51
|
Achilleos A, Huffman NT, Marcinkiewicyz E, Seidah NG, Chen Q, Dallas SL, Trainor PA, Gorski JP. MBTPS1/SKI-1/S1P proprotein convertase is required for ECM signaling and axial elongation during somitogenesis and vertebral development†. Hum Mol Genet 2015; 24:2884-98. [PMID: 25652402 DOI: 10.1093/hmg/ddv050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022] Open
Abstract
Caudal regression syndrome (sacral agenesis), which impairs development of the caudal region of the body, occurs with a frequency of about 2 live births per 100 000 newborns although this incidence rises to 1 in 350 infants born to mothers with gestational diabetes. The lower back and limbs can be affected as well as the genitourinary and gastrointestinal tracts. The axial skeleton is formed during embryogenesis through the process of somitogenesis in which the paraxial mesoderm periodically segments into bilateral tissue blocks, called somites. Somites are the precursors of vertebrae and associated muscle, tendons and dorsal dermis. Vertebral anomalies in caudal regression syndrome may arise through perturbation of somitogenesis or, alternatively, could result from defective bone formation and patterning. We discovered that MBTPS1/SKI-1/S1P, which proteolytically activates a class of transmembrane transcription factors, plays a critical role in somitogenesis and the pathogenesis of lumbar/sacral vertebral anomalies. Conditional deletion of Mbtps1 yields a viable mouse with misshapen, fused and reduced number of lumbar and sacral vertebrae, under-developed hind limb bones and a kinky, shortened tail. We show that Mbtps1 is required to (i) maintain the Fgf8 'wavefront' in the presomitic mesoderm that underpins axial elongation, (ii) sustain the Lfng oscillatory 'clock' activity that governs the periodicity of somite formation and (iii) preserve the composition and character of the somitic extracellular matrix containing fibronectin, fibrillin2 and laminin. Based on this spinal phenotype and known functions of MBTPS1, we reason that loss-of-function mutations in Mbtps1 may cause the etiology of caudal regression syndrome.
Collapse
Affiliation(s)
| | - Nichole T Huffman
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | | | - Nabil G Seidah
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada and
| | - Qian Chen
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA, Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeff P Gorski
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA,
| |
Collapse
|
52
|
Cost effective assay choice for rare disease study designs. Orphanet J Rare Dis 2015; 10:10. [PMID: 25648394 PMCID: PMC4334400 DOI: 10.1186/s13023-015-0226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
High throughput assays tend to be expensive per subject. Often studies are limited not so much by the number of subjects available as by assay costs, making assay choice a critical issue. We have developed a framework for assay choice that maximises the number of true disease causing mechanisms ‘seen’, given limited resources. Although straightforward, some of the ramifications of our methodology run counter to received wisdom on study design. We illustrate our methodology with examples, and have built a website allowing calculation of quantities of interest to those designing rare disease studies.
Collapse
|
53
|
Zeidler C, Woelfle J, Draaken M, Mughal SS, Große G, Hilger AC, Dworschak GC, Boemers TM, Jenetzky E, Zwink N, Lacher M, Schmidt D, Schmiedeke E, Grasshoff-Derr S, Märzheuser S, Holland-Cunz S, Schäfer M, Bartels E, Keppler K, Palta M, Leonhardt J, Kujath C, Rißmann A, Nöthen MM, Reutter H, Ludwig M. Heterozygous FGF8 mutations in patients presenting cryptorchidism and multiple VATER/VACTERL features without limb anomalies. ACTA ACUST UNITED AC 2014; 100:750-9. [PMID: 25131394 DOI: 10.1002/bdra.23278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND The acronym VATER/VACTERL association describes the combination of at least three of the following cardinal features: vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. Although fibroblast growth factor-8 (FGF8) mutations have mainly found in patients with Kallmann syndrome, mice with a hypomorphic Fgf8 allele or complete gene invalidation display, aside from gonadotropin-releasing hormone deficiency, parts or even the entire spectrum of human VATER/VACTERL association. METHODS We performed FGF8 gene analysis in 49 patients with VATER/VACTERL association and 27 patients presenting with a VATER/VACTERL-like phenotype (two cardinal features). RESULTS We identified two heterozygous FGF8 mutations in patients displaying either VATER/VACTERL association (p.Gly29_Arg34dup) or a VATER/VACTERL-like phenotype (p.Pro26Leu) without limb anomalies. Whereas the duplication mutation has not been reported before, p.Pro26Leu was once observed in a Kallmann syndrome patient. Both our patients had additional bilateral cryptorchidism, a key phenotypic feature in males with FGF8 associated Kallmann syndrome. Each mutation was paternally inherited. Besides delayed puberty in both and additional unilateral cryptorchidism in one of the fathers, they were otherwise healthy. Serum hormone levels downstream the gonadotropin-releasing hormone in both patients and their fathers were within normal range. CONCLUSION Our results suggest FGF8 mutations to contribute to the formation of the VATER/VACTERL association. Further studies are needed to support this observation.
Collapse
Affiliation(s)
- Claudia Zeidler
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Clinical and etiological heterogeneity in patients with tracheo-esophageal malformations and associated anomalies. Eur J Med Genet 2014; 57:440-52. [DOI: 10.1016/j.ejmg.2014.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
|
55
|
Bard-Chapeau EA, Szumska D, Jacob B, Chua BQL, Chatterjee GC, Zhang Y, Ward JM, Urun F, Kinameri E, Vincent SD, Ahmed S, Bhattacharya S, Osato M, Perkins AS, Moore AW, Jenkins NA, Copeland NG. Mice carrying a hypomorphic Evi1 allele are embryonic viable but exhibit severe congenital heart defects. PLoS One 2014; 9:e89397. [PMID: 24586749 PMCID: PMC3937339 DOI: 10.1371/journal.pone.0089397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 01/21/2014] [Indexed: 12/26/2022] Open
Abstract
The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1's critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1fl3) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1δex3/δex3 mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1fl3/fl3 mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1δex3/δex3 knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1δex3/δex3 mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood.
Collapse
Affiliation(s)
| | - Dorota Szumska
- Welcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | | | | | - Gouri C. Chatterjee
- MYSM School of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Fatma Urun
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Emi Kinameri
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Stéphane D. Vincent
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm U964, Université de Strasbourg, Illkirch, France
| | - Sayadi Ahmed
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | | | - Archibald S. Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Adrian W. Moore
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | | | - Neal G. Copeland
- Institute of Molecular and Cell Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
56
|
Constam DB. Regulation of TGFβ and related signals by precursor processing. Semin Cell Dev Biol 2014; 32:85-97. [PMID: 24508081 DOI: 10.1016/j.semcdb.2014.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Secreted cytokines of the TGFβ family are found in all multicellular organisms and implicated in regulating fundamental cell behaviors such as proliferation, differentiation, migration and survival. Signal transduction involves complexes of specific type I and II receptor kinases that induce the nuclear translocation of Smad transcription factors to regulate target genes. Ligands of the BMP and Nodal subgroups act at a distance to specify distinct cell fates in a concentration-dependent manner. These signaling gradients are shaped by multiple factors, including proteases of the proprotein convertase (PC) family that hydrolyze one or several peptide bonds between an N-terminal prodomain and the C-terminal domain that forms the mature ligand. This review summarizes information on the proteolytic processing of TGFβ and related precursors, and its spatiotemporal regulation by PCs during development and various diseases, including cancer. Available evidence suggests that the unmasking of receptor binding epitopes of TGFβ is only one (and in some cases a non-essential) function of precursor processing. Future studies should consider the impact of proteolytic maturation on protein localization, trafficking and turnover in cells and in the extracellular space.
Collapse
Affiliation(s)
- Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
57
|
Winberg J, Gustavsson P, Papadogiannakis N, Sahlin E, Bradley F, Nordenskjöld E, Svensson PJ, Annerén G, Iwarsson E, Nordgren A, Nordenskjöld A. Mutation screening and array comparative genomic hybridization using a 180K oligonucleotide array in VACTERL association. PLoS One 2014; 9:e85313. [PMID: 24416387 PMCID: PMC3887047 DOI: 10.1371/journal.pone.0085313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic causes of VACTERL association (V vertebral defects, A anorectal malformations, C cardiac defects, T tracheoesofageal fistula, E esophageal atresia, R renal anomalies, L limb deformities), we have collected DNA samples from 20 patients diagnosed with VACTERL or with a VACTERL-like phenotype as well as samples from 19 aborted fetal cases with VACTERL. To investigate the importance of gene dose alterations in the genetic etiology of VACTERL association we have performed a systematic analysis of this cohort using a 180K array comparative genomic hybridization (array-CGH) platform. In addition, to further clarify the significance of PCSK5, HOXD13 and CHD7 genes in the VACTERL phenotype, mutation screening has been performed. We identified pathogenic gene dose imbalances in two fetal cases; a hemizygous deletion of the FANCB gene and a (9;18)(p24;q12) unbalanced translocation. In addition, one pathogenic mutation in CHD7 was detected, while no apparent disease-causing mutations were found in HOXD13 or PCSK5. Our study shows that although large gene dose alterations do not seem to be a common cause in VACTERL association, array-CGH is still important in clinical diagnostics to identify disease cause in individual cases.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Frideborg Bradley
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edvard Nordenskjöld
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pär-Johan Svensson
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erik Iwarsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
58
|
Turpeinen H, Ortutay Z, Pesu M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr Genomics 2014; 14:453-67. [PMID: 24396277 PMCID: PMC3867721 DOI: 10.2174/1389202911314050010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 12/16/2022] Open
Abstract
Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes.
Collapse
Affiliation(s)
- Hannu Turpeinen
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Zsuzsanna Ortutay
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland; ; Fimlab laboratories, Pirkanmaa Hospital District, Finland
| |
Collapse
|
59
|
Seidahmed MZ, Abdelbasit OB, Alhussein KA, Miqdad AM, Khalil MI, Salih MA. Sirenomelia and severe caudal regression syndrome. Saudi Med J 2014; 35 Suppl 1:S36-43. [PMID: 25551110 PMCID: PMC4362094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To describe cases of sirenomelia and severe caudal regression syndrome (CRS), to report the prevalence of sirenomelia, and compare our findings with the literature. METHODS Retrospective data was retrieved from the medical records of infants with the diagnosis of sirenomelia and CRS and their mothers from 1989 to 2010 (22 years) at the Security Forces Hospital, Riyadh, Saudi Arabia. A perinatologist, neonatologist, pediatric neurologist, and radiologist ascertained the diagnoses. The cases were identified as part of a study of neural tube defects during that period. A literature search was conducted using MEDLINE. RESULTS During the 22-year study period, the total number of deliveries was 124,933 out of whom, 4 patients with sirenomelia, and 2 patients with severe forms of CRS were identified. All the patients with sirenomelia had single umbilical artery, and none were the infant of a diabetic mother. One patient was a twin, and another was one of triplets. The 2 patients with CRS were sisters, their mother suffered from type II diabetes mellitus and morbid obesity on insulin, and neither of them had a single umbilical artery. Other associated anomalies with sirenomelia included an absent radius, thumb, and index finger in one patient, Potter's syndrome, abnormal ribs, microphthalmia, congenital heart disease, hypoplastic lungs, and diaphragmatic hernia. CONCLUSION The prevalence of sirenomelia (3.2 per 100,000) is high compared with the international prevalence of one per 100,000. Both cases of CRS were infants of type II diabetic mother with poor control, supporting the strong correlation of CRS and maternal diabetes.
Collapse
Affiliation(s)
- Mohammed Z. Seidahmed
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Address correspondence and reprint request to: Dr. Mohammed Z. Seidahmed, Consultant Neonatologist, Department of Pediatrics, Security Forces Hospital, Riyadh 11481, Kingdom of Saudi Arabia. E-mail:
| | - Omer B. Abdelbasit
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Khalid A. Alhussein
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Abeer M. Miqdad
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed I. Khalil
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mustafa A. Salih
- From the Division of Neonatology (Seidahmed, Abdelbasit, Alhussein), Pediatrics Department, the Obstetric and Gynecology Department (Khalil), Security Forces Hospital, and the Division of Pediatric Neurology (Salih), Department of Pediatrics, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
60
|
Common DNA variants predict tall stature in Europeans. Hum Genet 2013; 133:587-97. [DOI: 10.1007/s00439-013-1394-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/03/2013] [Indexed: 12/14/2022]
|
61
|
Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell 2013; 25:451-62. [PMID: 23763947 DOI: 10.1016/j.devcel.2013.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.
Collapse
|
62
|
Essalmani R, Susan-Resiga D, Chamberland A, Asselin MC, Canuel M, Constam D, Creemers JW, Day R, Gauthier D, Prat A, Seidah NG. Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes. J Biol Chem 2013; 288:26410-8. [PMID: 23918928 DOI: 10.1074/jbc.m113.501304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proprotein convertases (PCs) furin, PC5/6, and PACE4 exhibit unique and/or complementary functions. Their knock-out (KO) in mice resulted in strong and specific phenotypes demonstrating that, in vivo, these PCs are unique and essential during development. However, they also exhibit redundant functions. Liver angiopoietin-like 3 (ANGPTL3) inhibits lipolysis by binding to lipoprotein lipases. It is found in the plasma as full length and truncated forms. The latter is more active and generated by cleavage at a furin-like site. Endothelial lipase (EL) binds heparin sulfate proteoglycans on cell surfaces and catalyzes the hydrolysis of HDL phospholipids. EL activity is regulated by two endogenous inhibitors, ANGPTL3 and ANGPTL4, and by PCs that inactivate EL through cleavage releasing the N-terminal catalytic and C-terminal lipid-binding domains. Herein, because furin and PC5/6 complete KOs are lethal, we used mice lacking furin or PC5/6 specifically in hepatocytes (hKO) or mice completely lacking PACE4. In primary hepatocytes, ANGPTL3 was processed into a shorter form of ANGPTL3 intracellularly by furin only, and extracellularly mainly by PACE4. In vivo, the absence of furin in hepatocytes reduced by ∼50% the circulating levels of cleaved ANGPTL3, while the lack of PACE4 had only a minor effect. Analysis of the EL processing in primary hepatocytes and in vivo revealed that it is mostly cleaved by furin. However, the lack of furin or PC5/6 in hepatocytes and complete PACE4 KO did not appreciably modify plasma HDL levels or EL activity. Thus, inhibition of furin in liver would not be expected to modify the plasma lipid profiles.
Collapse
|
63
|
Reutter H, Ludwig M. VATER/VACTERL Association: Evidence for the Role of Genetic Factors. Mol Syndromol 2013; 4:16-9. [PMID: 23653572 DOI: 10.1159/000345300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The VATER/VACTERL association is typically defined by the presence of at least 3 of the following congenital malformations: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. The involvement of genetic factors in the development of this rare association is suggested by reports of familial occurrence, the increased prevalence of component features among first-degree relatives of affected individuals, high concordance rates among monozygotic twins, chromosomal (micro-)aberrations or single gene mutations in individuals with the VATER/VACTERL phenotype, as well as murine knock-out models. Despite substantial efforts over the past decade, the genetic etiology of the VATER/VACTERL association in most instances remains elusive. The application of new genomic technologies such as high-resolution copy number variation studies or next-generation exome sequencing might lead to the identification of some of these causes.
Collapse
Affiliation(s)
- H Reutter
- Institute of Human Genetics, Children's Hospital, University of Bonn, Bonn, Germany ; Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany
| | | |
Collapse
|
64
|
Brosens E, Eussen H, van Bever Y, van der Helm RM, Ijsselstijn H, Zaveri HP, Wijnen R, Scott DA, Tibboel D, de Klein A. VACTERL Association Etiology: The Impact of de novo and Rare Copy Number Variations. Mol Syndromol 2013; 4:20-6. [PMID: 23653573 DOI: 10.1159/000345577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Copy number variations (CNVs), either DNA gains or losses, have been found at common regions throughout the human genome. Most CNVs neither have a pathogenic significance nor result in disease-related phenotypes but, instead, reflect the normal population variance. However, larger CNVs, which often arise de novo, are frequently associated with human disease. A genetic contribution has long been suspected in VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal fistula, Renal and Limb anomalies) association. The anomalies observed in this association overlap with several monogenetic conditions associated with mutations in specific genes, e.g. Townes Brocks (SALL1), Feingold syndrome (MYCN) or Fanconi anemia. So far VACTERL association has typically been considered a diagnosis of exclusion. Identifying recurrent or de novo genomic variations in individuals with VACTERL association could make it easier to distinguish VACTERL association from other syndromes and could provide insight into disease mechanisms. Sporadically, de novo CNVs associated with VACTERL are described in literature. In addition to this literature review of genomic variation in published VACTERL association patients, we describe CNVs present in 68 VACTERL association patients collected in our institution. De novo variations (>30 kb) are absent in our VACTERL association cohort. However, we identified recurrent rare CNVs which, although inherited, could point to mechanisms or biological processes contributing to this constellation of developmental defects.
Collapse
Affiliation(s)
- E Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, The Netherlands ; Department of Pediatric Surgery, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Mc Laughlin D, Hajduk P, Murphy P, Puri P. Adriamycin-Induced Models of VACTERL Association. Mol Syndromol 2013; 4:46-62. [PMID: 23653576 DOI: 10.1159/000345579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal models are of great importance for medical research. They have enabled analysis of the aetiology and pathogenesis of complex congenital malformations and have also led to major advances in the surgical and therapeutic management of these conditions. Animal models allow us to comprehend the morphological and molecular basis of disease and consequently to discover novel approaches for both surgical and medical therapy. The anthracycline antibiotic adriamycin was incidentally found to have teratogenic effects on rats, producing a range of defects remarkably similar to the VACTERL association of congenital anomalies in humans, providing a reproducible animal model of this condition. VACTERL association is a spectrum of birth defects which includes vertebral, anal, cardiovascular, tracheo-oesophageal, renal and limb anomalies. In recent years, adriamycin rodent models of VACTERL have provided valuable insights into the pathogenesis of this complex association, particularly in relation to tracheo-oesophageal malformations. The adriamycin rat model and adriamycin mouse model are now well established in the investigation of the morphology of faulty organogenesis and the regulation of gene expression in tracheo-oesophageal anomalies.
Collapse
Affiliation(s)
- D Mc Laughlin
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland ; Children's University Hospital, Dublin, Ireland ; School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
66
|
Stevenson RE, Hunter AGW. Considering the Embryopathogenesis of VACTERL Association. Mol Syndromol 2013; 4:7-15. [PMID: 23653571 DOI: 10.1159/000346192] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nonrandom co-occurrence of vertebral, anorectal, cardiac, tracheoesophageal, genitourinary, and limb malformations, recognized as the VACTERL association, has not been satisfactorily explained from either a causation or embryopathogenesis standpoint. Few familial cases have been identified and maternal diabetes is the only environmental influence implicated to date. Mutations in single genes have been found in a number of syndromes with one or more of the VACTERL malformations, but these syndromes usually have other features which distinguish them from the VACTERL association. Animal models have provided clues to molecular pathways that may be involved in the embryogenesis of the VACTERL structures. What is lacking is the systematic study of individual genes and pathways in well-composed cohorts of patients, which is now possible with high throughput molecular technologies.
Collapse
|
67
|
Carter TC, Kay DM, Browne ML, Liu A, Romitti PA, Kuehn D, Conley MR, Caggana M, Druschel CM, Brody LC, Mills JL. Anorectal atresia and variants at predicted regulatory sites in candidate genes. Ann Hum Genet 2013; 77:31-46. [PMID: 23127126 PMCID: PMC3535506 DOI: 10.1111/j.1469-1809.2012.00734.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/02/2012] [Indexed: 01/29/2023]
Abstract
Anorectal atresia is a serious birth defect of largely unknown etiology but candidate genes have been identified in animal studies and human syndromes. Because alterations in the activity of these genes might lead to anorectal atresia, we selected 71 common variants predicted to be in transcription factor binding sites, CpG windows, splice sites, and miRNA target sites of 25 candidate genes, and tested for their association with anorectal atresia. The study population comprised 150 anorectal atresia cases and 623 control infants without major malformations. Variants predicted to affect transcription factor binding, splicing, and DNA methylation in WNT3A, PCSK5, TCF4, MKKS, GLI2, HOXD12, and BMP4 were associated with anorectal atresia based on a nominal P value < 0.05. The GLI2 and BMP4 variants are reported to be moderately associated with gene expression changes (Spearman's rank correlation coefficients between -0.260 and 0.226). We did not find evidence for interaction between maternal pre-pregnancy obesity and variants in MKKS, a gene previously associated with obesity, on the risk of anorectal atresia. Our results for MKKS support previously suggested associations with anorectal malformations. Our findings suggest that more research is needed to determine whether altered GLI2 and BMP4 expression is important in anorectal atresia in humans.
Collapse
Affiliation(s)
- Tonia C. Carter
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L. Browne
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany – State University of New York, Albany, New York, USA
| | - Aiyi Liu
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Paul A. Romitti
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Devon Kuehn
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Mary R. Conley
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Charlotte M. Druschel
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany – State University of New York, Albany, New York, USA
| | - Lawrence C. Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L. Mills
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
68
|
Jacobs IJ, Ku WY, Que J. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol 2012; 369:54-64. [PMID: 22750256 DOI: 10.1016/j.ydbio.2012.06.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders or birth defects commonly seen in clinics.
Collapse
Affiliation(s)
- Ian J Jacobs
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
69
|
Loss of endothelial furin leads to cardiac malformation and early postnatal death. Mol Cell Biol 2012; 32:3382-91. [PMID: 22733989 DOI: 10.1128/mcb.06331-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, seven proprotein convertases (PCs) cleave secretory proteins after basic residues, and four of them are called furin-like PCs: furin, PC5, PACE4, and PC7. In vitro, they share many substrates. However, furin is essential during development since deficient embryos die at embryonic day 11 and exhibit multiple developmental defects, particularly defects related to the function of endothelial cells. To define the role of furin in endothelial cells, an endothelial cell-specific knockout (ecKO) of the Furin gene was generated. Newborns die shortly after birth, indicating that furin is essential in these cells. Magnetic resonance imaging revealed that ecKO embryos exhibit ventricular septal defects (VSD) and/or valve malformations. In addition, primary cultures of wild-type and ecKO lung endothelial cells revealed that ecKO cells are unable to grow. Growth was efficiently rescued by extracellular soluble furin. Analysis of the processing of precursors of endothelin-1 (ET-1), adrenomedullin (Adm), transforming growth factor β1 (TGF-β1), and bone morphogenetic protein 4 (BMP4) confirmed that ET-1, Adm, and TGF-β1 are in vivo substrates of endothelial furin. Mature ET-1 and BMP4 forms were reduced by ~90% in ecKO purified endothelial cells from lungs.
Collapse
|
70
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 596] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
71
|
Sun L, Cheng L, Li C, Gao B, Wang B, Wang J, Wang X, Huang T, Li H, Ma X. Homeobox C9 is not potentially related to congenital heart disease in Chinese patients. Genet Test Mol Biomarkers 2012; 16:439-41. [PMID: 22106857 PMCID: PMC3354584 DOI: 10.1089/gtmb.2011.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common human birth defects. The etiology and pathogenesis of CHD are complex and involve several genes as well as multiple changes in signaling pathways. The aim of this study was to identify potential pathological mutations in the Homeobox C9 (Hoxc9) gene in 350 Chinese children with CHD to further understand the etiology of CHD. METHOD Sequence analysis of the Hoxc9 gene in 350 nonsyndromic patients with CHD Result: We did not identify any nonsynonymous variants in the coding regions of Hoxc9 in the patients with CHD. We found one synonymous variant c.C564T (p. his188his) in one ventricular septal defect patient. We also identified four previously reported polymorphisms (rs56368105, rs12817092, rs34079606, and rs2241820) in CHD. CONCLUSIONS We did not find any diagnostic alterations in the coding regions of Hoxc9 among the patients with CHD. Nevertheless, to our knowledge, this is the first study of Hoxc9 in nonsyndromic CHD and has expanded our overall knowledge of the etiology of this disease.
Collapse
Affiliation(s)
- Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Longfei Cheng
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Congmin Li
- HeNan Provincial Research Institute for Population and Family Planning, Zhengzhou, China
| | - Bingren Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Binbin Wang
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Jing Wang
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Xiaochen Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianchu Huang
- Experimental Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Ma
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- World Health Organization Collaborating Centre for Research in Human Reproduction, Beijing, China
| |
Collapse
|
72
|
Kowalczyk MS, Hughes JR, Babbs C, Sanchez-Pulido L, Szumska D, Sharpe JA, Sloane-Stanley JA, Morriss-Kay GM, Smoot LB, Roberts AE, Watkins H, Bhattacharya S, Gibbons RJ, Ponting CP, Wood WG, Higgs DR. Nprl3 is required for normal development of the cardiovascular system. Mamm Genome 2012; 23:404-15. [PMID: 22538705 DOI: 10.1007/s00335-012-9398-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/18/2022]
Abstract
C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.
Collapse
Affiliation(s)
- Monika S Kowalczyk
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989-1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).
Collapse
Affiliation(s)
- Nabil G Seidah
- Biochemical Neuroendocrinology Laboratory, Clinical Research Institute of Montreal, Montreal, QC, Canada H2W 1R7.
| |
Collapse
|
74
|
Time for endothelial cell proprotein convertase PC5/6 in cardiovascular medicine? J Mol Med (Berl) 2012; 89:1061-3. [PMID: 21887504 DOI: 10.1007/s00109-011-0810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
75
|
Bamforth SD, Schneider JE, Bhattacharya S. High-throughput analysis of mouse embryos by magnetic resonance imaging. Cold Spring Harb Protoc 2012; 2012:93-101. [PMID: 22194264 PMCID: PMC4856208 DOI: 10.1101/pdb.prot067538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic studies in the mouse are crucial for uncovering new genes and signaling pathways associated with development. The identification of murine models with developmental malformations in high-throughput mutagenesis screens is made difficult because, after mid-embryogenesis, the embryo is opaque. Traditional phenotyping methods such as histological sectioning are labor intensive and destructive. We have developed and optimized a novel method for high-throughput multiembryo magnetic resonance imaging (MRI). Here we present our method for processing 32 mouse embryos for analysis by MRI. We describe the MR system, imaging software, and the reconstruction of two-dimensional (2D) and three-dimensional (3D) images. We also discuss the applications of this technique, highlight its advantages, and point out some disadvantages. Using this approach, we can identify developmental malformations in mutant embryos at high spatial resolution (voxel size 25.4 × 25.4 × 24.4 µm). This technique can be easily used for mouse mutagenesis screens and thus provides an important tool for identifying new mouse models for human diseases.
Collapse
|
76
|
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket 02860, USA.
| | | |
Collapse
|
77
|
Harrison CA, Al-Musawi SL, Walton KL. Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands. Growth Factors 2011; 29:174-86. [PMID: 21864080 DOI: 10.3109/08977194.2011.608666] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All transforming growth factor-β (TGF-β) ligands are synthesised as precursor molecules consisting of a signal peptide, an N-terminal prodomain and a C-terminal mature domain. During synthesis, prodomains interact non-covalently with mature domains, maintaining the molecules in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases, and TGF-β ligands are secreted from the cell non-covalently associated with their prodomains. Extracellularly, prodomains localise TGF-β ligands within the vicinity of their target cells via interactions with extracellular matrix proteins, including fibrillin and perlecan. For some family members (TGF-β1, TGF-β2, TGF-β3, myostatin, GDF-11 and BMP-10), prodomains bind with high enough affinity to suppress biological activity. The subsequent mechanism of activation of these latent TGF-β ligands varies according to cell type and context, but all activating mechanisms directly target prodomains. Thus, prodomains control many aspects of TGF-β superfamily biology, and alterations in prodomain function are often associated with disease.
Collapse
Affiliation(s)
- Craig A Harrison
- Prince Henry's Institute of Medical Research, Clayton, VIC 3168, Australia.
| | | | | |
Collapse
|
78
|
McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A, Michaud JL, Gibson K, Robertson J, Vaz F, Abbs S, Holden ST. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A 2011; 155A:2370-80. [PMID: 21910217 DOI: 10.1002/ajmg.a.33913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/05/2011] [Indexed: 11/11/2022]
Abstract
X-linked VACTERL-hydrocephalus syndrome (X-linked VACTERL-H) is a rare disorder caused by mutations in the gene FANCB which underlies Fanconi Anemia (FA) complementation group B. Cells from affected males have increased chromosome breakage on exposure to DNA cross-linking agents. Only five FANCB mutations found in six affected males, including an affected uncle and nephew, have been reported. We have identified FANCB mutations in a further four affected families. The VACTERL-H phenotype segregates as an X-linked recessive trait in three of these. Each mutation is predicted to truncate the FANCB open reading frame and results in highly skewed X-inactivation in unaffected carrier females. Phenotypic data were available on six affected males. Comparison of the clinical findings in our patients with published clinical data (total 12 patients) shows that ventriculomegaly, bilateral absent thumbs and radii, vertebral defects, renal agenesis, and growth retardation are the major phenotypic signs in affected males. Less frequent are brain, pituitary, ear and eye malformations, gastrointestinal atresias (esophageal, duodenal and anal), tracheoesophageal fistula, lung segmentation defects, and small genitalia. Three of six of our patients survived the perinatal period. One boy lived up to 2 years 10 months but developed aplastic anemia and died of renal failure. These data show that loss-of-function FANCB mutations result in a recognizable, multiple malformation phenotype in hemizygous males for which we propose clinical criteria to aid diagnosis.
Collapse
Affiliation(s)
- Joanna McCauley
- Molecular Genetics Laboratory, GSTS Pathology, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
VACTERL/VATER association is typically defined by the presence of at least three of the following congenital malformations: vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, renal anomalies, and limb abnormalities. In addition to these core component features, patients may also have other congenital anomalies. Although diagnostic criteria vary, the incidence is estimated at approximately 1 in 10,000 to 1 in 40,000 live-born infants. The condition is ascertained clinically by the presence of the above-mentioned malformations; importantly, there should be no clinical or laboratory-based evidence for the presence of one of the many similar conditions, as the differential diagnosis is relatively large. This differential diagnosis includes (but is not limited to) Baller-Gerold syndrome, CHARGE syndrome, Currarino syndrome, deletion 22q11.2 syndrome, Fanconi anemia, Feingold syndrome, Fryns syndrome, MURCS association, oculo-auriculo-vertebral syndrome, Opitz G/BBB syndrome, Pallister-Hall syndrome, Townes-Brocks syndrome, and VACTERL with hydrocephalus. Though there are hints regarding causation, the aetiology has been identified only in a small fraction of patients to date, likely due to factors such as a high degree of clinical and causal heterogeneity, the largely sporadic nature of the disorder, and the presence of many similar conditions. New genetic research methods offer promise that the causes of VACTERL association will be better defined in the relatively near future. Antenatal diagnosis can be challenging, as certain component features can be difficult to ascertain prior to birth. The management of patients with VACTERL/VATER association typically centers around surgical correction of the specific congenital anomalies (typically anal atresia, certain types of cardiac malformations, and/or tracheo-esophageal fistula) in the immediate postnatal period, followed by long-term medical management of sequelae of the congenital malformations. If optimal surgical correction is achievable, the prognosis can be relatively positive, though some patients will continue to be affected by their congenital malformations throughout life. Importantly, patients with VACTERL association do not tend to have neurocognitive impairment.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/epidemiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Anal Canal/abnormalities
- Anal Canal/pathology
- Anus, Imperforate/complications
- Anus, Imperforate/diagnosis
- Anus, Imperforate/epidemiology
- Anus, Imperforate/genetics
- Anus, Imperforate/pathology
- Esophagus/abnormalities
- Esophagus/pathology
- Female
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/epidemiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Infant, Newborn
- Kidney/abnormalities
- Kidney/pathology
- Limb Deformities, Congenital/complications
- Limb Deformities, Congenital/diagnosis
- Limb Deformities, Congenital/epidemiology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/pathology
- Male
- Radius/abnormalities
- Radius/pathology
- Spine/abnormalities
- Spine/pathology
- Trachea/abnormalities
- Trachea/pathology
- Tracheoesophageal Fistula/complications
- Tracheoesophageal Fistula/epidemiology
- Tracheoesophageal Fistula/genetics
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35/Room 1B-207, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
van de Ven C, Bialecka M, Neijts R, Young T, Rowland JE, Stringer EJ, Van Rooijen C, Meijlink F, Nóvoa A, Freund JN, Mallo M, Beck F, Deschamps J. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 2011; 138:3451-62. [DOI: 10.1242/dev.066118] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.
Collapse
Affiliation(s)
- Cesca van de Ven
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Monika Bialecka
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Roel Neijts
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | | | - Emma J. Stringer
- Biochemistry Department, University of Leicester, Leicester LE1 9HN, UK
| | - Carina Van Rooijen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Frits Meijlink
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Ana Nóvoa
- Insituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Jean-Noel Freund
- INSERM, U682, Université de Strasbourg, Faculté de Médecine, Strasbourg, F-67200, France
| | - Moises Mallo
- Insituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1600 Lisboa, Portugal
| | - Felix Beck
- Biochemistry Department, University of Leicester, Leicester LE1 9HN, UK
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| |
Collapse
|
81
|
Sun X, Essalmani R, Susan-Resiga D, Prat A, Seidah NG. Latent transforming growth factor beta-binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J Biol Chem 2011; 286:29063-29073. [PMID: 21700711 DOI: 10.1074/jbc.m111.242479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.
Collapse
Affiliation(s)
- Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| |
Collapse
|
82
|
Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J Mol Med (Berl) 2011; 89:1103-11. [DOI: 10.1007/s00109-011-0776-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
|
83
|
Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, Day R, Szumska D, Constam D, Bhattacharya S, Prat A, Seidah NG. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem 2011; 286:22785-94. [PMID: 21550985 DOI: 10.1074/jbc.m111.233577] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (∼60 kDa) is processed into active BMP10 (∼14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.
Collapse
Affiliation(s)
- Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ivanovski S, Hamlet S, Salvi G, Huynh-Ba G, Bosshardt D, Lang N, Donos N. Transcriptional profiling of osseointegration in humans. Clin Oral Implants Res 2011; 22:373-81. [DOI: 10.1111/j.1600-0501.2010.02112.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
85
|
|
86
|
Vlangos CN, Siuniak A, Ackley T, van Bokhoven H, Veltman J, Iyer R, Park JM, Keppler-Noreuil K, Keegan CE. Comprehensive genetic analysis of OEIS complex reveals no evidence for a recurrent microdeletion or duplication. Am J Med Genet A 2011; 155A:38-49. [PMID: 21204209 DOI: 10.1002/ajmg.a.33757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Omphalocele-exstrophy of the bladder-imperforate anus-spinal defects (OEIS) complex, or cloacal exstrophy (EC), is a rare constellation of malformations in humans involving the urogenital, gastrointestinal, and skeletal systems, and less commonly the central nervous system. Although OEIS complex is well-recognized in the clinical setting, there remains a significant lack of understanding of this condition at both the developmental and the genetic level. While most cases are sporadic, familial cases have been reported, suggesting that one or more specific genes may play a significant role in this condition. Several developmental mechanisms have been proposed to explain the etiology of OEIS complex, and it is generally considered to be a defect early in caudal mesoderm development and ventral body wall closure. The goal of this study was to identify genetic aberrations in 13 patients with OEIS/EC using a combination of candidate gene analysis and microarray studies. Analysis of 14 candidate genes in combination with either high resolution SNP or oligonucleotide microarray did not reveal any disease-causing mutations, although novel variants were identified in five patients. To our knowledge, this is the most comprehensive genetic analysis of patients with OEIS complex to date. We conclude that OEIS is a complex disorder from an etiological perspective, likely involving a combination of genetic and environmental predispositions. Based on our data, OEIS complex is unlikely to be caused by a recurrent chromosomal aberration.
Collapse
|
87
|
Abstract
Esophageal atresia and tracheoesophageal fistula (EA/TEF) are major congenital malformations affecting 1:3500 live births. Current research efforts are focused on understanding the etiology of these defects. We describe well-known animal models, human syndromes, and associations involving EA/TEF, indicating its etiologically heterogeneous nature. Recent advances in genotyping technology and in knowledge of human genetic variation will improve clinical counseling on etiologic factors. This review provides a clinical summary of environmental and genetic factors involved in EA/TEF.
Collapse
|
88
|
Mesnard D, Constam DB. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. ACTA ACUST UNITED AC 2010; 191:129-39. [PMID: 20876279 PMCID: PMC2953431 DOI: 10.1083/jcb.201005026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The CLIP biosensor reveals the spatiotemporal activity of the Nodal proprotein convertases Furin and Pace4 during embryonic development. Axis formation and allocation of pluripotent progenitor cells to the germ layers are governed by the TGF-β–related Nodal precursor and its secreted proprotein convertases (PCs) Furin and Pace4. However, when and where Furin and Pace4 first become active have not been determined. To study the distribution of PCs, we developed a novel cell surface–targeted fluorescent biosensor (cell surface–linked indicator of proteolysis [CLIP]). Live imaging of CLIP in wild-type and Furin- and Pace4-deficient embryonic stem cells and embryos revealed that Furin and Pace4 are already active at the blastocyst stage in the inner cell mass and can cleave membrane-bound substrate both cell autonomously and nonautonomously. CLIP was also cleaved in the epiblast of implanted embryos, in part by a novel activity in the uterus that is independent of zygotic Furin and Pace4, suggesting a role for maternal PCs during embryonic development. The unprecedented sensitivity and spatial resolution of CLIP opens exciting new possibilities to elucidate PC functions in vivo.
Collapse
Affiliation(s)
- Daniel Mesnard
- Swiss Federal Institute of Technology Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
89
|
Lee YJ, McPherron A, Choe S, Sakai Y, Chandraratna RA, Lee SJ, Oh SP. Growth differentiation factor 11 signaling controls retinoic acid activity for axial vertebral development. Dev Biol 2010; 347:195-203. [PMID: 20801112 DOI: 10.1016/j.ydbio.2010.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 11/17/2022]
Abstract
Mice deficient in growth differentiation factor 11 (GDF11) signaling display anterior transformation of axial vertebrae and truncation of caudal vertebrae. However, the in vivo molecular mechanisms by which GDF11 signaling regulates the development of the vertebral column have yet to be determined. We found that Gdf11 and Acvr2b mutants are sensitive to exogenous RA treatment on vertebral specification and caudal vertebral development. We show that diminished expression of Cyp26a1, a retinoic acid inactivating enzyme, and concomitant elevation of retinoic acid activity in the caudal region of Gdf11(-/-) embryos may account for this phenomenon. Reduced expression or function of Cyp26a1 enhanced anterior transformation of axial vertebrae in wild-type and Acvr2b mutants. Furthermore, a pan retinoic acid receptor antagonist (AGN193109) could lessen the anterior transformation phenotype and rescue the tail truncation phenotype of Gdf11(-/-) mice. Taken together, these results suggest that GDF11 signaling regulates development of caudal vertebrae and is involved in specification of axial vertebrae in part by maintaining Cyp26a1 expression, which represses retinoic acid activity in the caudal region of embryos during the somitogenesis stage.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Hirschsprung disease (HD) and anorectal malformations (ARMs) result from alterations in hindgut development. It has long been recognized that both recur in families and thus result, at least in part, from genetic factors. Progress in the understanding of the genetic basis of HD has been made by the application of findings from genetic animal models of altered enteric nervous system development to human beings. Several genes have been shown to be important for human enteric nervous system development, and current work is progressing to identify genetic interactions that may explain the variable phenotype of HD. By contrast, understanding of the genetic factors underlying ARMs is much less developed. We and others have shown that genetic factors play an important role in the pathogenesis of ARMs, and many mouse genetic models suggest molecular pathways that may be altered in ARMs.
Collapse
Affiliation(s)
- Erin Mundt
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
91
|
Abstract
We describe a female domestic cat with apparent VATER/VACTERL association, including vertebral abnormalities, anal atresia, radial agenesis, and cardiovascular and renal defects. If we consider the acronym VATER, this cat had a triad (VAR); however, if we consider the extended acronym VACTERL, she had a pentad (VACRL).
Collapse
Affiliation(s)
- Enio Moura
- Service of Medical Genetics, Faculty of Veterinary Medicine, Campus São José, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil.
| | | | | |
Collapse
|
92
|
Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology ofStreptomyces. FEMS Microbiol Rev 2010; 34:171-98. [DOI: 10.1111/j.1574-6976.2009.00206.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
93
|
Felix JF, de Jong EM, Torfs CP, de Klein A, Rottier RJ, Tibboel D. Genetic and environmental factors in the etiology of esophageal atresia and/or tracheoesophageal fistula: an overview of the current concepts. ACTA ACUST UNITED AC 2009; 85:747-54. [PMID: 19452513 DOI: 10.1002/bdra.20592] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Esophageal atresia and/or tracheoesophageal fistula (EA/TEF) are severe congenital anomalies. Although recent years have brought significant improvement in clinical treatment, our understanding of the etiology of these defects is lagging. Many genes and genetic pathways have been implicated in the development of EA/TEF, but only a few genes have been shown to be involved in humans, in animals, or in both. Extrapolating data from animal models to humans is not always straightforward. Environmental factors may also carry a risk, but the mechanisms are yet to be elucidated. This review gives an overview of the current state of knowledge about both genetic and environmental risk factors in the etiology of EA/TEF.
Collapse
Affiliation(s)
- Janine F Felix
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
94
|
Shaw-Smith C. Genetic factors in esophageal atresia, tracheo-esophageal fistula and the VACTERL association: roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature. Eur J Med Genet 2009; 53:6-13. [PMID: 19822228 PMCID: PMC2809919 DOI: 10.1016/j.ejmg.2009.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/04/2009] [Indexed: 02/07/2023]
Abstract
Esophageal atresia with/without tracheo-esophageal fistula is a relatively common malformation, occurring in around 1 in 3500 births. In around half of cases, additional malformations are present, forming either a syndrome of known genetic aetiology, or a recognised association, of which the VACTERL association (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal and Limb malformations) is the most recognised. Recently, microdeletions of the FOX gene cluster at 16q24.1, comprising four genes, FOXF1, MTHFSD, FOXC2 and FOXL1, were reported to cause a phenotype resembling VACTERL association, with vertebral anomalies, gastro-intestinal atresias (esophageal, duodenal and anal), congenital heart malformations, and urinary tract malformations, as well as a rare lethal developmental anomaly of the lung, alveolar capillary dysplasia. This article reviews these new data alongside other genetic causes of syndromic esophageal atresia, and also highlights information from relevant mouse models, particularly those for genes in the Sonic Hedgehog pathway.
Collapse
|
95
|
Nelsen SM, Christian JL. Site-specific cleavage of BMP4 by furin, PC6, and PC7. J Biol Chem 2009; 284:27157-66. [PMID: 19651771 PMCID: PMC2785643 DOI: 10.1074/jbc.m109.028506] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/27/2009] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) require proteolytic activation by members of the proprotein convertase (PC) family. Pro-BMP4 is initially cleaved at a site adjacent to the mature ligand domain (S1) and then at an upstream site (S2) within the prodomain. Cleavage at the S2 site, which appears to occur in a tissue-specific fashion, regulates the activity and signaling range of mature BMP4. To test the hypothesis that tissue-specific cleavage of pro-BMP4 is regulated by differential expression of a site-specific protease, we identified the PCs that cleave each site in vivo. In Xenopus oocytes, furin and PC6 function redundantly to cleave both the S1 and S2 sites of pro-BMP4, as evidenced by the results of antisense-mediated gene knockdown and the use of the furin- and PC6-selective inhibitor alpha(1)-PDX. By contrast, alpha(1)-PDX blocked cleavage of the S2 but not the S1 site of pro-BMP4 in embryos, suggesting the existence of a developmentally regulated S1 site-specific convertase. This protease is likely to be PC7 based on knowledge of its required substrate cleavage motif and resistance to alpha(1)-PDX. Consistent with this prediction, an alpha(1)-PDX variant engineered to target PC7, in addition to furin and PC6, completely inhibited cleavage of BMP4 in oocytes and embryos. Further studies showed that pc7 transcripts are expressed and polyadenylated, and that the PC7 precursor protein undergoes efficient autocatalytic activation in both oocytes and embryos. These results suggest that PC7, or a convertase with similar substrate specificity, functions to selectively cleave the S1 site of pro-BMP4 in a developmentally regulated fashion.
Collapse
Affiliation(s)
| | - Jan L. Christian
- Cell and Developmental Biology, Oregon Health and Science University School of Medicine, Portland, Oregon 97239-3098
| |
Collapse
|
96
|
Sun X, Essalmani R, Seidah NG, Prat A. The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model. Mol Cancer 2009; 8:73. [PMID: 19737405 PMCID: PMC2746178 DOI: 10.1186/1476-4598-8-73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/08/2009] [Indexed: 03/26/2023] Open
Abstract
Background The secretory basic amino acid-specific proprotein convertases (PCs) have often been associated with cancer/metastasis. By controlling the cleavage of cancer-associated proteins, PCs play key roles in multiple steps of cancer development. Most analyses of the implication of PCs in cancer/metastasis relied on the use of in vitro overexpression systems or inhibitors that can affect more than one PC. Aside from the role of furin in salivary gland tumorigenesis, no other in vivo genetic model of PC-knockout was reported in relation to cancer development. Results Since PC5/6 is highly expressed in the small intestine, the present study examined its in vivo role in intestinal tumorigenesis. Analysis of human intestinal tumors at various stages showed a systematic down-regulation of PC5/6 expression. Since gene inactivation of PC5/6 leads to lethality at birth, we generated mice lacking PC5/6 in enterocytes and analyzed the impact of the presence or absence of this PC in the mouse ApcMin/+ model that develops numerous adenocarcinomas along the intestinal tract. This resulted in viable mice with almost no expression of PC5/6 in small intestine, but with no overt phenotype. The data showed that by themselves ApcMin/+ tumors express lower levels of PC5/6 mRNA, and that the lack of PC5/6 in enterocytes results in a significantly higher tumor number in the duodenum, with a similar trend in other intestinal segments. Finally, the absence of PC5/6 is also associated with a premature mortality of ApcMin/+ mice. Conclusion Overall, these data suggest that intestinal PC5/6 is protective towards tumorigenesis, especially in mouse duodenum, and possibly in human colon.
Collapse
Affiliation(s)
- Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
97
|
Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23:1505-18. [PMID: 19556340 PMCID: PMC2737552 DOI: 10.1210/me.2009-0085] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/12/2009] [Indexed: 12/20/2022] Open
Abstract
We used gene array analysis of cortical bone to identify Phex-dependent gene transcripts associated with abnormal Fgf23 production and mineralization in Hyp mice. We found evidence that elevation of Fgf23 expression in osteocytes is associated with increments in Fgf1, Fgf7, and Egr2 and decrements in Sost, an inhibitor in the Wnt-signaling pathway, were observed in Hyp bone. beta-Catenin levels were increased in Hyp cortical bone, and TOPflash luciferase reporter assay showed increased transcriptional activity in Hyp-derived osteoblasts, consistent with Wnt activation. Moreover, activation of Fgf and Wnt-signaling stimulated Fgf23 promoter activity in osteoblasts. We also observed reductions in Bmp1, a metalloproteinase that metabolizes the extracellular matrix protein Dmp1. Alterations were also found in enzymes regulating the posttranslational processing and stability of Fgf23, including decrements in the glycosyltransferase Galnt3 and the proprotein convertase Pcsk5. In addition, we found that the Pcsk5 and the glycosyltransferase Galnt3 were decreased in Hyp bone, suggesting that reduced posttranslational processing of FGF23 may also contribute to increased Fgf23 levels in Hyp mice. With regard to mineralization, we identified additional candidates to explain the intrinsic mineralization defect in Hyp osteoblasts, including increases in the mineralization inhibitors Mgp and Thbs4, as well as increases in local pH-altering factors, carbonic anhydrase 12 (Car12) and 3 (Car3) and the sodium-dependent citrate transporter (Slc13a5). These studies demonstrate the complexity of gene expression alterations in bone that accompanies inactivating Phex mutations and identify novel pathways that may coordinate Fgf23 expression and mineralization of extracellular matrix in Hyp bone.
Collapse
Affiliation(s)
- Shiguang Liu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Esther de Graaff
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. RECENT FINDINGS Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicate that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. SUMMARY Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use.
Collapse
Affiliation(s)
- Suzana Kovac
- University of Melbourne, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
100
|
Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauvé Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquié O, Underhill TM, Waskiewicz AJ, Lehmann OJ. Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet 2009; 18:1110-21. [PMID: 19129173 DOI: 10.1093/hmg/ddp008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins of the bone morphogenetic protein (BMP) family are known to have a role in ocular and skeletal development; however, because of their widespread expression and functional redundancy, less progress has been made identifying the roles of individual BMPs in human disease. We identified seven heterozygous mutations in growth differentiation factor 6 (GDF6), a member of the BMP family, in patients with both ocular and vertebral anomalies, characterized their effects with a SOX9-reporter assay and western analysis, and demonstrated comparable phenotypes in model organisms with reduced Gdf6 function. We observed a spectrum of ocular and skeletal anomalies in morphant zebrafish, the latter encompassing defective tail formation and altered expression of somite markers noggin1 and noggin2. Gdf6(+/-) mice exhibited variable ocular phenotypes compatible with phenotypes observed in patients and zebrafish. Key differences evident between patients and animal models included pleiotropic effects, variable expressivity and incomplete penetrance. These data establish the important role of this determinant in ocular and vertebral development, demonstrate the complex genetic inheritance of these phenotypes, and further understanding of BMP function and its contributions to human disease.
Collapse
|