51
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
52
|
Willet SG, Lewis MA, Miao ZF, Liu D, Radyk MD, Cunningham RL, Burclaff J, Sibbel G, Lo HYG, Blanc V, Davidson NO, Wang ZN, Mills JC. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 2018; 37:e98311. [PMID: 29467218 PMCID: PMC5881627 DOI: 10.15252/embj.201798311] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
In 1900, Adami speculated that a sequence of context-independent energetic and structural changes governed the reversion of differentiated cells to a proliferative, regenerative state. Accordingly, we show here that differentiated cells in diverse organs become proliferative via a shared program. Metaplasia-inducing injury caused both gastric chief and pancreatic acinar cells to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and re-enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. In kidney and liver regeneration and in human gastric metaplasia, mTORC1 also correlated with proliferation. In lysosome-defective Gnptab-/- mice, both metaplasia-associated gene expression changes and mTORC1-mediated proliferation were deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative using a sequential program with intervening checkpoints: (i) differentiated cell structure degradation; (ii) metaplasia- or progenitor-associated gene induction; (iii) cell cycle re-entry. We propose this program, which we term "paligenosis", is a fundamental process, like apoptosis, available to differentiated cells to fuel regeneration following injury.
Collapse
Affiliation(s)
- Spencer G Willet
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Lewis
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi-Feng Miao
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dengqun Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Megan D Radyk
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Cunningham
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Burclaff
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greg Sibbel
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hei-Yong G Lo
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Valerie Blanc
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
53
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
54
|
Hibdon ES, Samuelson LC. Cellular Plasticity in the Stomach: Insights Into the Cellular Origin of Gastric Metaplasia. Gastroenterology 2018; 154:801-803. [PMID: 29425924 PMCID: PMC6754248 DOI: 10.1053/j.gastro.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elise S. Hibdon
- Departments of Molecular & Integrative Physiology University of Michigan, Ann Arbor, MI 48109, USA
| | - Linda C. Samuelson
- Departments of Molecular & Integrative Physiology University of Michigan, Ann Arbor, MI 48109, USA,Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Radyk MD, Burclaff J, Willet SG, Mills JC. Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology 2018; 154:839-843.e2. [PMID: 29248442 PMCID: PMC5847468 DOI: 10.1053/j.gastro.2017.11.278] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM) develops in patients with chronic atrophic gastritis due to infection with Helicobacter pylori; it might be a precursor to intestinal metaplasia and gastric adenocarcinoma. Lineage tracing experiments of the gastric corpus in mice have not established whether SPEM derives from proliferating stem cells or differentiated, post-mitotic zymogenic chief cells in the gland base. We investigated whether differentiated cells can give rise to SPEM using a nongenetic approach in mice. Mice were given intraperitoneal injections of 5-fluorouracil, which blocked gastric cell proliferation, plus tamoxifen to induce SPEM. Based on analyses of molecular and histologic markers, we found SPEM developed even in the absence of cell proliferation. SPEM therefore did not arise from stem cells. In histologic analyses of gastric resection specimens from 10 patients with adenocarcinoma, we found normal zymogenic chief cells that were transitioning into SPEM cells only in gland bases, rather than the proliferative stem cell zone. Our findings indicate that SPEM can arise by direct reprogramming of existing cells-mainly of chief cells.
Collapse
Affiliation(s)
- Megan D Radyk
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joseph Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Spencer G Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
56
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
57
|
Spechler SJ, Merchant JL, Wang TC, Chandrasoma P, Fox JG, Genta RM, Goldenring JR, Hayakawa Y, Kuipers EJ, Lund PK, McKeon F, Mills JC, Odze RD, Peek RM, Pham T, Que J, Rustgi AK, Shaheen NJ, Shivdasani RA, Souza RF, Storz P, Todisco A, Wang DH, Wright NA. A Summary of the 2016 James W. Freston Conference of the American Gastroenterological Association: Intestinal Metaplasia in the Esophagus and Stomach: Origins, Differences, Similarities and Significance. Gastroenterology 2017; 153:e6-e13. [PMID: 28583825 PMCID: PMC5828164 DOI: 10.1053/j.gastro.2017.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stuart J Spechler
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas.
| | - Juanita L Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, New York
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - James R Goldenring
- Nashville VA Medical Center and the Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Japan
| | - Ernst J Kuipers
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pauline K Lund
- Division of Biomedical Research Workforce, Office of Extramural Research, National Institutes of Health, Bethesda, Maryland
| | - Frank McKeon
- Department of Biology Biochemistry, University of Houston, Texas
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert D Odze
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard M Peek
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thai Pham
- Esophageal Diseases Center, Department of Surgery, University of Texas Southwestern Medical Center and Surgical Service, Dallas VA Medical Center, Dallas, Texas
| | - Jianwen Que
- Department of Surgery, Division of Digestive and Liver Diseases, Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology & Hepatology, University of North Carolina, Chapel Hill, North Carolina
| | - Ramesh A Shivdasani
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rhonda F Souza
- Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Andrea Todisco
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan
| | - David H Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Medical Service, Dallas VA Medical Center, Dallas, Texas
| | - Nicholas A Wright
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| |
Collapse
|
58
|
Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 2017; 114:E3830-E3838. [PMID: 28439016 DOI: 10.1073/pnas.1617782114] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Local translation in neuronal processes is key to the alteration of synaptic strength necessary for long-term potentiation, learning, and memory. Here, we present evidence that regulated de novo protein synthesis occurs within distal, perisynaptic astrocyte processes. Astrocyte ribosomal proteins are found adjacent to synapses in vivo, and immunofluorescent detection of peptide elongation in acute slices demonstrates robust translation in distal processes. We have also developed a biochemical approach to define candidate transcripts that are locally translated in astrocyte processes. Computational analyses indicate that astrocyte-localized translation is both sequence-dependent and enriched for particular biological functions, such as fatty acid synthesis, and for pathways consistent with known roles for astrocyte processes, such as GABA and glutamate metabolism. These transcripts also include glial regulators of synaptic refinement, such as Sparc Finally, the transcripts contain a disproportionate amount of a binding motif for the quaking RNA binding protein, a sequence we show can significantly regulate mRNA localization and translation in the astrocytes. Overall, our observations raise the possibility that local production of astrocyte proteins may support microscale alterations of adjacent synapses.
Collapse
|