51
|
Abstract
SecA is found in Escherichia coli both tightly associated with the cytoplasmic membrane where it functions as a translocation ATPase during protein export and free in the cytosol (R. J. Cabelli, K. M. Dolan, L. Qian, and D. B. Oliver, J. Biol. Chem. 266:24420-24427, 1991; D. B. Oliver and J. Beckwith, Cell 30:311-319, 1982; W. Wickner, A. J. M. Driessen, and F.-U. Hartl, Annu. Rev. Biochem. 60:101-124, 1991). Here we show that SecA can be immunoprecipitated from the cytosol in complex with both fully elongated and nascent species of the precursor of maltose-binding protein, an exported, periplasmic protein. In addition, under conditions in which the distribution of SecA between the cytosolic and membrane-bound states changes from that normally observed, the distribution of precursor maltose-binding protein changes in parallel. These results support the idea that cytosolic SecA plays a role in export. With the aim of determining the roles of the multiple binding sites for ATP on SecA, we compared the export defect in a culture of E. coli expressing a temperature-sensitive allele of secA with the defect in a culture treated with sodium azide. The results indicate that the mutational change and treatment with sodium azide inhibit export by affecting different steps in the cycle of ATP binding and hydrolysis by SecA.
Collapse
Affiliation(s)
- S Y Chun
- Department of Biochemistry and Biophysics, Washington State University, Pullman 99164-4660
| | | |
Collapse
|
52
|
Tokuda H. Biochemical characterization of the presecretory protein translocation machinery of Escherichia coli. FEBS Lett 1994; 346:65-8. [PMID: 8206160 DOI: 10.1016/0014-5793(94)00317-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The protein translocation apparatus in Escherichia coli has been studied both genetically and biochemically. In vitro protein translocation systems involving everted membrane vesicles or reconstituted proteoliposomes have significantly contributed to biochemical clarification of the structure, mechanism and energetics of the apparatus. It is established that SecA, SecY and SecE are essential components, and play fundamental roles in the translocation reaction, and that both ATP and a proton motive force are required for the translocation. A new membrane factor, SecG, was found to participate in the formation of the apparatus, causing significant enhancement of the activity. SecD was found to play a role in the release of translocated proteins from the outer surface of the cytoplasmic membrane.
Collapse
Affiliation(s)
- H Tokuda
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| |
Collapse
|
53
|
Taura T, Akiyama Y, Ito K. Genetic analysis of SecY: additional export-defective mutations and factors affecting their phenotypes. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:261-9. [PMID: 8190079 DOI: 10.1007/bf00301061] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of secY mutants of Escherichia coli showing protein export defects were isolated by a combination of localized mutagenesis and secA-lacZ screening. Most of them were cold sensitive and contained single base substitutions in secY leading to amino acid replacements in various parts of the SecY protein, mainly in the cytoplasmic and the transmembrane domains. A temperature-sensitive mutant with an export defect had the same base substitution as secY24, which was characterized previously. Many cold-sensitive secY mutants exhibited rapid responses to temperature lowering but their apparent defects varied at the permissive temperature. Others exhibited delayed responses to the temperature shift. Some secY mutations, including secY39, interfered with protein export when expressed from a multicopy plasmid, even in the presence of wild-type secY on the chromosome. Such "dominant negative" mutations, including secY-d1, which was studied previously, were all located in either cytoplasmic domain 5 or 6, which is consistent with our previous proposal that the C-terminal region of SecY is important for its function as a protein translocator. We also studied the phenotypes of strains in which one of the secY mutations was combined with the components of the secD operon. Overexpression of secD partially suppressed the secY39 mutation, while overexpression of secF exacerbated the export defects of secY122 and secY125 mutations. Overexpression of "yajC", located within the secD operon, suppressed secY-d1. Although yajC itself proved to be dispensable, its disruption impaired the growth of the secY39 mutant at 42 degrees C. These observations suggest that SecY interacts with SecD, SecF, and the product of yajC.
Collapse
Affiliation(s)
- T Taura
- Department of Cell Biology, Kyoto University, Japan
| | | | | |
Collapse
|
54
|
Murphy CK, Beckwith J. Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region. Proc Natl Acad Sci U S A 1994; 91:2557-61. [PMID: 8146153 PMCID: PMC43408 DOI: 10.1073/pnas.91.7.2557] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protein export in Escherichia coli is absolutely dependent on two integral membrane proteins, SecY and SecE. Previous deletion mutagenesis of the secE gene showed that only the third of three membrane-spanning segments and a portion of the second cytoplasmic region are necessary for its function in protein export. Here we further define the residues important for SecE function. Alignment of the SecE homologues of various eubacteria reveals that they all contain one membrane-spanning segment, compared with three in E. coli SecE, and that the most conserved region among them lies in their putative cytoplasmic amino termini; little homology exists in their membrane-spanning segments. The SecE homologue of the extreme thermophilic bacterium Thermotoga maritima was cloned and found to complement a deletion of secE in E. coli. Deletion or replacement of the cytoplasmic region of E. coli SecE eliminated SecE function, indicating that this sequence is essential for a functional secretion machinery. Mutant analysis suggests that the most important function of the third membrane-spanning segment is to maintain the proper topological arrangement of the conserved cytoplasmic domain.
Collapse
Affiliation(s)
- C K Murphy
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
55
|
Meens J, Klose M, Freudl R. The Staphylococcus carnosus secE gene: cloning, nucleotide sequence, and functional characterization in Escherichia coli secE mutant strains. FEMS Microbiol Lett 1994; 117:113-9. [PMID: 8181706 DOI: 10.1111/j.1574-6968.1994.tb06751.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNA fragment containing the genes secE, nusG and rplK of Staphylococcus carnsosus was cloned using the Escherichia coli rplK gene as a probe. The S. carnosus secE homologue encodes a protein of 65 amino acid residues which is homologous to the carboxyl-terminal region of the E. coli SecE protein. The S. carnosus SecE polypeptide which, in contrast to the E. coli SecE protein, contains only one putative transmembrane segment, could fully replace the E. coli SecE protein in two different secE mutants. These results strongly suggest that the identified secE gene encodes an important component of the S. carnosus protein export apparatus.
Collapse
Affiliation(s)
- J Meens
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, FRG
| | | | | |
Collapse
|
56
|
Abstract
Transiently stable products derived from the endonuclease cleavage of transcripts from the secEnusG and rplKAJLrpoBC operons have been identified. Cleavage sites for RNase III occur in the leader of the secEnusG transcript and in the L12-beta intercistronic space of the rplKAJLrpoBC transcript. A single RNase E cleavage site was located in the L1-L10 intergenic space. Inactivation of RNase III and RNase E results respectively in a one- to twofold and a greater than 10-fold stabilization of five mRNA sequences from within the secE, nusG, L11-L1, L10 and beta encoding cistrons. The relative amounts of each of these five mRNA sequences were found to be nearly constant when measured either in the presence or absence of cleavage by RNase III or RNase E. This clearly implies that any increases in the stability of these mRNA sequences resulting from the inactivation of processing by RNase III or RNAase E are counterbalanced by changes in the mRNA synthesis rates. The mechanism that links mRNA synthesis to mRNA decay is not known.
Collapse
Affiliation(s)
- J Chow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver
| | | |
Collapse
|
57
|
Pérez-Pérez J, Márquez G, Barbero JL, Gutiérrez J. Increasing the efficiency of protein export in Escherichia coli. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:178-80. [PMID: 7764432 DOI: 10.1038/nbt0294-178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Export of recombinant proteins to the periplasm of Escherichia coli is in many cases preferable to cytoplasmic production. However, when the protein is overexpressed, export efficiency decreases significantly and some advantages of the system are lost. This is what happens when attempting to produce recombinant human interleukin-6 (hIL-6) as a pre(OmpA) fusion in E. coli. Assuming that the host protein export machinery becomes overloaded, we have tested the effect of providing the host with additional copies of two key components of that machinery. Supplementation with a plasmid bearing prlA4 (secY allele) and secE genes increased the ratio of mature to precursor hIL-6 from 1.2 to 10.8. The increase in processing ratio was associated with the accumulation of a larger amount of total (mature plus precursor forms) hIL-6. Providing a plasmid-borne wild-type prlA was ineffective compared to prlA4 allele. This suggests that the PrlA protein, a component of the translocator, recognizes features at the mature portion of secretory substrates independently of those at the signal peptide portion.
Collapse
Affiliation(s)
- J Pérez-Pérez
- Research Department, Antibióticos Farma S.A. Antonio López, Madrid, Spain
| | | | | | | |
Collapse
|
58
|
Palmen R, Driessen AJ, Hellingwerf KJ. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1183:417-51. [PMID: 8286395 DOI: 10.1016/0005-2728(94)90072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteria are extremely versatile in the sense that they have gained the ability to transport all three major classes of biopolymers through their cell envelope: proteins, nucleic acids, and polysaccharides. These macromolecules are translocated across membranes in a large number of cellular processes by specific translocation systems. Members of the ABC (ATP binding cassette) superfamily of transport ATPases are involved in the translocation of all three classes of macromolecules, in addition to unique transport ATPases. An intriguing aspect of these transport processes is that the barrier function of the membrane is preserved despite the fact the dimensions of the translocated molecules by far surpasses the thickness of the membrane. This raises questions like: How are these polar compounds translocated across the hydrophobic interior of the membrane, through a proteinaceous pore or through the lipid phase; what drives these macromolecules across the membrane; which energy sources are used and how is unidirectionality achieved? It is generally believed that macromolecules are translocated in a more or less extended, most likely linear form. A recurring theme in the bioenergetics of these translocation reactions in bacteria is the joint involvement of free energy input in the form of ATP hydrolysis and via proton sym- or antiport, driven by a proton gradient. Important similarities in the bioenergetic mechanisms of the translocation of these biopolymers therefore may exist.
Collapse
Affiliation(s)
- R Palmen
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
59
|
Miyake K, Onaka H, Horinouchi S, Beppu T. Organization and nucleotide sequence of the secE-nusG region of Streptomyces griseus. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0167-4781(94)90130-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Affiliation(s)
- M Müller
- Institut für Physikalische Biochemie, Universität München, Germany
| | | |
Collapse
|
61
|
Affiliation(s)
- V Géli
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
62
|
Taura T, Baba T, Akiyama Y, Ito K. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J Bacteriol 1993; 175:7771-5. [PMID: 8253665 PMCID: PMC206951 DOI: 10.1128/jb.175.24.7771-7775.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
While SecY in wild-type Escherichia coli cells is stable and is complexed with other proteins within the membrane, moderately overexpressed and presumably uncomplexed SecY was degraded with a half-life of 2 min. The fact that the amount of stable SecY is strictly regulated by the degradation of excess SecY was demonstrated by competitive entry of the SecY+ protein and a SecY-LacZ alpha fusion protein into the stable pool. Simultaneous overexpression of SecE led to complete stabilization of excess SecY. Overproduced SecD and SecF did not affect the stability of SecY, but plasmids carrying ORF12 located within the secD-secF operon partially stabilized this protein. In contrast, mutational reduction of the SecE content (but not the ORF12 content) led to the appearance of two populations of newly synthesized SecY molecules, one that was immediately degraded and one that was completely stable. Thus, the E. coli cell is equipped with a system that eliminates SecY unless it is complexed with SecE, a limiting partner of SecY. Our observations implied that in wild-type cells, SecY and SecE rapidly associate with each other and remain complexed.
Collapse
Affiliation(s)
- T Taura
- Department of Cell Biology, Kyoto University, Japan
| | | | | | | |
Collapse
|
63
|
Kosic N, Sugai M, Fan CK, Wu HC. Processing of lipid-modified prolipoprotein requires energy and sec gene products in vivo. J Bacteriol 1993; 175:6113-7. [PMID: 8407783 PMCID: PMC206704 DOI: 10.1128/jb.175.19.6113-6117.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The kinetics of processing of glyceride-modified prolipoprotein that accumulated in globomycin-treated Escherichia coli has been found to be affected by sec mutations, i.e., secA, secE, secY, secD, and secF, and by metabolic poisons which affect proton motive force (PMF). The effect of sec mutations on processing of glyceride-modified prolipoprotein in vivo was not due to a secondary effect on PMF. Neither a secF mutation nor metabolic poisons affected the processing of previously accumulated proOmpA protein in vivo, suggesting that the requirements for functional sec gene products and PMF are specific to the processing of lipoprotein precursors by signal peptidase II.
Collapse
Affiliation(s)
- N Kosic
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | |
Collapse
|
64
|
Jeong SM, Yoshikawa H, Takahashi H. Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol Microbiol 1993; 10:133-42. [PMID: 7968510 DOI: 10.1111/j.1365-2958.1993.tb00910.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 4.0 kb EcoRI fragment of Bacillus subtilis conferring thiostrepton resistance was cloned and characterized. By nucleotide sequencing of the relevant region, six open reading frames were established, which corresponded to a part of spo0H, a ribosomal protein gene (rpmG), an unidentified open reading frame (orfE), a transcription antiterminator gene nusG, and ribosomal protein genes rplK and rplA. The orfE-encoded 59-amino-acid polypeptide had a low, but significant, sequence similarity with the carboxy-terminal region of the Escherichia coli SecE protein. A cold-sensitive secE mutation of E. coli was complemented by the plasmid-borne orfE sequence. Furthermore, the normal processing of a proOmpA protein was observed when the secE cold-sensitive strain carried an orfE plasmid, indicating that orfE is the secE homologue of B. subtilis. The B. subtilis secE has only one transmembrane sequence compared to the three in E. coli.
Collapse
Affiliation(s)
- S M Jeong
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | |
Collapse
|
65
|
Sherman MY, Goldberg AL. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation. Proc Natl Acad Sci U S A 1993; 90:8648-52. [PMID: 8378342 PMCID: PMC47415 DOI: 10.1073/pnas.90.18.8648] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The "molecular chaperone", dnaK, is induced in Escherichia coli upon heat shock and promotes ATP-dependent refolding or degradation of damaged proteins. When cells were grown at 25 degrees C and disrupted, a small fraction of the dnaK bound to affinity columns containing unfolded polypeptides (e.g., a fusion protein named CRAG or casein) and could be dissociated by ATP-Mg2+. After shifting cells to 42 degrees C for 30 min, up to 5-fold more dnaK bound to these columns than after growth at 25 degrees C. This enhanced binding capacity was reversed after shifting cells back to 25 degrees C. It resulted from a covalent modification, which decreases dnaK's electrophoretic mobility and isoelectric point. This modification appears to be phosphorylation; after treatment with phosphatases, the ATP-eluted dnaK resembled the predominant form in electrophoretic and binding properties. In addition, after incubating cells with [32P]orthophosphate at 42 degrees C, the 32P-labeled dnaK bound quantitatively to the CRAG column, unlike the nonlabeled protein. Thus, the phosphorylated dnaK is a special form of the chaperone with enhanced affinity for unfolded proteins. Its accumulation at high temperatures may account for dnaK's function as the "cellular thermometer."
Collapse
Affiliation(s)
- M Y Sherman
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
66
|
Francetić O, Hanson MP, Kumamoto CA. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli. J Bacteriol 1993; 175:4036-44. [PMID: 8320219 PMCID: PMC204832 DOI: 10.1128/jb.175.13.4036-4044.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An Escherichia coli strain containing a signal sequence mutation in the periplasmic maltose-binding protein (MBP) (malE18-1) and a point mutation in the soluble export factor SecB (secBL75Q) is completely defective in export of MBP and unable to grow on maltose (Mal- phenotype). We isolated 95 spontaneous Mal+ revertants and characterized them genetically. Three types of extragenic suppressors were identified: informational (missense) suppressors, a bypass suppressor conferring the Mal+ phenotype in the absence of MBP, and suppressors affecting the prlA gene, which encodes a component of the protein export apparatus. In this study, a novel prlA allele, designated prlA1001 and mapping in the putative second transmembrane domain of the PrlA (SecY) protein, was found. In addition, we isolated a mutation designated prlA1024 which is identical to prlA4-2, the mutation responsible for the signal sequence suppression in the prlA4 (prlA4-1 prlA4-2) double mutant (T. Sako and T. Iino, J. Bacteriol. 170:5389-5391, 1988). Comparison of the prlA1024 mutant and the prlA4 double mutant provides a possible explanation for the isolation of these prlA alleles.
Collapse
Affiliation(s)
- O Francetić
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
67
|
Hobson AH, Buckley CM, Aamand JL, Jørgensen ST, Diderichsen B, McConnell DJ. Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci U S A 1993; 90:5682-6. [PMID: 7685908 PMCID: PMC46785 DOI: 10.1073/pnas.90.12.5682] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone.
Collapse
Affiliation(s)
- A H Hobson
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
68
|
Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 1993; 8:727-37. [PMID: 8332065 DOI: 10.1111/j.1365-2958.1993.tb01616.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations of the prsA gene of Bacillus subtilis have indicated that the gene is involved in protein secretion and it encodes a novel component of the cellular secretion machinery. We now demonstrate that the gene product is a membrane-associated lipoprotein, presumably bound to the outer face of the cytoplasmic membrane. Experiments to inactivate the prsA gene with insertions indicated that it is indispensable for viability. The cellular level of PrsA protein was shown to be decreased in prsA mutants with decreased level of exoproteins, consistent with an essential function in protein secretion. An increased amount of cellular PrsA protein was introduced by increasing the copy number of prsA in B. subtilis. This enhanced, from six- to twofold, the secretion of alpha-amylases and a protease in strains, which expressed high levels of these exoenzymes. This suggests that PrsA protein is the rate-limiting component of the secretion machinery, a finding that is of considerable biotechnological interest.
Collapse
Affiliation(s)
- V P Kontinen
- Department of Molecular Bacteriology, National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|
69
|
Kawasaki S, Mizushima S, Tokuda H. Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53081-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
70
|
Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53638-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
71
|
Liao D, Dennis P. The organization and expression of essential transcription translation component genes in the extremely thermophilic eubacterium Thermotoga maritima. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50016-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
72
|
Scaramuzzi CD, Hiller RG, Stokes HW. Identification of a chloroplast-encoded secA gene homologue in a chromophytic alga: possible role in chloroplast protein translocation. Curr Genet 1992; 22:421-7. [PMID: 1423730 DOI: 10.1007/bf00352444] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SecA is one of seven Sec proteins that comprise the prokaryotic protein translocation apparatus. A chloroplast-encoded secA gene has been identified from the unicellular chromophytic alga Pavlova lutherii. The gene predicts a protein that is related to the SecA proteins of Escherichia coli and Bacillus subtilis. The presence of secA, as well as the previously described secY and hsp70 genes, on the chloroplast genome of P. lutherii suggests that this eukaryotic organism utilises protein translocation mechanisms similar to those of bacterial cells.
Collapse
Affiliation(s)
- C D Scaramuzzi
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
73
|
Tschauder S, Driessen AJ, Freudl R. Cloning and molecular characterization of the secY genes from Bacillus licheniformis and Staphylococcus carnosus: comparative analysis of nine members of the SecY family. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:147-52. [PMID: 1435726 DOI: 10.1007/bf00286192] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SecY is a central component of the export machinery that mediates the translocation of secretory proteins across the plasma membrane of Escherichia coli. We have cloned and sequenced the secY genes from Bacillus licheniformis and Staphylococcus carnosus. The deduced amino acid sequences are highly homologous to those of other known SecY polypeptides, all having the potential to form 10 transmembrane segments. Comparative analysis of 9 SecY polypeptides, derived from different bacteria, revealed that 14 amino acid positions (2.7%) are identical in all SecY proteins and 89 (16.9%) show conservative changes. Clusters of conserved amino acid residues were found in 4 of the 10 transmembrane segments and 2 of the 6 cytoplasmic domains. It is suggested that the conserved regions might be involved in the translocation activity of SecY or might be required for the correct interaction of SecY with other components of the secretion apparatus.
Collapse
Affiliation(s)
- S Tschauder
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, FRG
| | | | | |
Collapse
|
74
|
Swidersky UE, Rienhöfer-Schweer A, Werner PK, Ernst F, Benson SA, Hoffschulte HK, Müller M. Biochemical analysis of the biogenesis and function of the Escherichia coli export factor SecY. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:803-11. [PMID: 1633829 DOI: 10.1111/j.1432-1033.1992.tb17111.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SecY is an integral plasma-membrane protein of Escherichia coli which is essential for the export of periplasmic and outer-membrane proteins containing cleavable signal sequences. We have synthesized SecY in vitro using an E. coli transcription/translation system. In the absence of membranes, SecY remained largely soluble but cosedimented on sucrose gradients with the membrane fraction when inside-out plasma-membrane vesicles (INV) had been added cotranslationally. Membrane association of SecY was unaffected if the endogenous SecY of the INV had been inactivated by either antibodies, a mutation or trypsin treatment. In contrast, inactivation of the INV SecY interfered with membrane targeting and, consequently, the processing of precursors to beta-lactamase and lambda receptor. When SecY-deprived INV were, however, first functionally reconstituted with in-vitro-synthesized SecY, targeting and translocation of the lambda receptor were partially restored. Thus, the assembly of SecY into INV in vitro leads to an active enzyme. In addition, we show that the prlA4 allele of the secY gene suppresses signal-sequence mutations of the lambda receptor in vitro. Collectively, our results demonstrate that SecY, while functioning as a membrane-located receptor for precursors of exported proteins, appears to be virtually independent of pre-existing SecY for its own membrane integration.
Collapse
Affiliation(s)
- U E Swidersky
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
75
|
Matsuyama S, Fujita Y, Sagara K, Mizushima S. Overproduction, purification and characterization of SecD and SecF, integral membrane components of the protein translocation machinery of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:77-84. [PMID: 1633199 DOI: 10.1016/0167-4838(92)90130-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SecD and SecF proteins were overproduced by means of recombinant DNA technology. Immunoblot and amino-acid sequencing analysis revealed that the overproduced proteins are SecD and SecF. The SecD- or SecF-overproduced membrane fraction was subjected to differential solubilization. The SecD protein was then purified through ion-exchange and size-exclusion chromatographies. The SecF protein was purified through size exclusion chromatography. Proteoliposomes reconstituted from the purified SecD and SecF together with SecE and SecY were used to analyze the translocation activity. SecD and SecF did not exhibit significant effects on the translocation activity of proteoliposomes. The amounts of SecD and SecF in overproducers were determined densitometrically on a stained SDS gel and their overproduction (fold) was determined by means of immunoblot analysis. Then the number of these molecules in one normal cell were estimated. From these numbers, together with those of other Sec proteins, the number of the translocation machinery existing in one Escherichia coli cell was inferred to be around 500.
Collapse
Affiliation(s)
- S Matsuyama
- Institute of Applied Microbiology, University of Tokyo, Yayoi, Japan
| | | | | | | |
Collapse
|
76
|
von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992; 225:487-94. [PMID: 1593632 DOI: 10.1016/0022-2836(92)90934-c] [Citation(s) in RCA: 1221] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for predicting the topology of bacterial inner membrane proteins is proposed on the basis of hydrophobicity analysis, automatic generation of a set of possible topologies and ranking of these according to the positive-inside rule. A straightforward implementation with no attempts at optimization predicts the correct topology for 23 out of 24 inner membrane proteins with experimentally determined topologies, and correctly identifies 135 transmembrane segments with only one overprediction.
Collapse
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute Center for Structural Biochemistry, Huddinge, Sweden
| |
Collapse
|
77
|
Abstract
Gram-positive bacteria often secrete large amounts of proteins into the surrounding medium. This feature makes them attractive as hosts for the industrial production of extracellular enzymes. Compared to Escherichia coli, relatively little is known about the mechanism of protein secretion in these organisms. However, the recent identification of Bacillus subtilis genes whose gene products are highly homologous to some of the Sec (secretion) proteins of E. coli strongly suggests that important principles of protein translocation across the plasma membrane might be highly conserved. In contrast, the steps following the actual translocation event might be different in Gram-positive and Gram-negative bacteria. The scope of this review is to outline the recent progress that has been made in the elucidation of the secretion pathway in Gram-positive bacteria and to discuss potential applications in strain improvement for the industrial production of extracellular proteins.
Collapse
Affiliation(s)
- R Freudl
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, F.R.G
| |
Collapse
|
78
|
Hanke C, Hess J, Schumacher G, Goebel W. Processing by OmpT of fusion proteins carrying the HlyA transport signal during secretion by the Escherichia coli hemolysin transport system. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:42-8. [PMID: 1603076 DOI: 10.1007/bf00587559] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fusion gene (ces-hlyAs) was constructed by ligating the genetic information for the C-terminal 60 amino acids (hlyAs) of Escherichia coli hemolysin (HlyA) to the ces gene for a cholesterol esterase/lipase (CE) from a Pseudomonas species. Part (about 30%) of the expressed fusion protein CE-HlyAs was secreted in E. coli carrying hlyB and hlyD genes. Following the insertion between the reporter gene and hlyAs of a linker sequence that contains the information for potential cleavage sites for the outer membrane protease OmpT, two different fusion proteins (PhoA-HlyAs and CE-HlyAs) were shown to be cleaved by OmpT between the two parts during HlyB/HlyD-mediated secretion. Processed PhoA and CE accumulated in the supernatant. The efficiency of cleavage by OmpT was considerably improved by increased ompT gene dose. It was further shown that OmpT preferentially recognizes potential cleavage sites within the linker sequence.
Collapse
Affiliation(s)
- C Hanke
- Institut für Genetik und Mikrobiologie, University of Würzburg, FRG
| | | | | | | |
Collapse
|
79
|
Nishiyama K, Mizushima S, Tokuda H. The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50553-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
80
|
Sugai M, Wu HC. Export of the outer membrane lipoprotein is defective in secD, secE, and secF mutants of Escherichia coli. J Bacteriol 1992; 174:2511-6. [PMID: 1556071 PMCID: PMC205889 DOI: 10.1128/jb.174.8.2511-2516.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The export of major outer membrane lipoprotein has been found to be affected in secD, secE, and secF mutants of Escherichia coli, which are defective in protein export in general. After a shift to the nonpermissive temperature, the kinetics of accumulation of prolipoprotein and pre-OmpA protein was indistinguishable from that of pre-OmpA protein accumulation in the secD and secF mutants but different in the secE mutant. The prolipoprotein accumulated in the secD, secE, and secF mutants at the nonpermissive temperature was not modified with glyceride. We conclude from these results and those of previous studies that the export of lipoprotein requires all common sec gene products except the SecB protein, i.e., the SecA, SecD, SecE, SecF, and SecY proteins.
Collapse
Affiliation(s)
- M Sugai
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
81
|
Breukink E, Demel RA, de Korte-Kool G, de Kruijff B. SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry 1992; 31:1119-24. [PMID: 1531180 DOI: 10.1021/bi00119a021] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SecA-lipid interactions are believed to be important for the translocation of precursor proteins across the inner membrane of Escherichia coli [Lill, R., Dowhan, W., & Wickner, W. (1990) Cell 60, 271-280]. SecA insertion into the phospholipid bilayer could a role in this process. We investigated this possibility by studying the interactions between SecA and different phospholipids using the monolayer technique. It was established that SecA is surface-active and can insert into lipid monolayers. This insertion was greatly enhanced by the negatively charged lipids DOPG and Escherichia coli cardiolipin. Insertion of SecA into these negatively charged lipids could be detected up to initial surface pressures of 34 mN/m for DOPG and 36 mN/m for Escherichia coli cardiolipin, implying a possible role for negatively charged lipids in the insertion of SecA in biological membranes. High salt concentrations did not inhibit the SecA insertion into DOPG monolayers, suggesting not only an electrostatic but also a hydrophobic interaction of SecA with the lipid monolayer. ATP decreased both the insertion (factor 2) and binding (factor 3) of SecA to DOPG monolayers. ADP and phosphate gave a decrease in the SecA insertion to the same extent as ATP, but the binding of SecA was only slightly reduced. AMP-PNP and ATP-gamma-S did not have large effects on the insertion or on the binding of SecA to DOPG monolayers. The physiological significance of these results in protein translocation is discussed.
Collapse
Affiliation(s)
- E Breukink
- Department of Biochemistry of Membranes, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
82
|
Brundage L, Fimmel C, Mizushima S, Wickner W. SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50643-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
83
|
Sullivan SL, Ward DF, Gottesman ME. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination. J Bacteriol 1992; 174:1339-44. [PMID: 1531224 PMCID: PMC206430 DOI: 10.1128/jb.174.4.1339-1344.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Escherichia coli Nus factors act in conjunction with the bacteriophage lambda N protein to suppress transcription termination on the lambda chromosome. NusA binds both N and RNA polymerase and may also interact with other Nus factors. To search for additional components of the N antitermination system, we isolated host revertants that restored N activity in nusA1 mutants. One revertant, nusG4, was mapped to the rif region of the E. coli chromosome and shown to represent a point mutation near the 3' end of the nusG gene. The nusG4 mutation also suppressed nusE71 but not nusASal, nusB5, nusC60 (rpoB60), or nusD026 (rho026). However, nusG+ expressed from a multicopy plasmid suppressed nusD026 and related rho mutants for both lambda and phage T4 growth. These results suggest that NusG may act as a component of the N antitermination complex. In addition, the data imply a role for NusG in Rho-dependent termination.
Collapse
Affiliation(s)
- S L Sullivan
- Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
84
|
Chapter 3 Molecular characterization of Sec proteins comprising the protein secretory machinery of Escherichia coli. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
85
|
McGovern K, Beckwith J. Membrane insertion of the Escherichia coli MalF protein in cells with impaired secretion machinery. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54790-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
86
|
Schmidt MG, Dolan KM, Oliver DB. Regulation of Escherichia coli secA mRNA translation by a secretion-responsive element. J Bacteriol 1991; 173:6605-11. [PMID: 1833384 PMCID: PMC208998 DOI: 10.1128/jb.173.20.6605-6611.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Escherichia coli secA gene, whose translation is responsive to the proficiency of protein export within the cell, is the second gene in a three-gene operon and is flanked by gene X and mutT. By using gene fusion and oligonucleotide-directed mutagenesis techniques, we have localized this translationally regulated site to a region at the end of gene X and the beginning of secA. This region has been shown to bind SecA protein in vitro. These studies open the way for a direct investigation of the mechanism of secA regulation and its coupling to the protein secretion capability of the cell.
Collapse
Affiliation(s)
- M G Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425
| | | | | |
Collapse
|
87
|
Abstract
The in vivo process of membrane protein integration was studied by pulse-labelling Escherichia coli cells, and assessing integral anchoring of labelled proteins to the lipid bilayer based on their resistance to alkali extraction. To conduct this experiment, conditions for extracting E. coli proteins with alkali were refined, and the immunoprecipitation procedures were improved to allow effective detection of integral membrane proteins. Examination of pulse-labelled, integral membrane proteins, including lactose permease (LacY), SecY, cytochrome omicron subunit II and leader peptidase revealed that all were in the alkali-insoluble fraction, indicating that membrane integration of these proteins takes place rapidly in wild-type cells. However, when LacY was synthesized in excess from a multicopy plasmid, significant proportions were found in the alkali-soluble fraction, indicating that the solubility in alkali is not an intrinsic property of the protein, and suggesting that LacY depends on some limited cellular factor for membrane integration. The unintegrated species of LacY sedimented slowly through an alkaline sucrose gradient. The secY24 mutant cells accumulated higher proportions of unintegrated LacY molecules at lower levels of overproduction than the sec+ cells. LacY overproduction in wild-type cells was found to inhibit processing (export) of beta-lactamase but not of OmpA and OmpF. These results are interpreted to mean that integration of LacY depends on multiple cellular components, one of which is also involved in export of beta-lactamase.
Collapse
Affiliation(s)
- K Ito
- Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
88
|
Overhoff B, Klein M, Spies M, Freudl R. Identification of a gene fragment which codes for the 364 amino-terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in gram-positive and gram-negative bacteria. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:417-23. [PMID: 1832735 DOI: 10.1007/bf00260635] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A DNA fragment that codes for the 364 amino-terminal amino acid residues of a putative Bacillus subtilis SecA homologue has been cloned using the Escherichia coli secA gene as a probe. The deduced amino acid sequence showed 58% identity to the amino-terminus of the E. coli SecA protein. A DNA fragment which codes for 275 amino-terminal amino acid residues of the B. subtilis SecA homologue was expressed in E. coli and the corresponding gene product was shown to be recognized by anti-E. coli SecA antibodies. This polypeptide, although only about 30% the size of the E. coli SecA protein, also restored growth of E. coli MM52 (secAts) at the non-permissive temperature and the translocation defect of proOmpA in this mutant was relieved to a substantial extent.
Collapse
Affiliation(s)
- B Overhoff
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Federal Republic of Germany
| | | | | | | |
Collapse
|
89
|
Akimaru J, Matsuyama S, Tokuda H, Mizushima S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc Natl Acad Sci U S A 1991; 88:6545-9. [PMID: 1830665 PMCID: PMC52123 DOI: 10.1073/pnas.88.15.6545] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reconstitution of the translocation machinery for secretory proteins from purified constituents was performed. SecY was solubilized from SecY/SecE-overproducing Escherichia coli cells and purified by chromatography on ion-exchange and size-exclusion columns. Proteoliposomes active in protein translocation were reconstituted from the purified preparations of SecY and SecE. The reconstituted translocation activity was SecA- and ATP-dependent. Although the purified preparations of SecY and SecE were still contaminated with minute amounts of other proteins, the elution profiles of SecY and SecE on column chromatographies coincided with the elution profiles of reconstituted translocation activity, indicating that SecY and SecE are the indispensable components in these preparations. We conclude that SecY, SecE, and SecA are essential components of the protein secretion machinery and that translocation activity can be reconstituted from only these three proteins and phospholipids.
Collapse
Affiliation(s)
- J Akimaru
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
90
|
Tamm LK. Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:123-48. [PMID: 1854792 DOI: 10.1016/0304-4157(91)90021-n] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphiphilic signal sequences with the potential to form alpha-helices with a polar, charged face and an apolar face are common in proteins which are imported into mitochondria, in the PTS permeases of bacteria, and in bacterial rhodopsins. Synthetic peptides of such sequences partition into the surface region of lipid membranes where they can adopt different secondary structures. A finely controlled balance of electrostatic and hydrophobic interactions determines the 'affinity' of amphiphilic signal peptides for lipid membranes, as well as the structure, orientation and depth of penetration of these peptides in lipid bilayer membranes. The ability of an individual peptide to associate with lipid bilayer membranes in several different modes is, most likely, a general feature of amphiphilic signal peptides and is reflected in several common physical properties of their amino acid sequences.
Collapse
Affiliation(s)
- L K Tamm
- Department of Physiology, University of Virginia, Health Sciences Center, Charlottesville 22908
| |
Collapse
|
91
|
Nishiyama K, Kabuyama Y, Akimaru J, Matsuyama S, Tokuda H, Mizushima S. SecY is an indispensable component of the protein secretory machinery of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1065:89-97. [PMID: 2043656 DOI: 10.1016/0005-2736(91)90015-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using a reconstitution system for protein translocation, the involvement of SecY in the translocation of secretory proteins across the cytoplasmic membrane of Escherichia coli was studied. Anti-SecY antibodies raised against the N- and C-terminal sequences prevented the functional reconstitution of the translocation system. Depletion of SecY from the solubilized membrane preparation was performed by treatment with anti-SecY IgG, followed by removal of IgG with protein A-agarose. The SecY-depleted preparation was inactive as to functional reconstitution. However, reconstitution with it was demonstrated in the presence of a protein fraction, which was released from the anti-SecY immunoprecipitate upon addition of the SecY fragment used to raise the antibody. Reconstitution with the SecY-depleted membrane fraction was also demonstrated in the presence of a purified SecY preparation. OmpT proteinase specifically cleaved SecY in the solubilized membrane preparation. The cleavage was accompanied by a decrease in the reconstituted activity. Based on these findings we conclude that SecY is an indispensable component of the secretory machinery.
Collapse
Affiliation(s)
- K Nishiyama
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Kontinen VP, Saris P, Sarvas M. A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol Microbiol 1991; 5:1273-83. [PMID: 1956302 DOI: 10.1111/j.1365-2958.1991.tb01901.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A gene locus of Bacillus subtilis identified by mutations (prs) conferring a defect in protein secretion was cloned from a lambdaGEM-11 expression library. The sites of three closely linked prs mutations (prs-3, prs-29 and prs-40) were found to reside in a 5.3 kb DNA fragment, which also complemented the secretion defect in prs-3 and prs-29 mutants. Partial sequencing of the fragment showed that these three mutations affect one distinct gene (prsA) encoding a putative protein of 292 amino acids (33 kDa). Sequence analysis indicated the PrsA protein to be a lipoprotein located outside the cytoplasmic membrane. Thirty percent identity was shown to the PrtM protein of Lactococcus lactis, which is involved in the maturation of an exported proteinase. The phenotypes of prsA mutants and the structural similarity of PrsA with PrtM suggest that PrsA may have a novel function at a late phase in protein export.
Collapse
Affiliation(s)
- V P Kontinen
- Molecular Biology Unit, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|
93
|
van Dijl JM, de Jong A, Smith H, Bron S, Venema G. Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:40-8. [PMID: 1904537 DOI: 10.1007/bf00260704] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of 25-fold overproduction of Escherichia coli signal peptidase I (SPase I) on the processing kinetics of various (hybrid) secretory proteins, comprising fusions between signal sequence functions selected from the Bacillus subtilis chromosome and the mature part of TEM-beta-lactamase, were studied in E. coli. One precursor (pre[A2d]-beta-lactamase) showed an enhanced processing rate, and consequently, a highly improved release of the mature enzyme into the periplasm. A minor fraction of a second hybrid precursor (pre[A13i]-beta-lactamase), which was not processed under standard conditions of SPase I synthesis, was shown to be processed under conditions of SPase I overproduction. However, this did not result in efficient release of the mature beta-lactamase into the periplasm. In contrast, the processing rates of wild-type pre-beta-lactamase and pre(A2)-beta-lactamase, already high under standard conditions, were not detectably altered by SPase I overproduction. These results demonstrate that the availability of SPase I can be a limiting factor in protein export in E. coli, in particular with respect to (hybrid) precursor proteins showing low (SPase I) processing efficiencies.
Collapse
Affiliation(s)
- J M van Dijl
- Department of Genetics, Centre of Biological Sciences, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
94
|
Carson MJ, Barondess J, Beckwith J. The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J Bacteriol 1991; 173:2187-95. [PMID: 2007547 PMCID: PMC207766 DOI: 10.1128/jb.173.7.2187-2195.1991] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ftsQ gene is one of several genes thought to be specifically required for septum formation in Escherichia coli. Published work on the cell division behavior of ftsQ temperature-sensitive mutants suggested that the FtsQ product is required throughout the whole process of septum formation. Here we provide additional support for this hypothesis based on microscopic observations of the cell division defects resulting from insertional and temperature-sensitive mutations in the ftsQ gene, and constitutive overexpression of its gene product. On the basis of the published, predicted amino acid sequence of the FtsQ protein and our analysis of fusion proteins of the FtsQ protein to bacterial alkaline phosphatase, we conclude that FtsQ is a simple cytoplasmic membrane protein with a approximately 25-amino-acid cytoplasmic domain and a approximately 225-amino-acid periplasmic domain. We estimate that the FtsQ protein is present at about 22 copies per cell.
Collapse
Affiliation(s)
- M J Carson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
95
|
Kimura E, Akita M, Matsuyama S, Mizushima S. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38159-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
96
|
Reuter K, Slany R, Ullrich F, Kersten H. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. J Bacteriol 1991; 173:2256-64. [PMID: 1706703 PMCID: PMC207776 DOI: 10.1128/jb.173.7.2256-2264.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The plasmid pPR20 contains the gene tgt, which encodes tRNA guanine transglycosylase (Tgt), on a 33-kbp DNA insert from a region around 9 min on the Escherichia coli linkage map. The plasmid was subcloned to determine the sequence and organization of the tgt gene. Tgt is a unique enzyme that exchanges the guanine residue with 7-aminomethyl-7-deazaguanine in tRNAs with GU(N) anticodons. After this exchange, a cyclopentendiol moiety is attached to the 7-aminomethyl group of 7-deazaguanine, resulting in the hypermodified nucleoside queuosine (Q). Here we give the complete sequence of a 3,545-bp StuI-BamHI DNA fragment where we found the tgt gene and three previously unknown genes encoding proteins with calculated molecular masses of 42.5 (Tgt), 14, 39, and 12 kDa. The gene products were characterized on sodium dodecyl sulfate gels after synthesis in a combined transcription-translation system. The mRNA start sites of the open reading frames (ORFs) were determined by primer extension analysis. Plasmids containing the ORF encoding the 39-kDa protein (ORF 39) complemented a mutation in Q biosynthesis after the Tgt step. This gene was designated queA. The genes are arranged in the following order: ORF 14 (transcribed in the counterclockwise direction), queA, tgt, and ORF 12 (all transcribed in the clockwise direction). The organization of the promoter sequences and the termination sites suggests that queA, tgt, and ORF 12 are localized on a putative operon together with the genes secD and secF.
Collapse
Affiliation(s)
- K Reuter
- Institut für Biochemie, Universität Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
97
|
Tokuda H, Akimaru J, Matsuyama S, Nishiyama K, Mizushima S. Purification of SecE and reconstitution of SecE-dependent protein translocation activity. FEBS Lett 1991; 279:233-6. [PMID: 2001735 DOI: 10.1016/0014-5793(91)80156-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SecE was solubilized from SecE-overproducing E. coli cells and purified through ion exchange and size exclusion chromatographies. When the solubilized membrane containing overproduced amounts of SecY and SecE was fractionated by means of size exclusion chromatography, the two proteins were eluted in different fractions with slight overlapping. Proteoliposomes active in protein translocation were reconstituted from these fractions only when both SecE and SecY were present. When reconstitution was carried out with the purified SecE and fractions containing SecY but only a small amount of SecE, the resultant proteoliposomes exhibited appreciable translocation activity, indicating that SecE is essential for protein translocation. The translocation activity of proteoliposomes was proportional to the amount of purified SecE used for reconstitution. SecE-dependent protein translocation absolutely required ATP and SecA.
Collapse
Affiliation(s)
- H Tokuda
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
98
|
|
99
|
|
100
|
Affiliation(s)
- K Ito
- Institute for Virus Research, Kyoto, Japan
| | | |
Collapse
|