51
|
Vaquerizas JM, Akhtar A, Luscombe NM. Large-scale nuclear architecture and transcriptional control. Subcell Biochem 2016; 52:279-95. [PMID: 21557088 DOI: 10.1007/978-90-481-9069-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcriptional regulation is one the most basic mechanisms for controlling gene expression. Over the past few years, much research has been devoted to understanding the interplay between transcription factors, histone modifications and associated enzymes required to achieve this control. However, it is becoming increasingly apparent that the three-dimensional conformation of chromatin in the interphase nucleus also plays a critical role in regulating transcription. Chromatin localisation in the nucleus is highly organised, and early studies described strong interactions between chromatin and sub-nuclear components. Single-gene studies have shed light on how chromosomal architecture affects gene expression. Lately, this has been complemented by whole-genome studies that have determined the global chromatin conformation of living cells in interphase. These studies have greatly expanded our understanding of nuclear architecture and its interplay with different physiological processes. Despite these advances, however, most of the mechanisms used to impose the three-dimensional chromatin structure remain unknown. Here, we summarise the different levels of chromatin organisation in the nucleus and discuss current efforts into characterising the mechanisms that govern it.
Collapse
|
52
|
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016; 17:207-23. [PMID: 26948815 DOI: 10.1038/nrg.2016.4] [Citation(s) in RCA: 519] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.
Collapse
Affiliation(s)
- Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Dimple Notani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| |
Collapse
|
53
|
Krivega I, Dean A. Chromatin looping as a target for altering erythroid gene expression. Ann N Y Acad Sci 2016; 1368:31-9. [PMID: 26918894 DOI: 10.1111/nyas.13012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/07/2023]
Abstract
The β-hemoglobinopathies are the most common monogenic disorders in humans, with symptoms arising after birth when the fetal γ-globin genes are silenced and the adult β-globin gene is activated. There is a growing appreciation that genome organization and the folding of chromosomes are key determinants of gene transcription. Underlying this function is the activity of transcriptional enhancers that increase the transcription of target genes over long linear distances. To accomplish this, enhancers engage in close physical contact with target promoters through chromosome folding or looping that is orchestrated by protein complexes that bind to both sites and stabilize their interaction. We find that enhancer activity can be redirected with concomitant changes in gene transcription. Both targeting the β-globin locus control region (LCR) to the γ-globin gene in adult erythroid cells by tethering and epigenetic unmasking of a silenced γ-globin gene lead to increased frequency of LCR/γ-globin contacts and reduced LCR/β-globin contacts. The outcome of these manipulations is robust, pancellular γ-globin transcription activation with a concomitant reduction in β-globin transcription. These examples show that chromosome looping may be considered a therapeutic target for gene activation in β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
54
|
Chen X, Wei M, Zheng MM, Zhao J, Hao H, Chang L, Xi P, Sun Y. Study of RNA Polymerase II Clustering inside Live-Cell Nuclei Using Bayesian Nanoscopy. ACS NANO 2016; 10:2447-2454. [PMID: 26855123 DOI: 10.1021/acsnano.5b07257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoscale spatiotemporal clustering of RNA polymerase II (Pol II) plays an important role in transcription regulation. However, dynamics of individual Pol II clusters in live-cell nuclei has not been measured directly, prohibiting in-depth understanding of their working mechanisms. In this work, we studied the dynamics of Pol II clustering using Bayesian nanoscopy in live mammalian cell nuclei. With 50 nm spatial resolution and 4 s temporal resolution, Bayesian nanoscopy allows direct observation of the assembly and disassembly dynamics of individual Pol II clusters. The results not only provide quantifications of Pol II clusters but also shed light on the understanding of cluster formation and regulation. Our study suggests that transcription factories form on-demand and recruit Pol II molecules in their pre-elongation phase. The assembly and disassembly of individual Pol II clusters take place asynchronously. Overall, the methods developed herein are also applicable to studying a wide realm of real-time nanometer-scale nuclear processes in live cells.
Collapse
Affiliation(s)
- Xuanze Chen
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Mian Wei
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - M Mocarlo Zheng
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
- School of Physics, Peking University , Beijing 100871, China
| | - Jiaxi Zhao
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Huiwen Hao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
55
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
56
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
57
|
Patrushev LI, Kovalenko TF. Functions of noncoding sequences in mammalian genomes. BIOCHEMISTRY (MOSCOW) 2015; 79:1442-69. [PMID: 25749159 DOI: 10.1134/s0006297914130021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most of the mammalian genome consists of nucleotide sequences not coding for proteins. Exons of genes make up only 3% of the human genome, while the significance of most other sequences remains unknown. Recent genome studies with high-throughput methods demonstrate that the so-called noncoding part of the genome may perform important functions. This hypothesis is supported by three groups of experimental data: 1) approximately 10% of the sequences, most of which are located in noncoding parts of the genome, is evolutionarily conserved and thus can be of functional importance; 2) up to 99% of the mammalian genome is being transcribed forming short and long noncoding RNAs in addition to common mRNA; and 3) mutations in noncoding parts of the genome can be accompanied by progression of pathological states of the organism. In the light of these data, in the review we consider the functional role of numerous known sequences of noncoding parts of the genome including introns, DNA methylation regions, enhancers and locus control regions, insulators, S/MAR sequences, pseudogenes, and genes of noncoding RNAs, as well as transposons and simple repeats of centromeric and telomeric regions of chromosomes. The assumption is made that the intergenic noncoding sequences without definite/clear functions can be involved in spatial organization of genetic loci in interphase nuclei.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
58
|
Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev 2015; 79:347-72. [PMID: 26223848 PMCID: PMC4517094 DOI: 10.1128/mmbr.00006-15] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In humans, nearly two meters of genomic material must be folded to fit inside each micrometer-scale cell nucleus while remaining accessible for gene transcription, DNA replication, and DNA repair. This fact highlights the need for mechanisms governing genome organization during any activity and to maintain the physical organization of chromosomes at all times. Insight into the functions and three-dimensional structures of genomes comes mostly from the application of visual techniques such as fluorescence in situ hybridization (FISH) and molecular approaches including chromosome conformation capture (3C) technologies. Recent developments in both types of approaches now offer the possibility of exploring the folded state of an entire genome and maybe even the identification of how complex molecular machines govern its shape. In this review, we present key methodologies used to study genome organization and discuss what they reveal about chromosome conformation as it relates to transcription regulation across genomic scales in mammals.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Josée Dostie
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| |
Collapse
|
59
|
Sun J, Rockowitz S, Chauss D, Wang P, Kantorow M, Zheng D, Cvekl A. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Mol Vis 2015; 21:955-73. [PMID: 26330747 PMCID: PMC4551281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. METHODS The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. RESULTS Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of "open" chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form "clusters" of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. CONCLUSIONS This study reveals novel features of lens chromatin, including the remarkably high abundance of pol II at the crystallin loci that exhibit features of "open" chromatin. Hsf4 ranks among the most abundant fiber cell-preferred DNA-binding transcription factors. Notable transcripts, including Atf4, Ctcf, E2F4, Hey1, Hmgb1, Mycn, RXRβ, Smad4, Sp1, and Taf1 (transcription factors) and Ctsd, Gabarapl1, and Park7 (autophagy regulators) have been identified with high levels of expression in lens fibers, which suggests specific roles in lens fiber cell terminal differentiation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Daniel Chauss
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
60
|
Strongin DE, Groudine M, Politz JCR. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus 2015; 5:474-81. [PMID: 25482199 PMCID: PMC4164489 DOI: 10.4161/nucl.36233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene loci on different chromosomes can preferentially colocalize in the cell nucleus. However, many of the mechanisms mediating this spatial proximity remain to be elucidated. The IgH locus on Chromosome 12 and the Myc locus on Chromosome 15 are a well-studied model for gene colocalization in murine B cells, where the two loci are positioned in close proximity at a higher than expected frequency. These gene loci are also partners in the chromosomal translocation that causes murine plasmacytoma and Burkitt’s lymphoma. Because both Chromosome 12 and Chromosome 15 carry nucleolar organizer regions (NORs) in the most commonly studied mouse strains, we hypothesized that NOR-mediated tethering of the IgH and Myc loci to shared nucleoli could serve as a mechanism to drive IgH:Myc colocalization. Using mouse strains that naturally carry nucleolar organizer regions (NORs) on different sets of chromosomes, we establish that IgH and Myc are positioned proximal to nucleoli in a NOR dependent manner and show that their joint association with nucleoli significantly increases the frequency of IgH and Myc pairing. Thus we demonstrate that simple nucleolar tethering can increase the colocalization frequency of genes on NOR-bearing chromosomes.
Collapse
Affiliation(s)
- Daniel E Strongin
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | | | |
Collapse
|
61
|
Abstract
The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression.
Collapse
|
62
|
Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [PMID: 26310154 DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rebecca McGreal
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
63
|
Olfactory receptor genes expressed in distinct lineages are sequestered in different nuclear compartments. Proc Natl Acad Sci U S A 2015; 112:E2403-9. [PMID: 25897022 DOI: 10.1073/pnas.1506058112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The olfactory system translates a vast array of volatile chemicals into diverse odor perceptions and innate behaviors. Odor detection in the mouse nose is mediated by 1,000 different odorant receptors (ORs) and 14 trace amine-associated receptors (TAARs). ORs are used in a combinatorial manner to encode the unique identities of myriad odorants. However, some TAARs appear to be linked to innate responses, raising questions about regulatory mechanisms that might segregate OR and TAAR expression in appropriate subsets of olfactory sensory neurons (OSNs). Here, we report that OSNs that express TAARs comprise at least two subsets that are biased to express TAARs rather than ORs. The two subsets are further biased in Taar gene choice and their distribution within the sensory epithelium, with each subset preferentially expressing a subgroup of Taar genes within a particular spatial domain in the epithelium. Our studies reveal one mechanism that may regulate the segregation of Olfr (OR) and Taar expression in different OSNs: the sequestration of Olfr and Taar genes in different nuclear compartments. Although most Olfr genes colocalize near large central heterochromatin aggregates in the OSN nucleus, Taar genes are located primarily at the nuclear periphery, coincident with a thin rim of heterochromatin. Taar-expressing OSNs show a shift of one Taar allele away from the nuclear periphery. Furthermore, examination of hemizygous mice with a single Taar allele suggests that the activation of a Taar gene is accompanied by an escape from the peripheral repressive heterochromatin environment to a more permissive interior chromatin environment.
Collapse
|
64
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
65
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
67
|
Sumoylation and transcription regulation at nuclear pores. Chromosoma 2014; 124:45-56. [PMID: 25171917 PMCID: PMC4339684 DOI: 10.1007/s00412-014-0481-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.
Collapse
|
68
|
Krivega I, Dale RK, Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 2014; 28:1278-90. [PMID: 24874989 PMCID: PMC4066399 DOI: 10.1101/gad.239749.114] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many questions remain about the relationship between chromatin loop formation and transcription. In erythroid cells, LDB1 is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. Dean and colleagues show that the LDB1 dimerization domain (DD) is necessary to restore LCR-promoter looping and transcription in LDB1-depleted cells. Deletion analysis reveals a conserved region of the LDB1 DD dispensable for dimerization and chromatin looping but necessary for transcription activation. The results thus uncouple enhancer–promoter looping from transcription at the β-globin locus. Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the β-globin locus via LMO2 and is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR–promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer–promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
69
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
70
|
Abstract
Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation.
Collapse
|
71
|
Imaging RNA Polymerase II transcription sites in living cells. Curr Opin Genet Dev 2014; 25:126-30. [PMID: 24794700 DOI: 10.1016/j.gde.2014.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 12/20/2022]
Abstract
Over the past twenty years, exciting developments in optical and molecular imaging approaches have allowed researchers to examine with unprecedented resolution the spatial organization of transcription sites in the nucleus. An attractive model that has developed from these studies is that active genes cluster to preformed transcription factories that contain multiple active RNA polymerases and transcription factor proteins required for efficient mRNA biogenesis. However, this model has been extensively debated in part due to the fact transcription factories and their features have only been documented in fixed cells. In this review, we will focus on recent live-cell imaging studies that are changing our understanding of transcription factories.
Collapse
|
72
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
73
|
From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression. Mol Cell Biol 2014; 34:2114-20. [PMID: 24615017 DOI: 10.1128/mcb.01730-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene gating hypothesis put forth by Blobel in 1985 was an alluring proposal outlining functions for the nuclear pore complex (NPC) in transcription and nuclear architecture. Over the past several decades, collective studies have unveiled a full catalog of nucleoporins (Nups) that comprise the NPC, structural arrangements of Nups in the nuclear pore, and mechanisms of nucleocytoplasmic transport. With this foundation, investigations of the gene gating hypothesis have now become possible. Studies of several model organisms provide credence for Nup functions in transcription, mRNA export, and genome organization. Surprisingly, Nups are not only involved in transcriptional events that occur at the nuclear periphery, but there are also novel roles for dynamic Nups within the nucleoplasmic compartment. Several tenants of the original gene gating hypothesis have yet to be addressed. Knowledge of whether the NPC impacts the organization of the genome to control subsets of genes is limited, and the cooperating molecular machinery or specific genomic anchoring sequences are not fully resolved. This minireview summarizes the current evidence for gene gating in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian model systems. These examples highlight new and unpredicted mechanisms for Nup impacts on transcription and questions that are left to be explored.
Collapse
|
74
|
Wood AM, Garza-Gongora AG, Kosak ST. A Crowdsourced nucleus: understanding nuclear organization in terms of dynamically networked protein function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:178-90. [PMID: 24412853 PMCID: PMC3954575 DOI: 10.1016/j.bbagrm.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
75
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
76
|
Barrow JJ, Li Y, Hossain M, Huang S, Bungert J. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain. Nucleic Acids Res 2014; 42:4363-74. [PMID: 24497190 PMCID: PMC3985677 DOI: 10.1093/nar/gku107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult β-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult β-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult β-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult β-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.
Collapse
Affiliation(s)
- Joeva J Barrow
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Shands Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, 32610, FL, USA
| | | | | | | | | |
Collapse
|
77
|
Liu MH, Cheung E. Estrogen receptor-mediated long-range chromatin interactions and transcription in breast cancer. Mol Cell Endocrinol 2014; 382:624-632. [PMID: 24071518 DOI: 10.1016/j.mce.2013.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
Abstract
Estrogen induces the binding of ERα to thousands of locations in the breast cancer genome, preferring intergenic and distal regions rather than near the promoters of estrogen-regulated genes. With recent technological innovations in mapping and characterization of global chromatin organization, evidence now indicates ERα mediates long-range chromatin interactions to control gene transcription. The principles that govern how ERα communicates with their putative target genes via chromosomal interactions are also beginning to unravel. Herein, we summarize our current knowledge on the functional significance of chromatin looping in estrogen-mediated transcription. ERα collaborative factors and other players that contribute to define the genomic interactions in breast cancer cells will also be discussed. Defects in chromatin organization are emerging key players in diseases such as cancer, thus understanding how ERα-mediated chromatin looping affects genome organization will clarify the receptor's role in estrogen responsive pathways sensitive to defects in chromatin organization.
Collapse
Affiliation(s)
- Mei Hui Liu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; Cancer Biology and Pharmacology, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore
| | - Edwin Cheung
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore.
| |
Collapse
|
78
|
Wilczynski GM. Significance of higher-order chromatin architecture for neuronal function and dysfunction. Neuropharmacology 2014; 80:28-33. [PMID: 24456745 DOI: 10.1016/j.neuropharm.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 02/08/2023]
Abstract
Recent studies in neurons indicate that the large-scale chromatin architectural framework, including chromosome territories or lamina-associated chromatin, undergoes dynamic changes that represent an emergent level of regulation of neuronal gene-expression. This phenomenon has been implicated in neuronal differentiation, long-term potentiation, seizures, and disorders of neural plasticity such as Rett syndrome and epilepsy.
Collapse
Affiliation(s)
- Grzegorz M Wilczynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
79
|
Ragoczy T, Telling A, Scalzo D, Kooperberg C, Groudine M. Functional redundancy in the nuclear compartmentalization of the late-replicating genome. Nucleus 2014; 5:626-35. [PMID: 25493640 PMCID: PMC4615584 DOI: 10.4161/19491034.2014.990863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic nucleus is structurally and functionally organized, as reflected in the distribution of its protein and DNA components. The genome itself is segregated into euchromatin and heterochromatin that replicate in a distinct spatio-temporal manner. We used a combination of fluorescence in situ hybridization (FISH) and DamID to investigate the localization of the early and late replicating components of the genome in a lymphoblastoid cell background. Our analyses revealed that the bulk of late replicating chromatin localizes to the nuclear peripheral heterochromatin (PH) in a chromosome size and gene density dependent manner. Late replicating DNA on small chromosomes exhibits a much lower tendency to localize to PH and tends to associate with alternate repressive subcompartments such as pericentromeric (PCH) and perinucleolar heterochromatin (PNH). Furthermore, multicolor FISH analysis revealed that late replicating loci, particularly on the smaller chromosomes, may associate with any of these 3 repressive subcompartments, including more than one at the same time. These results suggest a functional equivalence or redundancy among the 3 subcompartments. Consistent with this notion, disruption of nucleoli resulted in an increased association of late replicating loci with peripheral heterochromatin. Our analysis reveals that rather than considering the morphologically distinct PH, PCH and PNH as individual subcompartments, they should be considered in aggregate as a functional compartment for late replicating chromatin.
Collapse
Key Words
- Chr, chromosome
- DamID
- DamID, Dam identification
- EU, 5-Ethynyl uridine
- FISH, fluorescence in situ hybridization
- LAD, lamina associated domain
- NOR, nucleolar organizing region
- PCH, pericentromeric heterochromatin
- PH, peripheral heterochromatin
- PNH, perinucleolar heterochromatin
- heterochromatin
- localization
- nuclear organization
- nuclear periphery, pericentromeric heterochromatin
- perinucleolar heterochromatin
- replication timing
- repressive compartments
Collapse
Affiliation(s)
- Tobias Ragoczy
- Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | - Agnes Telling
- Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | - David Scalzo
- Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | - Charles Kooperberg
- Division of Public Health Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | - Mark Groudine
- Division of Basic Sciences; Fred Hutchinson Cancer Research Center; Seattle, WA USA
- Department of Radiation Oncology; University of Washington School of Medicine; Seattle, WA USA
| |
Collapse
|
80
|
Deng W, Blobel GA. Manipulating nuclear architecture. Curr Opin Genet Dev 2013; 25:1-7. [PMID: 24584091 DOI: 10.1016/j.gde.2013.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is highly organized in the nucleus. Genes can be localized to specific nuclear compartments in a manner reflecting their activity. A plethora of recent reports has described multiple levels of chromosomal folding that can be related to gene-specific expression states. Here we discuss studies designed to probe the causal impact of genome organization on gene expression. The picture that emerges is that of a reciprocal relationship in which nuclear organization is not only shaped by gene expression states but also directly influences them.
Collapse
Affiliation(s)
- Wulan Deng
- Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
81
|
Texari L, Dieppois G, Vinciguerra P, Contreras MP, Groner A, Letourneau A, Stutz F. The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1. Mol Cell 2013; 51:807-18. [PMID: 24074957 DOI: 10.1016/j.molcel.2013.08.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022]
Abstract
Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation. Moreover, artificial tethering of the Ulp1 catalytic domain to the GAL1 locus enhances the derepression kinetics. Our results also indicate that Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed genes, and that a loss of Ssn6 sumoylation correlates with an increase in GAL1 derepression kinetics. Altogether, our data highlight a role for the NPC-associated SUMO protease Ulp1 in regulating the sumoylation of gene-bound transcription regulators, positively affecting transcription kinetics in the context of the NPC.
Collapse
Affiliation(s)
- Lorane Texari
- Department of Cell Biology, NCCR Frontiers in Genetics, iGE3, University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | |
Collapse
|
82
|
Bian Q, Khanna N, Alvikas J, Belmont AS. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. ACTA ACUST UNITED AC 2013; 203:767-83. [PMID: 24297746 PMCID: PMC3857487 DOI: 10.1083/jcb.201305027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple cis-elements surrounding the β-globin gene locus combine to target this locus to the nuclear periphery through at least two different epigenetic marks. Increasing evidence points to nuclear compartmentalization as a contributing mechanism for gene regulation, yet mechanisms for compartmentalization remain unclear. In this paper, we use autonomous targeting of bacterial artificial chromosome (BAC) transgenes to reveal cis requirements for peripheral targeting. Three peripheral targeting regions (PTRs) within an HBB BAC bias a competition between pericentric versus peripheral heterochromatin targeting toward the nuclear periphery, which correlates with increased H3K9me3 across the β-globin gene cluster and locus control region. Targeting to both heterochromatin compartments is dependent on Suv39H-mediated H3K9me3 methylation. In different chromosomal contexts, PTRs confer no targeting, targeting to pericentric heterochromatin, or targeting to the periphery. A combination of fluorescent in situ hybridization, BAC transgenesis, and knockdown experiments reveals that peripheral tethering of the endogenous HBB locus depends both on Suv39H-mediated H3K9me3 methylation over hundreds of kilobases surrounding HBB and on G9a-mediated H3K9me2 methylation over flanking sequences in an adjacent lamin-associated domain. Our results demonstrate that multiple cis-elements regulate the overall balance of specific epigenetic marks and peripheral gene targeting.
Collapse
Affiliation(s)
- Qian Bian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | | | | |
Collapse
|
83
|
Collas P, Lund EG, Oldenburg AR. Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression. Bioessays 2013; 36:75-83. [PMID: 24272858 DOI: 10.1002/bies.201300138] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear envelope shapes the functional organization of the nucleus. Increasing evidence indicates that one of its main components, the nuclear lamina, dynamically interacts with the genome, including the promoter region of specific genes. This seems to occur in a manner that accords developmental significance to these interactions. This essay addresses key issues raised by recent data on the association of nuclear lamins with the genome. We discuss how lamins interact with large chromatin domains and with spatially restricted regions on gene promoters. We address the relationship between these interactions, chromatin modifications and gene expression outcomes. Lamin-genome contacts are redistributed after cell division and during stem cell differentiation, with evidence of lineage specificity. Thus, we also speculate on a developmental role of lamin interactions with specific genes. Finally, we highlight how concepts arising from this recent work lay the foundations of future challenges and investigations.
Collapse
Affiliation(s)
- Philippe Collas
- Stem Cell Epigenetics Laboratory, Faculty of Medicine, Institute of Basic Medical Sciences, Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
84
|
Rosenberg M, Fan AX, Lin IJ, Liang SY, Bungert J. Cell-cycle specific association of transcription factors and RNA polymerase ii with the human β-globin gene locus. J Cell Biochem 2013; 114:1997-2006. [PMID: 23519692 DOI: 10.1002/jcb.24542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/05/2013] [Indexed: 12/28/2022]
Abstract
The human β-globin genes are regulated by a locus control region (LCR) and are expressed at extremely high levels in erythroid cells. How transcriptional fidelity of highly expressed genes is regulated and maintained during the cell cycle is not completely understood. Here, we analyzed the association of transcription factor USF, the co-activator CBP, topoisomerase I (Topo I), basal transcription factor TFIIB, and RNA polymerase II (Pol II) with the β-globin gene locus at specific cell-cycle stages. The data demonstrate that while association of Pol II with globin locus associated chromatin decreased in mitotically arrested cells, it remained bound at lower levels at the γ-globin gene promoter. During early S-phase, association of CBP, USF, and Pol II with the globin gene locus decreased. The re-association of CBP and USF2 with the LCR preceded re-association of Pol II, suggesting that these proteins together mediate recruitment of Pol II to the β-globin gene locus during S-phase. Finally, we analyzed the association of Topo I with the globin gene locus during late S-phase. In general, Topo I association correlated with the binding of Pol II. Inhibition of Topo I activity reduced Pol II binding at the LCR and intergenic regions but not at the γ-globin gene promoter. The data demonstrate dynamic associations of transcription factors with the globin gene locus during the cell cycle and support previous results showing that specific components of transcription complexes remain associated with highly transcribed genes during mitosis.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Alex Xiucheng Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - I-Ju Lin
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Shermi Y Liang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, 32610
| |
Collapse
|
85
|
Abstract
The mammalian nucleus is a highly complex structure that carries out a diverse range of functions such as DNA replication, cell division, RNA processing, and nuclear export/import. Many of these activities occur at discrete subcompartments that intersect with specific regions of the genome. Over the past few decades, evidence has accumulated to suggest that RNA transcription also occurs in specialized sites, called transcription factories, that may influence how the genome is organized. There may be certain efficiency benefits to cluster transcriptional activity in this way. However, the clustering of genes at transcription factories may have consequences for genome stability, and increase the susceptibility to recurrent chromosomal translocations that lead to cancer. The relationships between genome organization, transcription, and chromosomal translocation formation will have important implications in understanding the causes of therapy-related cancers.
Collapse
Affiliation(s)
- Cameron S Osborne
- Author's Affiliation: Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
86
|
Ritland Politz JC, Scalzo D, Groudine M. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 2013; 29:241-70. [PMID: 23834025 PMCID: PMC3999972 DOI: 10.1146/annurev-cellbio-101512-122317] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization.
Collapse
Affiliation(s)
| | - David Scalzo
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Groudine
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
87
|
Valdes-Quezada C, Arriaga-Canon C, Fonseca-Guzmán Y, Guerrero G, Recillas-Targa F. CTCF demarcates chicken embryonic α-globin gene autonomous silencing and contributes to adult stage-specific gene expression. Epigenetics 2013; 8:827-38. [PMID: 23880533 DOI: 10.4161/epi.25472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic loci composed of more than one gene are frequently subjected to differential gene expression, with the chicken α-globin domain being a clear example. In the present study we aim to understand the globin switching mechanisms responsible for the epigenetic silencing of the embryonic π gene and the transcriptional activation of the adult α(D) and α(A) genes at the genomic domain level. In early stages, we describe a physical contact between the embryonic π gene and the distal 3' enhancer that is lost later during development. We show that such a level of regulation is achieved through the establishment of a DNA hypermethylation sub-domain that includes the embryonic gene and the adjacent genomic sequences. The multifunctional CCCTCC-binding factor (CTCF), which is located upstream of the α(D) gene promoter, delimits this sub-domain and creates a transition between the inactive sub-domain and the active sub-domain, which includes the adult α(D) gene. In avian-transformed erythroblast HD3 cells that are induced to differentiate, we found active DNA demethylation of the adult α(D) promoter, coincident with the incorporation of 5-hydroxymethylcytosine (5hmC) and concomitant with adult gene transcriptional activation. These results suggest that autonomous silencing of the embryonic π gene is needed to facilitate an optimal topological conformation of the domain. This model proposes that CTCF is contributing to a specific chromatin configuration that is necessary for differential α-globin gene expression during development.
Collapse
Affiliation(s)
- Christian Valdes-Quezada
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México D.F., México
| | | | | | | | | |
Collapse
|
88
|
Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet 2013; 14:288-95. [PMID: 23503198 DOI: 10.1038/nrg3458] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is estimated that the human genome contains hundreds of thousands of enhancers, so understanding these gene-regulatory elements is a crucial goal. Several fundamental questions need to be addressed about enhancers, such as how do we identify them all, how do they work, and how do they contribute to disease and evolution? Five prominent researchers in this field look at how much we know already and what needs to be done to answer these questions.
Collapse
Affiliation(s)
- Len A Pennacchio
- Genomics Division, One Cyclotron Road, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
89
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
90
|
Ghamari A, van de Corput MP, Thongjuea S, van Cappellen WA, van IJcken W, van Haren J, Soler E, Eick D, Lenhard B, Grosveld FG. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev 2013; 27:767-77. [PMID: 23592796 PMCID: PMC3639417 DOI: 10.1101/gad.216200.113] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Transcription steps are marked by different modifications of the C-terminal domain of RNA polymerase II (RNAPII). Phosphorylation of Ser5 and Ser7 by cyclin-dependent kinase 7 (CDK7) as part of TFIIH marks initiation, whereas phosphorylation of Ser2 by CDK9 marks elongation. These processes are thought to take place in localized transcription foci in the nucleus, known as "transcription factories," but it has been argued that the observed clusters/foci are mere fixation or labeling artifacts. We show that transcription factories exist in living cells as distinct foci by live-imaging fluorescently labeled CDK9, a kinase known to associate with active RNAPII. These foci were observed in different cell types derived from CDK9-mCherry knock-in mice. We show that these foci are very stable while highly dynamic in exchanging CDK9. Chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) data show that the genome-wide binding sites of CDK9 and initiating RNAPII overlap on transcribed genes. Immunostaining shows that CDK9-mCherry foci colocalize with RNAPII-Ser5P, much less with RNAPII-Ser2P, and not with CDK12 (a kinase reported to be involved in the Ser2 phosphorylation) or with splicing factor SC35. In conclusion, transcription factories exist in living cells, and initiation and elongation of transcripts takes place in different nuclear compartments.
Collapse
Affiliation(s)
- Alireza Ghamari
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Supat Thongjuea
- Computational Biology Unit-Bergen Centre for Computational Science
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Wiggert A. van Cappellen
- Department of Reproduction and Development, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wilfred van IJcken
- Biomics Department, Erasmus Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Jeffrey van Haren
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Zentrum München, Center of Integrated Protein Science (CIPSM), D-81377 Munich, Germany
| | - Boris Lenhard
- Computational Biology Unit-Bergen Centre for Computational Science
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Frank G. Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
- Centre for Biomedical Genetics, 3015GE Rotterdam, the Netherlands
- Cancer Genomics Centre, 3015GE Rotterdam, the Netherlands
- Netherlands Consortium for Systems Biology, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
91
|
Martin LD, Harizanova J, Righolt CH, Zhu G, Mai S, Belch AR, Pilarski LM. Differential nuclear organization of translocation-prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes Chromosomes Cancer 2013; 52:523-37. [PMID: 23460268 DOI: 10.1002/gcc.22049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/08/2013] [Indexed: 11/08/2022] Open
Abstract
Gene organization in nonmalignant B cells from t(4;14) and t(11;14) multiple myeloma (MM) patients differs from that of healthy donors. Among recurrent IGH translocations in MM, the frequency of t(4;14) (IGH and FGFR3) or t(11;14) (IGH and CCND1) is greater than the frequency of t(14;16) (IGH and MAF). Gene organization in t(14;16) patients may influence translocation potential of MAF with IGH. In patients, three-dimensional FISH revealed the positions of IGH, CCND1, FGFR3, and MAF in nonmalignant B cells that are likely similar to those when MM first arose, compared with B cells from healthy donors. Overall, IGH occupies a more central nuclear position while MAF is more peripherally located. However, for B cells from t(4;14) and t(11;14) patients, IGH and FGFR3, or IGH and CCND1 are found in spatial proximity: IGH and MAF are not. This differs in B cells from t(14;16) patients and healthy donors where IGH is approximately equidistant to FGFR3, CCND1, and MAF, suggesting that gene organization in t(14;16) patients is different from that in t(4;14) or t(11;14) patients. Translocations between IGH and MAF may arise only in the absence of close proximity to the more frequent partners, as appears to be the case for individuals who develop t(14;16) MM.
Collapse
Affiliation(s)
- Lorri D Martin
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
92
|
Distinct chromatin configurations regulate the initiation and the maintenance of hGH gene expression. Mol Cell Biol 2013; 33:1723-34. [PMID: 23428872 DOI: 10.1128/mcb.01166-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many mammalian genes, initiation of transcription during embryonic development must be subsequently sustained over extensive periods of adult life. It remains unclear whether maintenance of gene expression reflects the same set of pathways as are involved in initial gene activation. The human pituitary growth hormone (hGH-N) locus is activated in the differentiating somatotrope midway through embryogenesis by a multicomponent locus control region (LCR). DNase I-hypersensitive site I (HSI) of the LCR is essential to full developmental activation of the hGH-N locus. Here we demonstrate that conditional deletion of HSI from the active hGH locus in the adult pituitary effectively silences hGH-N expression. Analyses of chromatin structure and locus positioning demonstrate that a specific subset of the HSI functions active in the embryo retain their HSI dependence in the adult pituitary. These functions sustain engagement of the hGH locus with polymerase II (Pol II) factories, histone acetylation at the hGH-N promoter, and looping of the LCR to its target promoter. These data reveal that HSI is essential to both the maintenance and the initiation phases of gene expression. These observations contribute to our mechanistic understanding of how stable patterns of mammalian gene expression are established in a terminally differentiated cell.
Collapse
|
93
|
Davidson S, Macpherson N, Mitchell JA. Nuclear organization of RNA polymerase II transcription. Biochem Cell Biol 2013; 91:22-30. [PMID: 23442138 DOI: 10.1139/bcb-2012-0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription occurs at distinct nuclear compartments termed transcription factories that are specialized for transcription by 1 of the 3 polymerase complexes (I, II, or III). Protein-coding genes appear to move in and out of RNA polymerase II (RNAPII) compartments as they are expressed and silenced. In addition, transcription factories are sites where several transcription units, either from the same chromosome or different chromosomes, are transcribed. Chromosomes occupy distinct territories in the interphase nucleus with active genes preferentially positioned on the periphery or even looped out of the territory. These chromosome territories have been observed to intermingle in the nucleus, and multiple interactions among different chromosomes have been identified in genome-wide studies. Deep sequencing of the transcriptome and RNAPII associated on DNA obtained by chromatin immunoprecipitation have revealed a plethora of noncoding transcription and intergenic accumulations of RNAPII that must also be considered in models of genome function. The organization of transcription into distinct regions of the nucleus has changed the way we view transcription with the evolving model for silencing or activation of gene expression involving physical relocation of the transcription unit to a silencing or activation compartment, thus, highlighting the need to consider the process of transcription in the 3-dimensional nuclear space.
Collapse
Affiliation(s)
- Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | | | | |
Collapse
|
94
|
Regulatory elements associated with paternally-expressed genes in the imprinted murine Angelman/Prader-Willi syndrome domain. PLoS One 2013; 8:e52390. [PMID: 23390487 PMCID: PMC3563663 DOI: 10.1371/journal.pone.0052390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.
Collapse
|
95
|
Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation. PLoS One 2013; 8:e53270. [PMID: 23301053 PMCID: PMC3534698 DOI: 10.1371/journal.pone.0053270] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. METHODOLOGY/PRINCIPAL FINDINGS Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. CONCLUSIONS/SIGNIFICANCE A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the full functional capacity of the mammary gland.
Collapse
|
96
|
Lin YC, Murre C. Nuclear location and the control of developmental progression. Curr Opin Genet Dev 2012; 23:104-8. [PMID: 23266214 DOI: 10.1016/j.gde.2012.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/09/2012] [Accepted: 11/19/2012] [Indexed: 11/30/2022]
Abstract
It is now well established that the mammalian genome is highly organized. Chromosomes are structured as territories that only sporadically intermingle. Chromosome territories themselves are segregated into distinct environments, that is, the transcriptionally inert/repressive (heterochromatic) and permissive (euchromatic) compartments. The transcriptionally permissive compartment is organized into domains (∼0.5-3 Mb) that consist of bundles of loops, are gene-rich and closely associated by activating epigenetic marks. During ontogeny and developmental progression chromatin states are highly dynamic. Recent studies have shown that loci and domains readily switch compartments. Switching nuclear neighborhoods is closely associated with changes in transcriptional activity and extensive chromatin reorganization. Here we discuss the implications of a dynamic genome and how it relates to the control of developmental progression.
Collapse
Affiliation(s)
- Yin C Lin
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States
| | | |
Collapse
|
97
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
98
|
Takebayashi SI, Ryba T, Gilbert DM. Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding. Nucleus 2012; 3:500-7. [PMID: 23023599 PMCID: PMC3515532 DOI: 10.4161/nucl.22318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We recently identified a set of chromosome domains that are early replicating uniquely in pluripotent cells. Their switch from early to late replication occurs just prior to germ layer commitment, associated with a stable form of gene silencing that is difficult to reverse. Here, we discuss results demonstrating that these domains are among the least sensitive regions in the genome to global digestion by either MNase or restriction enzymes. This inaccessible chromatin state persists whether these regions are in their physically distended early replicating or compact late replicating configuration, despite dramatic changes in 3D chromatin folding and long-range chromatin interactions, and despite large changes in transcriptional activity. This contrasts with the strong correlation between early replication, accessibility, transcriptional activity and open chromatin configuration that is observed genome-wide. We put these results in context with findings from other studies indicating that many structural (DNA sequence) and functional (density and activity of replication origins) properties of developmentally regulated replication timing ("switching") domains resemble properties of constitutively late replicating domains. This suggests that switching domains are a type of late replicating domain within which both replication timing and transcription are subject to unique or additional layers of control not experienced by the bulk of the genome. We predict that understanding the unusual structure of these domains will reveal a novel principle of chromosome folding.
Collapse
Affiliation(s)
| | - Tyrone Ryba
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| | - David M. Gilbert
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| |
Collapse
|
99
|
Abstract
There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | | | | |
Collapse
|
100
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
Affiliation(s)
- Sjoerd Holwerda
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|