51
|
Noh JH, Kim KM, Abdelmohsen K, Yoon JH, Panda AC, Munk R, Kim J, Curtis J, Moad CA, Wohler CM, Indig FE, de Paula W, Dudekula DB, De S, Piao Y, Yang X, Martindale JL, de Cabo R, Gorospe M. HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev 2016; 30:1224-39. [PMID: 27198227 PMCID: PMC4888842 DOI: 10.1101/gad.276022.115] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
Noh et al. found two RNA-binding proteins (RBPs)—HuR and GRSF1—that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.
Collapse
Affiliation(s)
- Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rachel Munk
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jessica Curtis
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christopher A Moad
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christina M Wohler
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Wilson de Paula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
52
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
53
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
54
|
Abstract
Methods of in vivo visualization and manipulation of mitochondrial genetic machinery are limited due to the need to surpass not only the cytoplasmic membrane but also two mitochondrial membranes. Here, we employ the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mammalian mitochondria, to construct an import system for in vivo targeting of mitochondrial (mt) DNA or mtRNA, in order to provide fluorescence hybridization of the desired sequences.
Collapse
Affiliation(s)
- Jaroslav Zelenka
- Department No. 75, Membrane Transprot Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1084, Prague 4, 14220, Czech Republic
| | - Petr Ježek
- Department No. 75, Membrane Transprot Biophysics, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1084, Prague 4, 14220, Czech Republic.
| |
Collapse
|
55
|
Nucleic acid import into mitochondria: New insights into the translocation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3165-81. [DOI: 10.1016/j.bbamcr.2015.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022]
|
56
|
Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie 2015; 117:48-62. [DOI: 10.1016/j.biochi.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
|
57
|
Sato Y, Nakamura T, Yamada Y, Akita H, Harashima H. Multifunctional enveloped nanodevices (MENDs). ADVANCES IN GENETICS 2015; 88:139-204. [PMID: 25409606 DOI: 10.1016/b978-0-12-800148-6.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is anticipated that nucleic acid medicines will be in widespread use in the future, since they have the potential to cure diseases based on molecular mechanisms at the level of gene expression. However, intelligent delivery systems are required to achieve nucleic acid therapy, since they can perform their function only when they reach the intracellular site of action. We have been developing a multifunctional envelope-type nanodevice abbreviated as MEND, which consists of functional nucleic acids as a core and lipid envelope, and can control not only biodistribution but also the intracellular trafficking of nucleic acids. In this chapter, we review the development and evolution of the MEND by providing several successful examples, including the R8-MEND, the KALA-MEND, the MITO-Porter, the YSK-MEND, and the PALM.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Hokkaido, Japan
| |
Collapse
|
58
|
De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015; 14:2226-50. [PMID: 26030272 DOI: 10.1080/15384101.2015.1053672] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- a Department of Biochemistry and Molecular Biology ; University of Miami Miller School of Medicine ; Miami , FL USA
| | | | | | | | | |
Collapse
|
59
|
Zhang X, Gao X, Coots RA, Conn CS, Liu B, Qian SB. Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nat Struct Mol Biol 2015; 22:404-10. [PMID: 25866880 PMCID: PMC4424103 DOI: 10.1038/nsmb.3010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
In response to stress, cells attenuate global protein synthesis but permit efficient translation of mRNAs encoding heat-shock proteins (HSPs). Although decades have passed since the first description of the heat-shock response, how cells achieve translational control of HSP synthesis remains enigmatic. Here we report an unexpected role for mitochondrial ribosomal protein L18 (MRPL18) in the mammalian cytosolic stress response. MRPL18 bears a downstream CUG start codon and generates a cytosolic isoform in a stress-dependent manner. Cytosolic MRPL18 incorporates into the 80S ribosome and facilitates ribosome engagement on mRNAs selected for translation during stress. MRPL18 knockdown has minimal effects on mitochondrial function but substantially dampens cytosolic HSP expression at the level of translation. Our results uncover a hitherto-uncharacterized stress-adaptation mechanism in mammalian cells, which involves formation of a 'hybrid' ribosome responsible for translational regulation during the cytosolic stress response.
Collapse
Affiliation(s)
- Xingqian Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Xiangwei Gao
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Ryan Alex Coots
- 1] Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [2] Graduate Field of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Crystal S Conn
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| | - Botao Liu
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| | - Shu-Bing Qian
- 1] Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [2] Graduate Field of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [3] Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| |
Collapse
|
60
|
Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 2015; 57:107-15. [PMID: 25913255 DOI: 10.1016/j.biomaterials.2015.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Mitochondrial genome-targeting nucleic acids are promising therapeutic candidates for treating mitochondrial diseases. To date, a number of systems for delivering genetic information to the cytosol and the nucleus have been reported, and several successful gene therapies involving gene delivery targeted to the cytosol and the nucleus have been reported. However, much less progress has been made concerning mitochondrial gene delivery systems, and mitochondrial gene therapy has never been achieved. Here, we report on the mitochondrial delivery of an antisense RNA oligonucleotide (ASO) to perform mitochondrial RNA knockdown to regulate mitochondrial function. Mitochondrial delivery of the ASO was achieved using a combination of a MITO-Porter system, which contains mitochondrial fusogenic lipid envelopes for mitochondrial delivery via membrane fusion and D-arm, a mitochondrial import signal of tRNA to the matrix. Mitochondrial delivery of the ASO induces the knockdown of the targeted mitochondria-encoded mRNA and protein, namely cytochrome c oxidase subunit II, a component of the mitochondrial respiratory chain. Furthermore, the mitochondrial membrane potential was depolarized by the down regulation of the respiratory chain as the result of the mitochondrial delivery of ASO. This finding constitutes the first report to demonstrate that the nanocarrier-mediated mitochondrial genome targeting of antisense RNA effects mitochondrial function.
Collapse
Affiliation(s)
- Ryo Furukawa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Eriko Kawamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
61
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
62
|
Kaushal PS, Sharma MR, Agrawal RK. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie 2015; 114:119-26. [PMID: 25797916 DOI: 10.1016/j.biochi.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
Mitochondria carry their own genetic material and gene-expression machinery, including ribosomes, which are responsible for synthesizing polypeptides that form essential components of the complexes involved in oxidative phosphorylation (or ATP generation) for the eukaryotic cell. Mitochondrial ribosomes (mitoribosomes) are quite divergent from cytoplasmic ribosomes in both composition and structure even as their main functional cores, such as the mRNA decoding and peptidyl transferase sites, are highly conserved. Remarkable progress has been made recently towards understanding the structure of mitoribosomes, by obtaining high-resolution cryo-electron microscopic (cryo-EM) maps. These studies confirm previous structural findings that had revealed that a significant reduction in size of ribosomal RNAs has caused topological changes in some of the functionally relevant regions, including the transfer RNA (tRNA)-binding sites and the nascent polypeptide-exit tunnel, within the structure of the mammalian mitoribosome. In addition, these studies provide unprecedented detailed views of the molecular architecture of those regions. In this review, we summarize the current state of knowledge of the structure of the mammalian mitoribosome and describe the molecular environment of its tRNA-exit region.
Collapse
Affiliation(s)
- Prem S Kaushal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
63
|
Valach M, Burger G, Gray MW, Lang BF. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res 2014; 42:13764-77. [PMID: 25429974 PMCID: PMC4267664 DOI: 10.1093/nar/gku1266] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator.
Collapse
MESH Headings
- Coccidia/genetics
- Databases, Nucleic Acid
- Genes, Mitochondrial
- Genes, rRNA
- Genome, Mitochondrial
- Genome, Plastid
- Nucleic Acid Conformation
- Phaeophyceae/genetics
- RNA/chemistry
- RNA/genetics
- RNA, Mitochondrial
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/classification
- RNA, Ribosomal, 5S/genetics
- Sequence Analysis, RNA
- Stramenopiles/genetics
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4B2, Canada
| | - B Franz Lang
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
64
|
Gibbons JG, Branco AT, Yu S, Lemos B. Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun 2014; 5:4850. [DOI: 10.1038/ncomms5850] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 01/26/2023] Open
|
65
|
Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 2014; 588:2496-503. [PMID: 24911204 PMCID: PMC4099522 DOI: 10.1016/j.febslet.2014.05.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Agata Rozanska
- The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
66
|
Kuzmenko AV, Levitskii SA, Vinogradova EN, Atkinson GC, Hauryliuk V, Zenkin N, Kamenski PA. Protein biosynthesis in mitochondria. BIOCHEMISTRY (MOSCOW) 2014; 78:855-66. [PMID: 24228873 DOI: 10.1134/s0006297913080014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- A V Kuzmenko
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
67
|
Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84. [PMID: 24412566 PMCID: PMC3988845 DOI: 10.1016/j.biocel.2013.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 10/28/2022]
Abstract
Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
68
|
Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA. J Bioenerg Biomembr 2014; 46:147-56. [PMID: 24562889 DOI: 10.1007/s10863-014-9543-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.
Collapse
|
69
|
Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 2013; 505:515-9. [PMID: 24362565 DOI: 10.1038/nature12890] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/15/2013] [Indexed: 01/30/2023]
Abstract
Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.
Collapse
|
70
|
Van den Hove DLA, Kenis G, Brass A, Opstelten R, Rutten BPF, Bruschettini M, Blanco CE, Lesch KP, Steinbusch HWM, Prickaerts J. Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex. Eur Neuropsychopharmacol 2013. [PMID: 23199416 DOI: 10.1016/j.euroneuro.2012.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse life events during pregnancy may impact upon the developing fetus, predisposing prenatally stressed offspring to the development of psychopathology. In the present study, we examined the effects of prenatal restraint stress (PS) on anxiety- and depression-related behavior in both male and female adult Sprague-Dawley rats. In addition, gene expression profiles within the hippocampus and frontal cortex (FC) were examined in order to gain more insight into the molecular mechanisms that mediate the behavioral effects of PS exposure. PS significantly increased anxiety-related behavior in male, but not female offspring. Likewise, depression-related behavior was increased in male PS rats only. Further, male PS offspring showed increased basal plasma corticosterone levels in adulthood, whereas both PS males and females had lower stress-induced corticosterone levels when compared to controls. Microarray-based profiling of the hippocampus and FC showed distinct sex-dependent changes in gene expression after PS. Biological processes and/or signal transduction cascades affected by PS included glutamatergic and GABAergic neurotransmission, mitogen-activated protein kinase (MAPK) signaling, neurotrophic factor signaling, phosphodiesterase (PDE)/ cyclic nucleotide signaling, glycogen synthase kinase 3 (GSK3) signaling, and insulin signaling. Further, the data indicated that epigenetic regulation is affected differentially in male and female PS offspring. These sex-specific alterations may, at least in part, explain the behavioral differences observed between both sexes, i.e. relative vulnerability versus resilience to PS in male versus female rats, respectively. These data reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors.
Collapse
Affiliation(s)
- D L A Van den Hove
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bandiera S, Matégot R, Girard M, Demongeot J, Henrion-Caude A. MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 2013; 64:12-9. [PMID: 23792138 DOI: 10.1016/j.freeradbiomed.2013.06.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. Mitochondrial dysfunctions are known to cause a wide range of human diseases that affect tissues especially those with high energetic requirements, such as skeletal muscle, heart, kidney, and central nervous system, while being involved in cancer, aging, and metabolic processes. At the same time, the microRNA (miRNA) gene family has been demonstrated to be involved in most cellular processes through modulation of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability of miRNAs to modify numerous proteomic and genomic processes, new emphasis is being placed on the influence of miRNAs at the mitochondrial level. Recently, the localization of miRNAs in mitochondria was characterized in different species. This raises the idea that those miRNAs, noted "mitomiRs," could act as "vectors" that sense and respond dynamically to the changing microenvironment of mitochondria at the cellular level. Reciprocally, we present the involvement of mitochondria in small RNA biogenesis. With the aim of deciphering the significance of this localization, we discuss the putative mechanism of import of miRNAs at mitochondria, their origin, and their hypothetical roles within the organelle.
Collapse
Affiliation(s)
- S Bandiera
- INSERM U781 Hôpital Necker-Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, 75015, Paris, France
| | | | | | | | | |
Collapse
|
72
|
Gowher A, Smirnov A, Tarassov I, Entelis N. Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. PLoS One 2013; 8:e66228. [PMID: 23799079 PMCID: PMC3683045 DOI: 10.1371/journal.pone.0066228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNA(Lys)(CUU) and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.
Collapse
Affiliation(s)
- Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
73
|
von Ameln S, Wang G, Boulouiz R, Rutherford M, Smith G, Li Y, Pogoda HM, Nürnberg G, Stiller B, Volk A, Borck G, Hong J, Goodyear R, Abidi O, Nürnberg P, Hofmann K, Richardson G, Hammerschmidt M, Moser T, Wollnik B, Koehler C, Teitell M, Barakat A, Kubisch C. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 2012; 91:919-27. [PMID: 23084290 PMCID: PMC3487123 DOI: 10.1016/j.ajhg.2012.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022] Open
Abstract
A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.
Collapse
Affiliation(s)
- Simon von Ameln
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Geng Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Redouane Boulouiz
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Mark A. Rutherford
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Geoffrey M. Smith
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun Li
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| | - Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
| | - Barbara Stiller
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Jason S. Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Omar Abidi
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Matthias Hammerschmidt
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Tobias Moser
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Carla M. Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute and Center for Cell Control, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abdelhamid Barakat
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
74
|
Vedrenne V, Gowher A, De Lonlay P, Nitschke P, Serre V, Boddaert N, Altuzarra C, Mager-Heckel AM, Chretien F, Entelis N, Munnich A, Tarassov I, Rötig A. Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 2012; 91:912-8. [PMID: 23084291 DOI: 10.1016/j.ajhg.2012.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/10/2012] [Accepted: 09/04/2012] [Indexed: 11/27/2022] Open
Abstract
Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.1160A>G) that encodes the mitochondrial polynucleotide phosphorylase (PNPase). Blue-native polyacrylamide gel electrophoresis showed that no PNPase complex could be detected in subject fibroblasts, confirming that the substitution encoded by c.1160A>G disrupts the trimerization of the protein. PNPase is predominantly localized in the mitochondrial intermembrane space and is implicated in RNA targeting to human mitochondria. Mammalian mitochondria import several small noncoding nuclear RNAs (5S rRNA, MRP RNA, some tRNAs, and miRNAs). By RNA hybridization experiments, we observed a significant decrease in 5S rRNA and MRP-related RNA import into mitochondria in fibroblasts of affected subject 1. Moreover, we found a reproducible decrease in the rate of mitochondrial translation in her fibroblasts. Finally, overexpression of the wild-type PNPT1 cDNA in fibroblasts of subject 1 induced an increase in 5S rRNA import in mitochondria and rescued the mitochondrial-translation deficiency. In conclusion, we report here abnormal RNA import into mitochondria as a cause of respiratory-chain deficiency.
Collapse
|
75
|
Sripada L, Tomar D, Singh R. Mitochondria: One of the destinations of miRNAs. Mitochondrion 2012; 12:593-9. [DOI: 10.1016/j.mito.2012.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/22/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023]
|
76
|
Comte C, Tonin Y, Heckel-Mager AM, Boucheham A, Smirnov A, Auré K, Lombès A, Martin RP, Entelis N, Tarassov I. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2012; 41:418-33. [PMID: 23087375 PMCID: PMC3592399 DOI: 10.1093/nar/gks965] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases.
Collapse
Affiliation(s)
- Caroline Comte
- Department of Molecular and Cellular Genetics, UMR Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 2012; 7:e44873. [PMID: 22984580 PMCID: PMC3439422 DOI: 10.1371/journal.pone.0044873] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/09/2012] [Indexed: 01/02/2023] Open
Abstract
Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions.
Collapse
Affiliation(s)
- Lakshmi Sripada
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhanendra Tomar
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Paresh Prajapati
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Rochika Singh
- Department of Human Health and Disease, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Arun Kumar Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
- * E-mail:
| |
Collapse
|
78
|
Agrawal RK, Sharma MR. Structural aspects of mitochondrial translational apparatus. Curr Opin Struct Biol 2012; 22:797-803. [PMID: 22959417 DOI: 10.1016/j.sbi.2012.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
Abstract
During the last decade groundbreaking progress has been made towards the understanding of structure and function of cell's translational machinery. Cryo-electron microscopic (cryo-EM) and X-ray crystallographic structures of cytoplasmic ribosomes from several bacterial and eukaryotic species are now available in various ligand-bound states. Significant advances have also been made in structural studies on ribosomes of the cellular organelles, such as those present in the chloroplasts and mitochondria, using cryo-EM techniques. Here we review the progress made in structure determination of the mitochondrial ribosomes, with an emphasis on the mammalian mitochondrial ribosome and one of its translation initiation factors, and discuss challenges that lie ahead in obtaining their high-resolution structures.
Collapse
Affiliation(s)
- Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States.
| | | |
Collapse
|
79
|
Cheng N, Mao Y, Shi Y, Tao S. Coevolution in RNA molecules driven by selective constraints: evidence from 5S rRNA. PLoS One 2012; 7:e44376. [PMID: 22973441 PMCID: PMC3433437 DOI: 10.1371/journal.pone.0044376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 08/06/2012] [Indexed: 11/20/2022] Open
Abstract
Understanding intra-molecular coevolution helps to elucidate various structural and functional constraints acting on molecules and might have practical applications in predicting molecular structure and interactions. In this study, we used 5S rRNA as a template to investigate how selective constraints have shaped the RNA evolution. We have observed the nonrandom occurrence of paired differences along the phylogenetic trees, the high rate of compensatory evolution, and the high TIR scores (the ratio of the numbers of terminal to intermediate states), all of which indicate that significant positive selection has driven the evolution of 5S rRNA. We found three mechanisms of compensatory evolution: Watson-Crick interaction (the primary one), complex interactions between multiple sites within a stem, and interplay of stems and loops. Coevolutionary interactions between sites were observed to be highly dependent on the structural and functional environment in which they occurred. Coevolution occurred mostly in those sites closest to loops or bulges within structurally or functionally important helices, which may be under weaker selective constraints than other stem positions. Breaking these pairs would directly increase the size of the adjoining loop or bulge, causing a partial or total structural rearrangement. In conclusion, our results indicate that sequence coevolution is a direct result of maintaining optimal structural and functional integrity.
Collapse
Affiliation(s)
- Nan Cheng
- StateKey Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
- Bioinformatics Center, Northwest A&F University, Yangling, People’s Republic of China
| | - Yuanhui Mao
- StateKey Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
| | - Youyi Shi
- College of Science, Northwest A&F University, Yangling, People’s Republic of China
| | - Shiheng Tao
- StateKey Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, People’s Republic of China
- Bioinformatics Center, Northwest A&F University, Yangling, People’s Republic of China
- * E-mail:
| |
Collapse
|
80
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
81
|
Koc EC, Koc H. Regulation of mammalian mitochondrial translation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1055-66. [PMID: 22480953 DOI: 10.1016/j.bbagrm.2012.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022]
Abstract
Mitochondria are responsible for the production of over 90% of the energy in eukaryotes through oxidative phosphorylation performed by electron transfer and ATP synthase complexes. Mitochondrial translation machinery is responsible for the synthesis of 13 essential proteins of these complexes encoded by the mitochondrial genome. Emerging data suggest that acetyl-CoA, NAD(+), and ATP are involved in regulation of this machinery through post-translational modifications of its protein components. Recent high-throughput proteomics analyses and mapping studies have provided further evidence for phosphorylation and acetylation of ribosomal proteins and translation factors. Here, we will review our current knowledge related to these modifications and their possible role(s) in the regulation of mitochondrial protein synthesis using the homology between mitochondrial and bacterial translation machineries. However, we have yet to determine the effects of phosphorylation and acetylation of translation components in mammalian mitochondrial biogenesis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV 25755, USA.
| | | |
Collapse
|
82
|
Abstract
Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects, and aging. An efficient and simple mechanism for neutralizing deleterious mitochondrial DNA (mtDNA) alterations has unfortunately remained elusive. Here, we report that a 20-ribonucleotide stem-loop sequence from the H1 RNA, the RNA component of the human RNase P enzyme, appended to a nonimported RNA directs the import of the resultant RNA fusion transcript into human mitochondria. The methodology is effective for both noncoding RNAs, such as tRNAs, and mRNAs. The RNA import component, polynucleotide phosphorylase (PNPASE), facilitates transfer of this hybrid RNA into the mitochondrial matrix. In addition, nucleus-encoded mRNAs for mitochondrial proteins, such as the mRNA of human mitochondrial ribosomal protein S12 (MRPS12), contain regulatory sequences in their 3'-untranslated region (UTR) that confers localization to the mitochondrial outer membrane, which is postulated to aid in protein translocation after translation. We show that for some mitochondrial-encoded transcripts, such as COX2, a 3'-UTR localization sequence is not required for mRNA import, whereas for corrective mitochondrial-encoded tRNAs, appending the 3'-UTR localization sequence was essential for efficient fusion-transcript translocation into mitochondria. In vivo, functional defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in two human disease lines. Thus, this study indicates that a wide range of RNAs can be targeted to mitochondria by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, providing an exciting, general approach for overcoming mitochondrial genetic disorders.
Collapse
|
83
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
84
|
Wang G, Shimada E, Koehler CM, Teitell MA. PNPASE and RNA trafficking into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:998-1007. [PMID: 22023881 DOI: 10.1016/j.bbagrm.2011.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
The mitochondrial genome encodes a very small fraction of the macromolecular components that are required to generate functional mitochondria. Therefore, most components are encoded within the nuclear genome and are imported into mitochondria from the cytosol. Understanding how mitochondria are assembled, function, and dysfunction in diseases requires detailed knowledge of mitochondrial import mechanisms and pathways. The import of nucleus-encoded RNAs is required for mitochondrial biogenesis and function, but unlike pre-protein import, the pathways and cellular machineries of RNA import are poorly defined, especially in mammals. Recent studies have shown that mammalian polynucleotide phosphorylase (PNPASE) localizes in the mitochondrial intermembrane space (IMS) to regulate the import of RNA. The identification of PNPASE as the first component of the RNA import pathway, along with a growing list of nucleus-encoded RNAs that are imported and newly developed assay systems for RNA import studies, suggest a unique opportunity is emerging to identify the factors and mechanisms that regulate RNA import into mammalian mitochondria. Here we summarize what is known in this fascinating area of mitochondrial biogenesis, identify areas that require further investigation, and speculate on the impact unraveling RNA import mechanisms and pathways will have for the field going forward. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
85
|
Cloning, Escherichia coli expression, purification, characterization, and enzyme assay of the ribosomal protein S4 from wheat seedlings (Triticum vulgare). Protein Expr Purif 2011; 81:55-62. [PMID: 21945701 DOI: 10.1016/j.pep.2011.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
S4 is a paradigm of ribosomal proteins involved in multifarious activities both within and outside the ribosome. For a detailed biochemical and structural investigations of eukaryotic S4, the wheat S4 gene has been cloned and expressed in Escherichia coli, and the protein purified to a high degree of homogeneity. The 285-residue recombinant protein containing an N-terminal His(6) tag along with fourteen additional residues derived from the cloning vector is characterized by a molecular mass of 31981.24 Da. The actual sequence of 265 amino acids having a molecular mass of 29931 Da completely defines the primary structure of wheat S4. Homology modeling shows a bi-lobed protein topology arising from folding of the polypeptide into two domains, consistent with the fold topology of prokaryotic S4. The purified protein is stable and folded since it can be reversibly unfolded in guanidinium hydrochloride, and is capable of hydrolyzing cysteine protease-specific peptide-based fluorescence substrates, including Ac-DEVD-AFC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin).
Collapse
|
86
|
Chrzanowska-Lightowlers ZMA, Pajak A, Lightowlers RN. Termination of protein synthesis in mammalian mitochondria. J Biol Chem 2011; 286:34479-85. [PMID: 21873426 DOI: 10.1074/jbc.r111.290585] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All mechanisms of protein synthesis can be considered in four stages: initiation, elongation, termination, and ribosome recycling. Remarkable progress has been made in understanding how these processes are mediated in the cytosol of many species; however, details of organellar protein synthesis remain sketchy. This is an important omission, as defects in human mitochondrial translation are known to cause disease and may contribute to the aging process itself. In this minireview, we focus on the recent advances that have been made in understanding how one of these processes, translation termination, occurs in the human mitochondrion.
Collapse
Affiliation(s)
- Zofia M A Chrzanowska-Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|