51
|
Kraemer SA, Toups MA, Velicer GJ. Natural variation in developmental life-history traits of the bacterium Myxococcus xanthus. FEMS Microbiol Ecol 2010; 73:226-33. [PMID: 20491924 PMCID: PMC2910118 DOI: 10.1111/j.1574-6941.2010.00888.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The soil bacterium Myxococcus xanthus is a model for the study of cooperative microbial behaviours such as social motility and fruiting body formation. Several M. xanthus developmental traits that are frequently quantified for laboratory strains are likely to be significant components of fitness in natural populations, yet little is known about the degree to which such traits vary in the wild and may therefore be subject to natural selection. Here, we have tested whether several key M. xanthus developmental life-history traits have diverged significantly among strains both from globally distant origins and from within a sympatric, centimetre-scale population. The isolates examined here were found to vary considerably, in a heritable manner, in their rate of developmental aggregation and in both their rate and efficiency of spore production. Isolates also varied in the nutrient-concentration threshold triggering spore formation and in the heat resistance of spores. The large diversity of developmental phenotypes documented here leads to questions regarding the relative roles of selection and genetic drift in shaping the diversity of local soil populations with respect to these developmental traits. It also raises the question of whether fitness in the wild is largely determined by traits that are expressed independent of social context or by behaviours that are expressed only in genetically heterogeneous social groups.
Collapse
|
52
|
Kang YS, Park W. Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. J Appl Microbiol 2010; 109:1650-9. [PMID: 20629796 DOI: 10.1111/j.1365-2672.2010.04793.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate roles of quorum-sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin-resistant variant (hereinafter DR1R). METHODS AND RESULTS The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane-degradation and biofilm-formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm-formation and hexadecane-biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild-type cell supernatant and exogenous C(12) -AHL. CONCLUSIONS The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1.
Collapse
Affiliation(s)
- Y-S Kang
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea
| | | |
Collapse
|
53
|
Yu YTN, Yuan X, Velicer GJ. Adaptive evolution of an sRNA that controls Myxococcus development. Science 2010; 328:993. [PMID: 20489016 DOI: 10.1126/science.1187200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Small RNA (sRNA) molecules regulate a vast array of processes in biology, but evidence for adaptive evolution of sRNA sequences has been indirect. Here, we identify an sRNA, Pxr, that negatively regulates fruiting body development in Myxococcus xanthus. We further show that a spontaneous evolutionary mutation in Pxr abolished its regulatory function and thereby adaptively restored developmental proficiency to a socially defective M. xanthus cheater. In wild-type M. xanthus, development is initiated only upon starvation, but deletion of pxr allows development to proceed even while nutrients remain abundant. Thus, Pxr serves as a major checkpoint controlling the transition from growth to development in the myxobacteria. These findings show that an sRNA molecule governs a complex form of multicellular development in prokaryotes and directly demonstrate the ability of sRNA regulators to facilitate evolutionary adaptations of major phenotypic effect.
Collapse
Affiliation(s)
- Yuen-Tsu N Yu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
54
|
Müller FD, Treuner-Lange A, Heider J, Huntley SM, Higgs PI. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 2010; 11:264. [PMID: 20420673 PMCID: PMC2875238 DOI: 10.1186/1471-2164-11-264] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate. Conclusions These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation.
Collapse
Affiliation(s)
- Frank-Dietrich Müller
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
55
|
García-Moreno D, Abellón-Ruiz J, García-Heras F, Murillo FJ, Padmanabhan S, Elías-Arnanz M. CdnL, a member of the large CarD-like family of bacterial proteins, is vital for Myxococcus xanthus and differs functionally from the global transcriptional regulator CarD. Nucleic Acids Res 2010; 38:4586-98. [PMID: 20371514 PMCID: PMC2919716 DOI: 10.1093/nar/gkq214] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CarD, a global transcriptional regulator in Myxococcus xanthus, interacts with CarG via CarDNter, its N-terminal domain, and with DNA via a eukaryotic HMGA-type C-terminal domain. Genomic analysis reveals a large number of standalone proteins resembling CarDNter. These constitute, together with the RNA polymerase (RNAP) interacting domain, RID, of transcription–repair coupling factors, the CarD_TRCF protein family. We show that one such CarDNter-like protein, M. xanthus CdnL, cannot functionally substitute CarDNter (or vice versa) nor interact with CarG. Unlike CarD, CdnL is vital for growth, and lethality due to its absence is not rescued by homologs from various other bacteria. In mycobacteria, with no endogenous DksA, the function of the CdnL homolog mirrors that of Escherichia coli DksA. Our finding that CdnL, like DksA, is indispensable in M. xanthus implies that they are not functionally redundant. Cells are normal on CdnL overexpression, but divide aberrantly on CdnL depletion. CdnL localizes to the nucleoid, suggesting piggyback recruitment by factors such as RNAP, which we show interacts with CdnL, CarDNter and RID. Our study highlights a complex network of interactions involving these factors and RNAP, and points to a vital role for M. xanthus CdnL in an essential DNA transaction that affects cell division.
Collapse
Affiliation(s)
- Diana García-Moreno
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
56
|
Rosario CJ, Singer M. Developmental expression of dnaA is required for sporulation and timing of fruiting body formation in Myxococcus xanthus. Mol Microbiol 2010; 76:1322-33. [DOI: 10.1111/j.1365-2958.2010.07178.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
57
|
Identification of enhancer binding proteins important for Myxococcus xanthus development. J Bacteriol 2010; 192:360-4. [PMID: 19897655 DOI: 10.1128/jb.01019-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.
Collapse
|
58
|
López D, Kolter R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 2009; 34:134-49. [PMID: 20030732 DOI: 10.1111/j.1574-6976.2009.00199.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
59
|
Sato M, Takahashi K, Ochiai Y, Hosaka T, Ochi K, Nabeta K. Bacterial alarmone, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), predominantly binds the beta' subunit of plastid-encoded plastid RNA polymerase in chloroplasts. Chembiochem 2009; 10:1227-33. [PMID: 19308923 DOI: 10.1002/cbic.200800737] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It's alarming: Bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp), which is a key regulatory molecule that controls the stringent response, also exists in chloroplasts of plant cells. Cross-linking experiments with 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) and chloroplast RNA polymerase indicate that ppGpp binds the beta' subunit of plastid-encoded plastid RNA polymerase that corresponds to the Escherichia coli beta' subunit. Chloroplasts, which are thought to have originated from cyanobacteria, have their own genetic system that is similar to that of the bacteria from which they were derived. Recently, bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp, 1), a key regulatory molecule that controls the stringent response, was identified in the chloroplasts of plant cells. Similar to its function in bacteria, ppGpp inhibits chloroplast RNA polymerase; this suggests that ppGpp mediates gene expression through the stringent response in chloroplasts. However, a detailed mechanism of ppGpp action in chloroplasts remains elusive. We synthesized 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) as a photoaffinity probe of ppGpp; this probe thus enabled the investigation of ppGpp binding to chloroplast RNA polymerase. We found that 6-thioppGpp, as well as ppGpp, inhibits chloroplast RNA synthesis in vitro in a dose-dependent manner. Cross-linking experiments with 6-thioppGpp and chloroplast RNA polymerase indicated that ppGpp binds the beta' subunit (corresponding to the Escherichia coli beta' subunit) of plastid-encoded plastid RNA polymerase composed of alpha, beta, beta', beta'', and sigma subunits. Furthermore, ppGpp did not inhibit transcription in plastid nucleoids prepared from tobacco BY-2 cells; this suggests that ppGpp does not inhibit nuclear-encoded plastid RNA polymerase.
Collapse
Affiliation(s)
- Michio Sato
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Guanosine 5'-(tri)diphosphate, 3'-diphosphate [(p) ppGpp] is a small nucleic acid that helps bacteria survive in limited environments. Gene chip shows that (p) ppGpp is a global transcription-regulator of genes related to important bacterial metabolic processes. Therefore, more attention should be focused on the molecular mechanisms of (p) ppGpp, as it is the foundation to understanding how bacteria adapt to extreme circumstances through the stringent response.
Collapse
Affiliation(s)
- Jun Wu
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing, China
| | | |
Collapse
|
61
|
Abstract
Myxococcus xanthus is a common soil bacterium with an intricate multicellular lifestyle that continues to challenge the way in which we conceptualize the capabilities of prokaryotic organisms. Myxococcus xanthus is the preferred laboratory representative from the Myxobacteria, a family of organisms distinguished by their ability to form highly structured biofilms that include tentacle-like packs of surface-gliding cell groups, synchronized rippling waves of oscillating cells and massive spore-filled aggregates that protrude upwards from the substratum to form fruiting bodies. But most of the Myxobacteria are also predators that thrive on the degradation of macromolecules released through the lysis of other microbial cells. The aim of this review is to examine our understanding of the predatory life cycle of M. xanthus. We will examine the multicellular structures formed during contact with prey, and the molecular mechanisms utilized by M. xanthus to detect and destroy prey cells. We will also examine our understanding of microbial predator-prey relationships and the prospects for how bacterial predation mechanisms can be exploited to generate new antimicrobial technologies.
Collapse
Affiliation(s)
- James E Berleman
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
62
|
A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J Bacteriol 2009; 191:3108-19. [PMID: 19251845 DOI: 10.1128/jb.01737-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a prokaryotic model system for the study of multicellular development and the response to blue light. The previous analyses of these processes and the characterization of new genes would benefit from a robust system for controlled gene expression, which has been elusive so far for this bacterium. Here, we describe a system for conditional expression of genes in M. xanthus based on our recent finding that vitamin B12 and CarH, a MerR-type transcriptional repressor, together downregulate a photoinducible promoter. Using this system, we confirmed that M. xanthus rpoN, encoding sigma(54), is an essential gene, as reported earlier. We then tested it with ftsZ and dksA. In most bacteria, ftsZ is vital due to its role in cell division, whereas null mutants of dksA, whose product regulates the stringent response via transcriptional control of rRNA and amino acid biosynthesis promoters, are viable but cause pleiotropic effects. As with rpoN, it was impossible to delete endogenous ftsZ or dksA in M. xanthus except in a merodiploid background carrying another functional copy, which indicates that these are essential genes. B12-based conditional expression of ftsZ was insufficient to provide the high intracellular FtsZ levels required. With dksA, as with rpoN, cells were viable under permissive but not restrictive conditions, and depletion of DksA or sigma(54) produced filamentous, aberrantly dividing cells. dksA thus joins rpoN in a growing list of genes dispensable in many bacteria but essential in M. xanthus.
Collapse
|
63
|
Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. J Bacteriol 2009; 191:2753-63. [PMID: 19201804 DOI: 10.1128/jb.01818-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient limitation. Intercellular signals control cell movements and regulate gene expression during the developmental process. C-signal is a short-range signal essential for aggregation and sporulation. C-signaling regulates the fmgA gene by a novel mechanism involving cooperative binding of the response regulator FruA and the transcription factor/antitoxin MrpC2. Here, we demonstrate that regulation of the C-signal-dependent fmgBC operon is under similar combinatorial control by FruA and MrpC2, but the arrangement of binding sites is different than in the fmgA promoter region. MrpC2 was shown to bind to a crucial cis-regulatory sequence in the fmgBC promoter region. FruA was required for MrpC and/or MrpC2 to associate with the fmgBC promoter region in vivo, and expression of an fmgB-lacZ fusion was abolished in a fruA mutant. Recombinant FruA was shown to bind to an essential regulatory sequence located slightly downstream of the MrpC2-binding site in the fmgBC promoter region. Full-length FruA, but not its C-terminal DNA-binding domain, enhanced the formation of complexes with fmgBC promoter region DNA, when combined with MrpC2. This effect was nearly abolished with fmgBC DNA fragments having a mutation in either the MrpC2- or FruA-binding site, indicating that binding of both proteins to DNA is important for enhancement of complex formation. These results are similar to those observed for fmgA, where FruA and MrpC2 bind cooperatively upstream of the promoter, except that in the fmgA promoter region the FruA-binding site is located slightly upstream of the MrpC2-binding site. Cooperative binding of FruA and MrpC2 appears to be a conserved mechanism of gene regulation that allows a flexible arrangement of binding sites and coordinates multiple signaling pathways.
Collapse
|
64
|
Knauber T, Doss SD, Gerth K, Perlova O, Müller R, Treuner-Lange A. Mutation in the rel gene of Sorangium cellulosum affects morphological and physiological differentiation. Mol Microbiol 2008; 69:254-66. [PMID: 18513216 DOI: 10.1111/j.1365-2958.2008.06285.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interruption of the (p)ppGpp synthetase gene (rel) of Sorangium cellulosum So ce56 resulted in loss of ppGpp accumulation after norvaline treatment during exponential growth phase. The rel mutant failed to produce wild-type levels of the polyketides chivosazol and etnangien in production media. In wild-type cells expression of the chivosazol biosynthetic operon can be significantly increased by norvaline or alpha-methylglucoside. This induction does not occur in the rel mutant. The rel mutant also lost the capability to form multicellular fruiting bodies under nutrient starvation.
Collapse
Affiliation(s)
- Tina Knauber
- Department of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. J Bacteriol 2008; 190:4416-26. [PMID: 18390653 DOI: 10.1128/jb.00265-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus undergoes a complex starvation-induced developmental program that results in cells forming multicellular fruiting bodies by aggregating into mounds and then differentiating into spores. This developmental program requires at least 72 h and is mediated by a temporal cascade of gene regulators in response to intra- and extracellular signals. espA mutants, encoding an orphan hybrid histidine kinase, alter the timing of this developmental program, greatly accelerating developmental progression. Here, we characterized EspA and demonstrated that it autophosphorylates in vitro on the conserved histidine residue and then transfers the phosphoryl group to the conserved aspartate residue in the associated receiver domain. The conserved histidine and aspartate residues were both required for EspA function in vivo. Analysis of developmental gene expression and protein accumulation in espA mutants indicated that the expression of the A-signal-dependent spi gene was not affected but that the MrpC transcriptional regulator accumulated earlier, resulting in earlier expression of its target, the FruA transcriptional regulator. Early expression of FruA correlated with acceleration of both the aggregation and sporulation branches of the developmental program, as monitored by early methylation of the FrzCD chemosensory receptor and early expression of the sporulation-specific dev and Mxan_3227 (Omega7536) genes. These results show that EspA plays a key role in the timing of expression of genes necessary for progression of cells through the developmental program.
Collapse
|
67
|
Novel Transcriptome Patterns Accompany Evolutionary Restoration of Defective Social Development in the Bacterium Myxococcus xanthus. Mol Biol Evol 2008; 25:1274-81. [DOI: 10.1093/molbev/msn076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
68
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
69
|
Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. J Bacteriol 2007; 190:1097-107. [PMID: 17993532 DOI: 10.1128/jb.00516-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The enteric pathogen Campylobacter jejuni is a highly prevalent yet fastidious bacterium. Biofilms and surface polysaccharides participate in stress survival, transmission, and virulence in C. jejuni; thus, the identification and characterization of novel genes involved in each process have important implications for pathogenesis. We found that C. jejuni reacts with calcofluor white (CFW), indicating the presence of surface polysaccharides harboring beta1-3 and/or beta1-4 linkages. CFW reactivity increased with extended growth, under 42 degrees C anaerobic conditions, and in a DeltaspoT mutant defective for the stringent response (SR). Conversely, two newly isolated dim mutants exhibited diminished CFW reactivity as well as growth and serum sensitivity differences from the wild type. Genetic, biochemical, and nuclear magnetic resonance analyses suggested that differences in CFW reactivity between wild-type and DeltaspoT and dim mutant strains were independent of well-characterized lipooligosaccharides, capsular polysaccharides, and N-linked polysaccharides. Targeted deletion of carB downstream of the dim13 mutation also resulted in CFW hyporeactivity, implicating a possible role for carbamoylphosphate synthase in the biosynthesis of this polysaccharide. Correlations between biofilm formation and production of the CFW-reactive polymer were demonstrated by crystal violet staining, scanning electron microscopy, and confocal microscopy, with the C. jejuni DeltaspoT mutant being the first SR mutant in any bacterial species identified as up-regulating biofilms. Together, these results provide new insight into genes and processes important for biofilm formation and polysaccharide production in C. jejuni.
Collapse
|
70
|
Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 2007; 190:613-24. [PMID: 17993514 DOI: 10.1128/jb.01502-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Proteins of two-component systems (TCS) have essential functions in the sensing of external and self-generated signals in bacteria and in the generation of appropriate output responses. Accordingly, in Myxococcus xanthus, TCS are important for normal motility and fruiting body formation and sporulation. Here we analyzed the M. xanthus genome for the presence and genetic organization of genes encoding TCS. Two hundred seventy-two TCS genes were identified, 251 of which are not part of che gene clusters. We report that the TCS genes are unusually organized, with 55% being orphan and 16% in complex gene clusters whereas only 29% display the standard paired gene organization. Hybrid histidine protein kinases and histidine protein kinases predicted to be localized to the cytoplasm are overrepresented among proteins encoded by orphan genes or in complex gene clusters. Similarly, response regulators without output domains are overrepresented among proteins encoded by orphan genes or in complex gene clusters. The most frequently occurring output domains in response regulators are involved in DNA binding and cyclic-di-GMP metabolism. Our analyses suggest that TCS encoded by orphan genes and complex gene clusters are functionally distinct from TCS encoded by paired genes and that the connectivity of the pathways made up of TCS encoded by orphan genes and complex gene clusters is different from that of pathways involving TCS encoded by paired genes. Experimentally, we observed that orphan TCS genes are overrepresented among genes that display altered transcription during fruiting body formation. The systematic analysis of the 25 orphan genes encoding histidine protein kinases that are transcriptionally up-regulated during development showed that 2 such genes are likely essential for viability and identified 7 histidine protein kinases, including 4 not previously characterized that have important function in fruiting body formation or spore germination.
Collapse
|
71
|
Rosario CJ, Singer M. The Myxococcus xanthus developmental program can be delayed by inhibition of DNA replication. J Bacteriol 2007; 189:8793-800. [PMID: 17905977 PMCID: PMC2168630 DOI: 10.1128/jb.01361-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaB(A116V), was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37 degrees C. We demonstrated that at the nonpermissive temperature the DnaB(A116V) mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaB(A116V) mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.
Collapse
|
72
|
Ossa F, Diodati ME, Caberoy NB, Giglio KM, Edmonds M, Singer M, Garza AG. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development. J Bacteriol 2007; 189:8474-83. [PMID: 17905995 PMCID: PMC2168950 DOI: 10.1128/jb.00894-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in gene expression are important for the landmark morphological events that occur during Myxococcus xanthus fruiting body development. Enhancer binding proteins (EBPs), which are transcriptional activators, play prominent roles in the coordinated expression of developmental genes. A mutation in the EBP gene nla4 affects the timing of fruiting body formation, the morphology of mature fruiting bodies, and the efficiency of sporulation. In this study, we showed that the nla4 mutant accumulates relatively low levels of the stringent nucleotide ppGpp. We also found that the nla4 mutant is defective for early developmental events and for vegetative growth, phenotypes that are consistent with a deficiency in ppGpp accumulation. Further studies revealed that nla4 cells produce relatively low levels of GTP, a precursor of RelA-dependent synthesis of (p)ppGpp. In addition, the normal expression patterns of all stringent response-associated genes tested, including the M. xanthus ppGpp synthetase gene relA, are altered in nla4 mutant cells. These findings indicate that Nla4 is part of regulatory pathway that is important for mounting a stringent response and for initiating fruiting body development.
Collapse
Affiliation(s)
- Faisury Ossa
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Berleman JE, Kirby JR. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions. J Bacteriol 2007; 189:5675-82. [PMID: 17513469 PMCID: PMC1951827 DOI: 10.1128/jb.00544-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.
Collapse
Affiliation(s)
- James E Berleman
- Department of Microbiology, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | |
Collapse
|
74
|
Genay M, Decaris B, Dary A. Implication of stringent response in the increase of mutability of the whiG and whiH genes during Streptomyces coelicolor development. Mutat Res 2007; 624:49-60. [PMID: 17532011 DOI: 10.1016/j.mrfmmm.2007.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/05/2007] [Accepted: 03/28/2007] [Indexed: 11/30/2022]
Abstract
In Streptomyces ambofaciens, genetic instability occurring during aerial mycelium development gives rise to white mutant papillae on colonies. Pig-pap mutants deriving from such papillae are unable to sporulate and devoid of the large genome rearrangement usually observed in the other Streptomyces mutants that genetic instability generated. Pig-pap mutants frequently harboured discrete mutations affecting the whiG gene. Furthermore, it has been established that the production of papillae dramatically increased when S. ambofaciens was grown under an amino acid limitation. In this work, we tested the implication of the stringent response, induced during an amino acid limitation, in the production of white papillae in Streptomyces coelicolor, a species which is phylogenetically close to S. ambofaciens. First, we showed that S. coelicolor produced mutant papillae and that this production was increased under an amino acid limitation. Secondly, we showed that the Pig-pap mutants generated both with and without amino acid limitation frequently exhibited mutations in whiH or whiG genes. Finally, we observed that a relA mutant of S. coelicolor, which was unable to elicit the stringent response under an amino acid limitation, was also unable to produce papillae. The restoration of the ability to elicit the stringent response also restored the papillae production. These papillae gave rise to Pig-pap mutants displaying the same characteristics as Pig-pap mutants spontaneously appearing on wild-type colonies. Altogether, these results show that whatever the underlying mechanism, the stringent response is involved in the production of white papillae in S. coelicolor.
Collapse
Affiliation(s)
- M Genay
- Laboratoire de Génétique et Microbiologie (UMR INRA/UHP 1128), IFR 110, Faculté des Sciences et Techniques Nancy-Université, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|
75
|
Jain V, Saleem-Batcha R, Chatterji D. Synthesis and hydrolysis of pppGpp in mycobacteria: a ligand mediated conformational switch in Rel. Biophys Chem 2006; 127:41-50. [PMID: 17188418 DOI: 10.1016/j.bpc.2006.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 11/18/2022]
Abstract
Bacteria respond to starvation by synthesizing a polyphosphate derivative of guanosine, (p)ppGpp, that helps the bacteria in surviving during stress. The protein in Gram-positive organisms required for (p)ppGpp synthesis is Rel, a bifunctional enzyme that carries out both synthesis and hydrolysis of this molecule. Rel shows increased pppGpp synthesis in the presence of uncharged tRNA, the effect of which is regulated by the C-terminal of Rel. We show by fluorescence resonance energy transfer that the distance between the N-terminus cysteine residue at the catalytic domain and C692 at the C-terminus increases upon the addition of uncharged tRNA. In apparent anomaly, the steady state anisotropy of the Rel protein decreases upon tRNA binding suggesting "compact conformation" vis-à-vis "open conformation" of the free Rel. We propose that the interaction between C692 and the residues present in the pppGpp synthesis site results in the regulated activity and this interaction is abrogated upon addition of uncharged tRNA. We also report here the binding of pppGpp to the C-terminal part of the protein that leads to more unfolding in this region.
Collapse
Affiliation(s)
- Vikas Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
76
|
DiDonato LN, Sullivan SA, Methé BA, Nevin KP, England R, Lovley DR. Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 2006; 188:8469-78. [PMID: 17041036 PMCID: PMC1698251 DOI: 10.1128/jb.01278-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacter species are key members of the microbial community in many subsurface environments in which dissimilatory metal reduction is an important process. The genome of Geobacter sulfurreducens contains a gene designated rel(Gsu), which encodes a RelA homolog predicted to catalyze both the synthesis and the degradation of guanosine 3',5'-bispyrophosphate (ppGpp), a regulatory molecule that signals slow growth in response to nutrient limitation in bacteria. To evaluate the physiological role of Rel(Gsu) in G. sulfurreducens, a rel(Gsu) mutant was constructed and characterized, and ppGpp levels were monitored under various conditions in both the wild-type and rel(Gsu) mutant strains. In the wild-type strain, ppGpp and ppGp were produced in response to acetate and nitrogen deprivation, whereas exposure to oxygen resulted in an accumulation of ppGpp alone. Neither ppGpp nor ppGp could be detected in the rel(Gsu) mutant. The rel(Gsu) mutant consistently grew to a higher cell density than the wild type in acetate-fumarate medium and was less tolerant of oxidative stress than the wild type. The capacity for Fe(III) reduction was substantially diminished in the mutant. Microarray and quantitative reverse transcription-PCR analyses indicated that during stationary-phase growth, protein synthesis genes were up-regulated in the rel(Gsu) mutant and genes involved in stress responses and electron transport, including several implicated in Fe(III) reduction, were down-regulated in the mutant. The results are consistent with a role for Rel(Gsu) in regulating growth, stress responses, and Fe(III) reduction in G. sulfurreducens under conditions likely to be prevalent in subsurface environments.
Collapse
Affiliation(s)
- Laurie N DiDonato
- Department of Microbiology, University of Massachusetts, Morrill Science Center, 639 N. Pleasant St. Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Ueki T, Inouye S. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria. Appl Microbiol Biotechnol 2006; 72:21-29. [PMID: 16791590 DOI: 10.1007/s00253-006-0455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/06/2006] [Accepted: 04/05/2006] [Indexed: 12/19/2022]
Abstract
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell-cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His-Asp phosphorelay system and a Ser/Thr kinase cascade.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Sumiko Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
79
|
Viswanathan P, Singer M, Kroos L. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development. J Bacteriol 2006; 188:3246-56. [PMID: 16621817 PMCID: PMC1447441 DOI: 10.1128/jb.188.9.3246-3256.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Starvation-induced development of Myxococcus xanthus is an excellent model for biofilm formation because it involves cell-cell signaling to coordinate formation of multicellular mounds, gene expression, and cellular differentiation into spores. The role of sigma(D), an alternative sigma factor important for viability in stationary phase and for stress responses, was investigated during development by measuring signal production, gene expression, and sporulation of a sigD null mutant alone and upon codevelopment with wild-type cells or signaling mutants. The sigD mutant responded to starvation by inducing (p)ppGpp synthesis normally but was impaired for production of A-signal, an early cell density signal, and for production of the morphogenetic C-signal. Induction of early developmental genes was greatly reduced, and expression of those that depend on A-signal was not restored by codevelopment with wild-type cells, indicating that sigma(D) is needed for cellular responses to A-signal. Despite these early developmental defects, the sigD mutant responded to C-signal supplied by codeveloping wild-type cells by inducing a subset of late developmental genes. sigma(D) RNA polymerase is dispensable for transcription of this subset, but a distinct regulatory class, which includes genes essential for sporulation, requires sigma(D) RNA polymerase or a gene under its control, cell autonomously. The level of sigD transcript in a relA mutant during growth is much lower than in wild-type cells, suggesting that (p)ppGpp positively regulates sigD transcription in growing cells. The sigD transcript level drops in wild-type cells after 20 min of starvation and remains low after 40 min but rises in a relA mutant after 40 min, suggesting that (p)ppGpp negatively regulates sigD transcription early in development. We conclude that sigma(D) synthesized during growth occupies a position near the top of a regulatory hierarchy governing M. xanthus development, analogous to sigma factors that control biofilm formation of other bacteria.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
80
|
Pham VD, Shebelut CW, Jose IR, Hodgson DA, Whitworth DE, Singer M. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus. Microbiology (Reading) 2006; 152:1609-1620. [PMID: 16735725 DOI: 10.1099/mic.0.28820-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80–90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB–phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
Collapse
Affiliation(s)
- Vinh D Pham
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Conrad W Shebelut
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Ivy R Jose
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - David A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mitchell Singer
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
81
|
Diodati ME, Ossa F, Caberoy NB, Jose IR, Hiraiwa W, Igo MM, Singer M, Garza AG. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J Bacteriol 2006; 188:1733-43. [PMID: 16484184 PMCID: PMC1426557 DOI: 10.1128/jb.188.5.1733-1743.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NtrC-like activators regulate the transcription of a wide variety of adaptive genes in bacteria. Previously, we demonstrated that a mutation in the ntrC-like activator gene nla18 causes defects in fruiting body development in Myxococcus xanthus. In this report, we describe the effect that nla18 inactivation has on gene expression patterns during development and vegetative growth. Gene expression in nla18 mutant cells is altered in the early stages of fruiting body development. Furthermore, nla18 mutant cells are defective for two of the earliest events in development, production of the intracellular starvation signal ppGpp and production of A-signal. Taken together, these results indicate that the developmental program in nla18 mutant cells goes awry very early. Inactivation of nla18 also causes a dramatic decrease in the vegetative growth rate of M. xanthus cells. DNA microarray analysis revealed that the vegetative expression patterns of more than 700 genes are altered in nla18 mutant cells. Genes coding for putative membrane and membrane-associated proteins are among the largest classes of genes whose expression is altered by nla18 inactivation. This result is supported by our findings that the profiles of membrane proteins isolated from vegetative nla18 mutant and wild-type cells are noticeably different. In addition to genes that code for putative membrane proteins, nla18 inactivation affects the expression of many genes that are likely to be important for protein synthesis and gene regulation. Our data are consistent with a model in which Nla18 controls vegetative growth and development by activating the expression of genes involved in gene regulation, translation, and membrane structure.
Collapse
Affiliation(s)
- Michelle E Diodati
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 2005; 14:45-54. [PMID: 16343907 DOI: 10.1016/j.tim.2005.11.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/25/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
A hyperphosphorylated guanosine nucleotide, (p)ppGpp, was initially identified as the effector molecule responsible for the stringent response in Escherichia coli. However, a rapidly growing number of reports proves that (p)ppGpp-mediated regulation is conserved in many bacteria and even in plants. It is now clear that (p)ppGpp acts as a global regulator during physiological adaptation of the organism to a plethora of environmental conditions. Adaptation is not only essential for surviving periods of stress and nutrient exhaustion but also for the interaction of bacteria with their eukaryotic host, as observed during pathogenesis and symbiosis, and for bacterial multicellular behaviour. Recently, there have been several new discoveries about the effects of (p)ppGpp levels, balanced by RelA-SpoT homologue proteins, in diverse organisms.
Collapse
Affiliation(s)
- Kristien Braeken
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
83
|
Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J. Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 2005; 187:5460-9. [PMID: 16030240 PMCID: PMC1196010 DOI: 10.1128/jb.187.15.5460-5469.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.
Collapse
Affiliation(s)
- Martine Moris
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
84
|
Rasmussen AA, Porter SL, Armitage JP, Søgaard-Andersen L. Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol Microbiol 2005; 56:1358-72. [PMID: 15882426 DOI: 10.1111/j.1365-2958.2005.04629.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an unusual hybrid histidine protein kinase, which is important for spatially coupling cell aggregation and sporulation during fruiting body formation in Myxococcus xanthus. A rodK mutant makes abnormal fruiting bodies and spores develop outside the fruiting bodies. RodK is a soluble, cytoplasmic protein, which contains an N-terminal sensor domain, a histidine protein kinase domain and three receiver domains. In vitro phosphorylation assays showed that RodK possesses kinase activity. Kinase activity is essential for RodK function in vivo. RodK is present in vegetative cells and remains present until the late aggregation stage, after which the level decreases in a manner that depends on the intercellular A-signal. Genetic evidence suggests that RodK may regulate multiple temporally separated events during fruiting body formation including stimulation of early developmental gene expression, inhibition of A-signal production and inhibition of the intercellular C-signal transduction pathway. We speculate that RodK undergoes a change in activity during development, which is reflected in changes in phosphotransfer to the receiver domains.
Collapse
Affiliation(s)
- Anders Aa Rasmussen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | |
Collapse
|
85
|
Erickson DL, Lines JL, Pesci EC, Venturi V, Storey DG. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 2004; 72:5638-45. [PMID: 15385461 PMCID: PMC517598 DOI: 10.1128/iai.72.10.5638-5645.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response is a mechanism by which bacteria adapt to nutritional deficiencies through the production of the guanine nucleotides ppGpp and pppGpp, produced by the RelA enzyme. We investigated the role of the relA gene in the ability of an extracellular pathogen, Pseudomonas aeruginosa, to cause infection. Strains lacking the relA gene were created from the prototypical laboratory strain PAO1 as well as the mucoid cystic fibrosis isolate 6106, which lacks functional quorum-sensing systems. The absence of relA abolished the production of ppGpp and pppGpp under conditions of amino acid starvation. We found that strains lacking relA exhibited reduced virulence in a D. melanogaster feeding assay. In conditions of low magnesium, the relA gene enhanced production of the cell-cell signal N-[3-oxododecanoyl]-l-homoserine lactone, whereas relA reduced the production of the 2-heptyl-3-hydroxy-4-quinolone signal during serine hydroxamate induction of the stringent response. In the relA mutant, alterations in the Pseudomonas quinolone system pathways seemed to increase the production of pyocyanin and decrease the production of elastase. Deletion of relA also resulted in reduced levels of the RpoS sigma factor. These results suggest that adjustment of cellular ppGpp and pppGpp levels could be an important regulatory mechanism in P. aeruginosa adaptation in pathogenic relationships.
Collapse
Affiliation(s)
- David L Erickson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
86
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
87
|
Jakobsen JS, Jelsbak L, Jelsbak L, Welch RD, Cummings C, Goldman B, Stark E, Slater S, Kaiser D. Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J Bacteriol 2004; 186:4361-8. [PMID: 15205438 PMCID: PMC421606 DOI: 10.1128/jb.186.13.4361-4368.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/18/2004] [Indexed: 11/20/2022] Open
Abstract
A search of the M1genome sequence, which includes 97% of the Myxococcus xanthus genes, identified 53 sequence homologs of sigma54-dependent enhancer binding proteins (EBPs). A DNA microarray was constructed from the M1genome that includes those homologs and 318 other M. xanthus genes for comparison. To screen the developmental program with this array, an RNA extract from growing cells was compared with one prepared from developing cells at 12 h. Previous reporter studies had shown that M. xanthus has initiated development and has begun to express many developmentally regulated genes by 12 h. The comparison revealed substantial increases in the expression levels of 11 transcription factors that may respond to environmental stimuli. Six of the 53 EBP homologs were expressed at significantly higher levels at 12 h of development than during growth. Three were previously unknown genes, and they were inactivated to look for effects on fruiting body development. One knockout mutant produced fruiting bodies of abnormal shape that depended on the composition of the medium.
Collapse
Affiliation(s)
- Jimmy S Jakobsen
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Brenner M, Garza AG, Singer M. nsd, a locus that affects the Myxococcus xanthus cellular response to nutrient concentration. J Bacteriol 2004; 186:3461-71. [PMID: 15150233 PMCID: PMC415774 DOI: 10.1128/jb.186.11.3461-3471.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the previously reported Tn5lac Omega4469 insertion in Myxococcus xanthus cells is regulated by the starvation response. Interested in learning more about the starvation response, we cloned and sequenced the region containing the insertion. Our analysis shows that the gene fusion is located in an open reading frame that we have designated nsd (nutrient sensing/utilizing defective) and that its expression is driven by a sigma70-like promoter. Sequence analysis of the nsd gene product provides no information on the potential structure or function of the encoded protein. In a further effort to learn about the role of nsd in the starvation response, we closely examined the phenotype of cells carrying the nsd::Tn5lac Omega4469 mutation. Our analysis showed that these cells initiate development on medium that contains nutrients sufficient to sustain vegetative growth of wild-type cells. Furthermore, in liquid media these same nutrient concentrations elicit a severe impairment of growth of nsd cells. The data suggest that the nsd cells launch a starvation response when there are enough nutrients to prevent one. In support of this hypothesis, we found that, when grown in these nutrient concentrations, nsd cells accumulate guanosine tetraphosphate, the cellular starvation signal. Therefore, we propose that nsd is used by cells to respond to available nutrient levels.
Collapse
Affiliation(s)
- Margaret Brenner
- Section of Microbiology and Center for Genetics and Development, The University of California, Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
89
|
Kaiser D, Welch R. Dynamics of fruiting body morphogenesis. J Bacteriol 2004; 186:919-27. [PMID: 14761986 PMCID: PMC344202 DOI: 10.1128/jb.186.4.919-927.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 11/04/2003] [Indexed: 11/20/2022] Open
Abstract
Myxobacteria build their species-specific fruiting bodies by cell movement and then differentiate spores in specific places within that multicellular structure. New steps in the developmental aggregation of Myxococcus xanthus were discovered through a frame-by-frame analysis of a motion picture. The formation and fate of 18 aggregates were captured in the time-lapse movie. Still photographs of 600 other aggregates were also analyzed. M. xanthus has two engines that propel the gliding of its rod-shaped cells: slime-secreting jets at the rear and retractile pili at the front. The earliest aggregates are stationary masses of cells that look like three-dimensional traffic jams. We propose a model in which both engines stall as the cells' forward progress is blocked by other cells in the traffic jam. We also propose that these blockades are eventually circumvented by the cell's capacity to turn, which is facilitated by the push of slime secretion at the rear of each cell and by the flexibility of the myxobacterial cell wall. Turning by many cells would transform a traffic jam into an elliptical mound, in which the cells are streaming in closed orbits. Pairs of adjacent mounds are observed to coalesce into single larger mounds, probably reflecting the fusion of orbits in the adjacent mounds. Although fruiting bodies are relatively large structures that contain 10(5) cells, no long-range interactions between cells were evident. For aggregation, M. xanthus appears to use local interactions between its cells.
Collapse
Affiliation(s)
- Dale Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
90
|
Rasmussen AA, Søgaard-Andersen L. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 2003; 185:5452-64. [PMID: 12949097 PMCID: PMC193762 DOI: 10.1128/jb.185.18.5452-5464.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation. These two processes are induced by the cell surface-associated C signal, with aggregation being induced after 6 h and sporulation being induced once cells have completed the aggregation process. We report the identification of TodK, a putative histidine protein kinase of two-component regulatory systems that is important for the correct timing of aggregation and sporulation. Loss of TodK function results in early aggregation and early, as well as increased levels of, sporulation. Transcription of todK decreases 10-fold in response to starvation independently of the stringent response. Loss of TodK function specifically results in increased expression of a subset of C-signal-dependent genes. Accelerated development in a todK mutant depends on the known components in the C-signal transduction pathway. TodK is not important for synthesis of the C signal. From these results we suggest that TodK is part of a signal transduction system which converges on the C-signal transduction pathway to negatively regulate aggregation, sporulation, and the expression of a subset of C-signal-dependent genes. TodK and the SdeK histidine protein kinase, which is part of a signal transduction system that converges on the C-signal transduction pathway to stimulate aggregation, sporulation, and C-signal-dependent gene expression, act in independent genetic pathways. We suggest that the signal transduction pathways defined by TodK and SdeK act in concert with the C-signal transduction pathway to control the timing of aggregation and sporulation.
Collapse
Affiliation(s)
- Anders A Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, 5230 Odense M, Denmark
| | | |
Collapse
|
91
|
Haralalka S, Nandi S, Bhadra RK. Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J Bacteriol 2003; 185:4672-82. [PMID: 12896985 PMCID: PMC166452 DOI: 10.1128/jb.185.16.4672-4682.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relA gene product determines the level of (p)ppGpp, the effector nucleotides of the bacterial stringent response that are also involved in the regulation of other functions, like antibiotic production and quorum sensing. In order to explore the possible involvement of relA in the regulation of virulence of Vibrio cholerae, a relA homolog from the organism (relA(VCH)) was cloned and sequenced. The relA(VCH) gene encodes a 738-amino-acid protein having functions similar to those of other gram-negative bacteria, including Escherichia coli. A deltarelA::kan allele was generated by replacing approximately 31% of the open reading frame of wild-type relA of V. cholerae El Tor strain C6709 with a kanamycin resistance gene. The V. cholerae relA mutant strain thus generated, SHK17, failed to accumulate (p)ppGpp upon amino acid deprivation. Interestingly, compared to the wild type, C6709, the mutant strain SHK17 exhibited significantly reduced in vitro production of two principal virulence factors, cholera toxin (CT) and toxin-coregulated pilus (TCP), under virulence gene-inducing conditions. In vivo experiments carried out in rabbit ileal loop and suckling mouse models also confirmed our in vitro results. The data suggest that (p)ppGpp is essential for maximal expression of CT and TCP during in vitro growth, as well as during intestinal infection by virulent V. cholerae. Northern blot and reverse transcriptase PCR analyses indicated significant reduction in the transcript levels of both virulence factors in the relA mutant strain SHK17. Such marked alteration of virulence phenotypes in SHK17 appears most likely to be due to down regulation of transcript levels of toxR and toxT, the two most important virulence regulatory genes of V. cholerae. In SHK17, the altered expression of the two outer membrane porin proteins, OmpU and OmpT, indicated that the relA mutation most likely affects the ToxR-dependent virulence regulatory pathway, because it had been shown earlier that ToxR directly regulates their expression independently of ToxT.
Collapse
Affiliation(s)
- Shruti Haralalka
- Infectious Diseases Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
92
|
Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino SI, Shirahata T. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 2003; 71:3020-7. [PMID: 12761078 PMCID: PMC155700 DOI: 10.1128/iai.71.6.3020-3027.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Revised: 02/11/2003] [Accepted: 02/28/2003] [Indexed: 11/20/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and nonprofessional phagocytes and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. To identify genes related to internalization and multiplication in host cells, Brucella abortus was mutagenized by mini-Tn5Km2 transposon that carryied the kanamycin resistance gene, 4,400 mutants were screened, and HeLa cells were infected with each mutant. Twenty-three intracellular-growth-defective mutants were screened and were characterized for internalization and intracellular growth. From these results, we divided the mutants into the following three groups: class I, no internalization and intracellular growth within HeLa cells; class II, an internalization similar to that of the wild type but with no intracellular growth; and class III, internalization twice as high as the wild type but with no intracellular growth. Sequence analysis of DNA flanking the site of transposon showed various insertion sites of bacterial genes that are virulence-associated genes, including virB genes, an ion transporter system, and biosynthesis- and metabolism-associated genes. These internalization and intracellular-growth-defective mutants in HeLa cells also showed defective intracellular growth in macrophages. These results suggest that the virulence-associated genes isolated here contributed to the intracellular growth of both nonprofessional and professional phagocytes.
Collapse
Affiliation(s)
- Suk Kim
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. A 2.9-kb fragment containing a putative spoT gene was isolated from B. burgdorferi genomic DNA by PCR amplification and cloned into a pBAD24 vector. The cloned gene complemented Escherichia coli mutant strain CF1693, which contains deletions of both the relA and spoT genes. The spoT gene in E. coli encodes a bifunctional enzyme capable of synthesizing and degrading (p)ppGpp, which mediates the stringent response during carbon source starvation. B. burgdorferi has been reported to have a stress response to serum starvation. Thin-layer chromatography was used to detect (p)ppGpp extracted from H(3)(32)PO(4)-labeled B. burgdorferi cells starved for serum in RPMI. B. burgdorferi spoT gene expression was characterized during fatty acid starvation. Northern analysis of spoT revealed detectable message at 2.5 min of starvation in RPMI. Expression of spoT during serum starvation increased approximately 6-fold during the 30 min that starvation conditions were maintained. Further, expression of spoT decreased when serum was added to serum-starved cells. Reverse transcriptase PCR (RT-PCR) was used to detect spoT mRNA from approximately 10(6) cells starved for serum in RPMI for 2.5 to 30 min or incubated in tick saliva for 15 min. Northern blot analysis suggests that spoT transcript was approximately 900 nucleotides in length. RT-PCR amplification of the transcript using several sets of primers confirmed this finding. Additionally, a truncated clone containing only the first 950 bp of the 2,001-bp spoT open reading frame was able to complement E. coli CF1693. The data suggest that B. burgdorferi exhibits a stringent response to serum starvation and during incubation in tick saliva.
Collapse
Affiliation(s)
- Marc B Concepcion
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, USA
| | | |
Collapse
|
94
|
Nariya H, Inouye S. Activation of 6-phosphofructokinase via phosphorylation by Pkn4, a protein Ser/Thr kinase of Myxococcus xanthus. Mol Microbiol 2002; 46:1353-66. [PMID: 12453221 DOI: 10.1046/j.1365-2958.2002.03251.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myxococcus xanthus is a Gram-negative bacterium that exhibits a communal lifestyle during vegetative growth and multicellular development, forming fruiting bodies filled with spores. It contains at least 13 eukaryotic-like protein Ser/Thr kinases (PSTKs from Pkn1 to Pkn13). In the present report, we demonstrate that Pkn4, the gene located 18 bp downstream of the gene for 6-phosphofructokinase (PFK), is a PSTK for M. xanthus PFK (Mx-PFK), the key regulatory enzyme in glycolysis. Both Pkn4 and Mx-PFK were expressed in Escherichia coli and purified. Mx-PFK was found to be phosphorylated by Pkn4 at Thr-226, which is presumed to be located in the allosteric effector site of the PFK. The phosphorylation of Mx-PFK enhanced its activity 2.7-fold, indicating that Pkn4 plays an important role in glucose metabolism. Although PFKs from other organisms are known to be tetrameric enzymes, Mx-PFK is composed of an octamer and is dissociated to tetramers in the presence of phosphoenolpyruvate (PEP), an allosteric inhibitor for PFK. Furthermore, phosphorylation of PFK by Pkn4 is almost completely inhibited by PEP. Mx-PFK is associated with the regulatory domain of Pkn4, and this association is inhibited by PEP. This is the first demonstration that a prokaryotic PFK is regulated by phosphorylation by PSTK in prokaryotes.
Collapse
Affiliation(s)
- Hirofumi Nariya
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
95
|
Horiuchi T, Taoka M, Isobe T, Komano T, Inouye S. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis. J Biol Chem 2002; 277:26753-60. [PMID: 11997385 DOI: 10.1074/jbc.m111214200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.
Collapse
Affiliation(s)
- Takayuki Horiuchi
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
96
|
Mechold U, Murphy H, Brown L, Cashel M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 2002; 184:2878-88. [PMID: 12003927 PMCID: PMC135074 DOI: 10.1128/jb.184.11.2878-2888.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protein are defined by limited proteolytic digestion. In vitro assays of the purified N-terminal half-protein reveal synthesis of (p)ppGpp by an ATP-GTP 3'-pyrophosphotransferase as well as an ability to degrade (p)ppGpp by a Mn(2+)-dependent 3'-pyrophosphohydrolase. Removal of the C-terminal half-protein has reciprocal regulatory effects on the activities of the N-terminal half-protein. Compared to the full-length protein, deletion activates (p)ppGpp synthesis specific activity about 12-fold and simultaneously inhibits (p)ppGpp degradation specific activity about 150-fold to shift the balance of the two activities in favor of synthesis. Cellular (p)ppGpp accumulation behavior is consistent with these changes. The bifunctional N-terminal half-protein can be further dissected into overlapping monofunctional subdomains, since purified peptides display either degradation activity (residues 1 to 224) or synthetic activity (residues 79 to 385) in vitro. These assignments can also apply to RelA and SpoT. The ability of Rel(Seq) to mediate (p)ppGpp accumulation during amino acid starvation in S. equisimilis is absent when the protein is expressed ectopically in Escherichia coli. Fusing the N-terminal half of Rel(Seq) with the C-terminal domain of RelA creates a chimeric protein that restores the stringent response in E. coli by inhibiting unregulated degradation and restoring regulated synthetic activity. Reciprocal intramolecular regulation of the dual activities may be a general intrinsic feature of Rel/Spo homolog proteins.
Collapse
Affiliation(s)
- Undine Mechold
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA
| | | | | | | |
Collapse
|
97
|
Hammer BK, Tateda ES, Swanson MS. A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 2002; 44:107-18. [PMID: 11967072 DOI: 10.1046/j.1365-2958.2002.02884.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogenic Legionella pneumophila evolved as a parasite of aquatic amoebae. To persist in the environment, the microbe must be proficient at both replication and transmission. In laboratory cultures, as nutrients become scarce a stringent response-like pathway coordinates exit from the exponential growth phase with induction of traits correlated with virulence, including motility. A screen for mutants that express the flagellin gene poorly identified five activators of virulence: LetA/LetS, a two-component regulator homologous to GacA/GacS of Pseudomonas and SirA/BarA of Salmonella; the stationary-phase sigma factor RpoS; the flagellar sigma factor FliA; and a new locus, letE. Unlike wild type, post-exponential-phase letA and letS mutants were not motile, cytotoxic, sodium sensitive or proficient at infecting macrophages. L. pneumophila also required fliA to become motile, cytotoxic and to infect macrophages efficiently and letE to express sodium sensitivity and maximal motility and cytotoxicity. When induced to express RelA, all of the strains exited the exponential phase, but only wild type converted to the fully virulent form. In contrast, intracellular replication was independent of letA, letS, letE or fliA. Together, the data indicate that, as the nutrient supply wanes, ppGpp triggers a regulatory cascade mediated by LetA/ LetS, RpoS, FliA and letE that coordinates differentiation of replicating L. pneumophila to a transmissible form.
Collapse
Affiliation(s)
- Brian K Hammer
- Department of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
98
|
Abstract
Sinorhizobium meliloti and host legumes enter into a nitrogen-fixing, symbiotic relationship triggered by an exchange of signals between bacteria and plant. S. meliloti produces Nod factor, which elicits the formation of nodules on plant roots, and succinoglycan, an exopolysaccharide that allows for bacterial invasion and colonization of the host. The biosynthesis of these molecules is well defined, but the specific regulation of these compounds is not completely understood. Bacteria control complex regulatory networks by the production of ppGpp, the effector molecule of the stringent response, which induces physiological change in response to adverse growth conditions and can also control bacterial development and virulence. Through detailed analysis of an S. meliloti mutant incapable of producing ppGpp, we show that the stringent response is required for nodule formation and regulates the production of succinoglycan. Although it remains unknown whether these phenotypes are connected, we have isolated suppressor strains that restore both defects and potentially identify key downstream regulatory genes. These results indicate that the S. meliloti stringent response has roles in both succinoglycan production and nodule formation and, more importantly, that control of bacterial physiology in response to the plant and surrounding environment is critical to the establishment of a successful symbiosis.
Collapse
Affiliation(s)
- Derek H Wells
- Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
99
|
Abstract
Multicellular organisms appear to have arisen from unicells numerous times. Multicellular cyanobacteria arose early in the history of life on Earth. Multicellular forms have since arisen independently in each of the kingdoms and several times in some phyla. If the step from unicellular to multicellular life was taken early and frequently, the selective advantage of multicellularity may be large. By comparing the properties of a multicellular organism with those of its putative unicellular ancestor, it may be possible to identify the selective force(s). The independent instances of multicellularity reviewed indicate that advantages in feeding and in dispersion are common. The capacity for signaling between cells accompanies the evolution of multicellularity with cell differentiation.
Collapse
Affiliation(s)
- D Kaiser
- Department of Biochemistry and of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
100
|
Zusman T, Gal-Mor O, Segal G. Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J Bacteriol 2002; 184:67-75. [PMID: 11741845 PMCID: PMC134777 DOI: 10.1128/jb.184.1.67-75.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the involvement of RelA in the regulation of Legionella pneumophila virulence, a deletion substitution was constructed in the relA gene. The relA knockout resulted in an undetectable level of ppGpp in the cells during the stationary phase, but the original level was restored when the relA gene product was supplied on a plasmid. The effect of the relA mutation was examined with two systems that are known to be expressed during the stationary phase in L. pneumophila. Pigment production was found to be dependent on the relA gene product, and only one-half as much pigment was produced by the relA mutant as by the wild-type strain. Flagellum gene expression was also found to be dependent on the relA gene product, as determined with a flaA::lacZ fusion. However, the relA gene product was found to be dispensable for intracellular growth both in HL-60-derived human macrophages and in the protozoan host Acanthamoeba castellanii. To determine the involvement of the relA gene product in expression of L. pneumophila genes required for intracellular growth (icm/dot genes), nine icm::lacZ fusions were constructed, and expression of these fusions in the wild-type strain was compared with their expression in relA mutant strains. Expression of only one of the icm::lacZ fusions was moderately reduced in the relA mutant strain. Expression of the nine icm::lacZ fusions was also examined in a strain containing an insertion in the gene that codes for the stationary-phase sigma factor RpoS, and similar results were obtained. We concluded that RelA is dispensable for intracellular growth of L. pneumophila in the two hosts examined and that both RelA and RpoS play minor roles in L. pneumophila icm/dot gene expression.
Collapse
Affiliation(s)
- Tal Zusman
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|