapse
|
95
|
Lu PY, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and componentsThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2009; 87:799-815. [DOI: 10.1139/o09-062] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.
Collapse
Affiliation(s)
- Phoebe Y.T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
96
|
Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics 2009; 183:149-60. [PMID: 19596907 DOI: 10.1534/genetics.109.103846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications that regulate chromatin-dependent processes are catalyzed by multisubunit complexes. These can function in both targeting activities to specific genes and in regulating genomewide levels of modifications. In Saccharomyces cerevisiae, Esa1 and Rpd3 have opposing enzymatic activities and are catalytic subunits of multiple chromatin modifying complexes with key roles in processes such as transcriptional regulation and DNA repair. Esa1 is an essential histone acetyltransferase that belongs to the highly conserved MYST family. This study presents evidence that the yeast histone deacetylase gene, RPD3, when deleted, suppressed esa1 conditional mutant phenotypes. Deletion of RPD3 reversed rDNA and telomeric silencing defects and restored global H4 acetylation levels, in addition to rescuing the growth defect of a temperature-sensitive esa1 mutant. This functional genetic interaction between ESA1 and RPD3 was mediated through the Rpd3L complex. The suppression of esa1's growth defect by disruption of Rpd3L was dependent on lysine 12 of histone H4. We propose a model whereby Esa1 and Rpd3L act coordinately to control the acetylation of H4 lysine 12 to regulate transcription, thereby emphasizing the importance of dynamic acetylation and deacetylation of this particular histone residue in maintaining cell viability.
Collapse
|
97
|
Friis RMN, Schultz MC. Untargeted tail acetylation of histones in chromatin: lessons from yeast. Biochem Cell Biol 2009; 87:107-16. [PMID: 19234527 DOI: 10.1139/o08-097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dynamic acetylation of lysine residues in the amino-terminal tails of the core histones is functionally important for the regulation of diverse DNA-dependent processes in the nucleus, including replication, transcription, and DNA repair. The targeted and untargeted activities of histone lysine acetylases (KATs) and deacetylases (HDACs) both contribute to the dynamics of chromatin acetylation. While the mechanisms and functional consequences of targeted on histone acetylation are well understood, relatively little is known about untargeted histone acetylation. Here, we review the current understanding of the mechanisms by which untargeted KAT and HDAC activities modulate the acetylation state of nucleosomal histones, focusing on results obtained for H3 and H4 in budding yeast. We also highlight unresolved problems in this area, including the question of how a particular steady-state level of untargeted acetylation is set in the absence of cis-dependent mechanisms that instruct the activity of KATs and HDACs.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G2H7, Canada
| | | |
Collapse
|
98
|
Altaf M, Auger A, Covic M, Côté J. Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 2009; 87:35-50. [PMID: 19234522 DOI: 10.1139/o08-140] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of the eukaryotic genome into chromatin makes it inaccessible to the factors required for gene transcription and DNA replication, recombination, and repair. In addition to histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, which play key roles in regulating many nuclear processes by altering the chromatin structure, cells have developed a mechanism of modulating chromatin structure by incorporating histone variants. These variants are incorporated into specific regions of the genome throughout the cell cycle. H2A.Z, which is an evolutionarily conserved H2A variant, performs several seemingly unrelated and even contrary functions. Another H2A variant, H2A.X, plays a very important role in the cellular response to DNA damage. This review summarizes the recent developments in our understanding of the role of H2A.Z and H2A.X in the regulation of chromatin structure and function, focusing on their functional links with chromatin modifying and remodeling complexes.
Collapse
Affiliation(s)
- Mohammed Altaf
- Laval University Cancer Research Center, Hotel-Dieu de Quebec, Quebec City, QCG1R2J6, Canada
| | | | | | | |
Collapse
|
99
|
Abstract
Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.
Collapse
Affiliation(s)
- Jennifer K Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BCV6T1Z3, Canada
| | | |
Collapse
|
100
|
Friis RMN, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC. A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 2009; 37:3969-80. [PMID: 19406923 PMCID: PMC2709565 DOI: 10.1093/nar/gkp270] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Little is known about what enzyme complexes or mechanisms control global lysine acetylation in the amino-terminal tails of the histones. Here, we show that glucose induces overall acetylation of H3 K9, 18, 27 and H4 K5, 8, 12 in quiescent yeast cells mainly by stimulating two KATs, Gcn5 and Esa1. Genetic and pharmacological perturbation of carbon metabolism, combined with 1H-NMR metabolic profiling, revealed that glucose induction of KAT activity directly depends on increased glucose catabolism. Glucose-inducible Esa1 and Gcn5 activities predominantly reside in the picNuA4 and SAGA complexes, respectively, and act on chromatin by an untargeted mechanism. We conclude that direct metabolic regulation of globally acting KATs can be a potent driving force for reconfiguration of overall histone acetylation in response to a physiological cue.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|