51
|
Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:169-96. [PMID: 23171352 DOI: 10.1111/pbi.12022] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/03/2023]
Abstract
Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and MJ Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
52
|
Doblas VG, Amorim-Silva V, Posé D, Rosado A, Esteban A, Arró M, Azevedo H, Bombarely A, Borsani O, Valpuesta V, Ferrer A, Tavares RM, Botella MA. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis. THE PLANT CELL 2013; 25:728-43. [PMID: 23404890 PMCID: PMC3608789 DOI: 10.1105/tpc.112.108696] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 05/18/2023]
Abstract
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.
Collapse
Affiliation(s)
- Verónica G. Doblas
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Vítor Amorim-Silva
- Center for Biodiversity, Functional and Integrative Genomics, Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Abel Rosado
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Alicia Esteban
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Montserrat Arró
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universidad Autónoma de Barcelona-Universidad de Barcelona), Bellaterra-Cerdanyola del Vallés, 08193 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Herlander Azevedo
- Center for Biodiversity, Functional and Integrative Genomics, Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Aureliano Bombarely
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo CP12900, Uruguay
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| | - Albert Ferrer
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universidad Autónoma de Barcelona-Universidad de Barcelona), Bellaterra-Cerdanyola del Vallés, 08193 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Rui M. Tavares
- Center for Biodiversity, Functional and Integrative Genomics, Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A. Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
| |
Collapse
|
53
|
Sweetlove LJ, Fernie AR. The spatial organization of metabolism within the plant cell. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:723-46. [PMID: 23330793 DOI: 10.1146/annurev-arplant-050312-120233] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Identifying the correct subcellular locations for all enzymes and metabolites in plant metabolic networks is a major challenge, but is critically important for the success of the new generation of large-scale metabolic models that are driving a network-level appreciation of metabolic behavior. Even though the subcellular compartmentation of many central metabolic processes is thought to be well understood, recent gene-by-gene studies have revealed several unexpected enzyme localizations. Metabolite transport between subcellular compartments is crucial because it fundamentally affects the metabolic network structure. Although new metabolite transporters are being steadily identified, modeling work suggests that we have barely scratched the surface of the catalog of intracellular metabolite transporter proteins. In addition to compartmentation among organelles, it is increasingly apparent that microcompartment formation via the interactions of enzyme groups with intracellular membranes, the cytoskeleton, or other proteins is an important regulatory mechanism. In particular, this mechanism can promote metabolite channeling within the metabolic microcompartment, which can help control reaction specificity as well as dictate flux routes through the network. This has clear relevance for both synthetic biology in general and the engineering of plant metabolic networks in particular.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| | | |
Collapse
|
54
|
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:665-700. [PMID: 23451776 DOI: 10.1146/annurev-arplant-050312-120116] [Citation(s) in RCA: 573] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isoprenoid biosynthesis is essential for all living organisms, and isoprenoids are also of industrial and agricultural interest. All isoprenoids are derived from prenyl diphosphate (prenyl-PP) precursors. Unlike isoprenoid biosynthesis in other living organisms, prenyl-PP, as the precursor of all isoprenoids in plants, is synthesized by two independent pathways: the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. This review focuses on progress in our understanding of how the precursors for isoprenoid biosynthesis are synthesized in the two subcellular compartments, how the underlying pathway gene networks are organized and regulated, and how network perturbations impact each pathway and plant development. Because of the wealth of data on isoprenoid biosynthesis, we emphasize research in Arabidopsis thaliana and compare the synthesis of isoprenoid precursor molecules in this model plant with their synthesis in other prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Eva Vranová
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
55
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
56
|
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. MOLECULAR PLANT 2012; 5:318-33. [PMID: 22442388 DOI: 10.1093/mp/sss015] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Isoprenoids are functionally and structurally the most diverse group of plant metabolites reported to date. They can function as primary metabolites, participating in essential plant cellular processes, and as secondary metabolites, of which many have substantial commercial, pharmacological, and agricultural value. Isoprenoid end products participate in plants in a wide range of physiological processes acting in them both synergistically, such as chlorophyll and carotenoids during photosynthesis, or antagonistically, such as gibberellic acid and abscisic acid during seed germination. It is therefore expected that fluxes via isoprenoid metabolic network are tightly controlled both temporally and spatially, and that this control occurs at different levels of regulation and in an orchestrated manner over the entire isoprenoid metabolic network. In this review, we summarize our current knowledge of the topology of the plant isoprenoid pathway network and its regulation at the gene expression level following diverse stimuli. We conclude by discussing agronomical and biotechnological applications emerging from the plant isoprenoid metabolism and provide an outlook on future directions in the systems analysis of the plant isoprenoid pathway network.
Collapse
Affiliation(s)
- Eva Vranová
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
57
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
58
|
Urbán P, Estelrich J, Adeva A, Cortés A, Fernàndez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. NANOSCALE RESEARCH LETTERS 2011; 6:620. [PMID: 22151840 PMCID: PMC3285703 DOI: 10.1186/1556-276x-6-620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/07/2011] [Indexed: 05/24/2023]
Abstract
Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with immunoliposomes encapsulating 4 nM chloroquine and bearing an estimated 250 BM1234 units. The nanovector prototype described here can be a valuable platform amenable to modification and improvement with the objective of designing a nanostructure adequate to enter the preclinical pipeline as a new antimalarial therapy.
Collapse
Affiliation(s)
- Patricia Urbán
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona, E08028, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona (UB), Martí i Franquès 1, Barcelona, E08028, Spain
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Rosselló 132, Barcelona, E08036, Spain
| | - Joan Estelrich
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona (UB), Martí i Franquès 1, Barcelona, E08028, Spain
- Departament de Fisicoquímica, Facultat de Farmàcia, University of Barcelona, Av. Joan XXIII, s/n, Barcelona, E08028, Spain
| | - Alberto Adeva
- Scientific and Technological Centres, University of Barcelona, Baldiri Reixac 10-12, Barcelona, E08028, Spain
| | - Alfred Cortés
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Rosselló 132, Barcelona, E08036, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, E08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, E08018, Spain
| | - Xavier Fernàndez-Busquets
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona, E08028, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona (UB), Martí i Franquès 1, Barcelona, E08028, Spain
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Rosselló 132, Barcelona, E08036, Spain
| |
Collapse
|
59
|
Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc'h N, Clastre M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. PLANTA 2011; 234:903-14. [PMID: 21655959 DOI: 10.1007/s00425-011-1444-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/17/2011] [Indexed: 05/19/2023]
Abstract
In plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome.
Collapse
Affiliation(s)
- Andrew J Simkin
- EA 2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, 31 Avenue Monge, 37200, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Antolín-Llovera M, Leivar P, Arró M, Ferrer A, Boronat A, Campos N. Modulation of plant HMG-CoA reductase by protein phosphatase 2A: positive and negative control at a key node of metabolism. PLANT SIGNALING & BEHAVIOR 2011; 6:1127-31. [PMID: 21701259 PMCID: PMC3260709 DOI: 10.4161/psb.6.8.16363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Collapse
Affiliation(s)
- Meritxell Antolín-Llovera
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Pablo Leivar
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Montserrat Arró
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Ferrer
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Farmàcia; Universitat de Barcelona; Barcelona, Spain
| | - Albert Boronat
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Narciso Campos
- Department of Molecular Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Campus Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès); Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| |
Collapse
|
61
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
62
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 DOI: 10.1043/tab.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
63
|
Leivar P, Antolín-Llovera M, Ferrero S, Closa M, Arró M, Ferrer A, Boronat A, Campos N. Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. THE PLANT CELL 2011; 23:1494-511. [PMID: 21478440 PMCID: PMC3101556 DOI: 10.1105/tpc.110.074278] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2011] [Accepted: 03/23/2011] [Indexed: 05/18/2023]
Abstract
Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B'' regulatory subunits of protein phosphatase 2A (PP2A), designated B''α and B''β, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B''α and B''β are Ca²⁺ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B''α and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B''β. Our data indicate that PP2A exerts multilevel control on HMGR through the five-member B'' protein family during normal development and in response to a variety of stress conditions.
Collapse
Affiliation(s)
- Pablo Leivar
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Meritxell Antolín-Llovera
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sergi Ferrero
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marta Closa
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Montserrat Arró
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Albert Ferrer
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Albert Boronat
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Narciso Campos
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
- Address correspondence to
| |
Collapse
|
64
|
Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release 2011; 151:202-11. [PMID: 21223986 DOI: 10.1016/j.jconrel.2011.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 12/22/2022]
Abstract
Current administration methods of antimalarial drugs deliver the free compound in the blood stream, where it can be unspecifically taken up by all cells, and not only by Plasmodium-infected red blood cells (pRBCs). Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of malaria therapy by increasing drug bioavailability and selectivity. Liposome encapsulation has been assayed for the delivery of compounds against murine malaria, but there is a lack of cellular studies on the performance of targeted liposomes in specific cell recognition and on the efficacy of cargo delivery, and very little data on liposome-driven antimalarial drug targeting to human-infecting parasites. We have used fluorescence microscopy to assess in vitro the efficiency of liposomal nanocarriers for the targeted delivery of their contents to pRBCs. 200-nm liposomes loaded with quantum dots were covalently functionalized with oriented, specific half-antibodies against P. falciparum late form-infected pRBCs. In less than 90min, liposomes dock to pRBC plasma membranes and release their cargo to the cell. 100.0% of late form-containing pRBCs and 0.0% of non-infected RBCs in P. falciparum cultures are recognized and permeated by the content of targeted immunoliposomes. Liposomes not functionalized with antibodies are also specifically directed to pRBCs, although with less affinity than immunoliposomes. In preliminary assays, the antimalarial drug chloroquine at a concentration of 2nM, ≥10 times below its IC(50) in solution, cleared 26.7±1.8% of pRBCs when delivered inside targeted immunoliposomes.
Collapse
Affiliation(s)
- Patricia Urbán
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona, Spain
| | | | | | | |
Collapse
|
65
|
Dai Z, Cui G, Zhou SF, Zhang X, Huang L. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:148-57. [PMID: 0 DOI: 10.1016/j.jplph.2010.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/19/2010] [Accepted: 06/19/2010] [Indexed: 05/03/2023]
|
66
|
Nagegowda DA. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 2010; 584:2965-73. [DOI: 10.1016/j.febslet.2010.05.045] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022]
|
67
|
Ginger ML, McFadden GI, Michels PAM. Rewiring and regulation of cross-compartmentalized metabolism in protists. Philos Trans R Soc Lond B Biol Sci 2010; 365:831-45. [PMID: 20124348 DOI: 10.1098/rstb.2009.0259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid acquisition, endosymbiotic associations, lateral gene transfer, organelle degeneracy or even organelle loss influence metabolic capabilities in many different protists. Thus, metabolic diversity is sculpted through the gain of new metabolic functions and moderation or loss of pathways that are often essential in the majority of eukaryotes. What is perhaps less apparent to the casual observer is that the sub-compartmentalization of ubiquitous pathways has been repeatedly remodelled during eukaryotic evolution, and the textbook pictures of intermediary metabolism established for animals, yeast and plants are not conserved in many protists. Moreover, metabolic remodelling can strongly influence the regulatory mechanisms that control carbon flux through the major metabolic pathways. Here, we provide an overview of how core metabolism has been reorganized in various unicellular eukaryotes, focusing in particular on one near universal catabolic pathway (glycolysis) and one ancient anabolic pathway (isoprenoid biosynthesis). For the example of isoprenoid biosynthesis, the compartmentalization of this process in protists often appears to have been influenced by plastid acquisition and loss, whereas for glycolysis several unexpected modes of compartmentalization have emerged. Significantly, the example of trypanosomatid glycolysis illustrates nicely how mathematical modelling and systems biology can be used to uncover or understand novel modes of pathway regulation.
Collapse
Affiliation(s)
- Michael L Ginger
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
68
|
Abas L, Luschnig C. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal Biochem 2010; 401:217-27. [PMID: 20193653 PMCID: PMC3685806 DOI: 10.1016/j.ab.2010.02.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
Isolation of a microsomal membrane fraction is a common procedure in studies involving membrane proteins. By conventional definition, microsomal membranes are collected by centrifugation of a postmitochondrial fraction at 100,000g in an ultracentrifuge, a method originally developed for large amounts of mammalian tissue. We present a method for isolating microsomal-type membranes from small amounts of Arabidopsis thaliana plant material that does not rely on ultracentrifugation but instead uses the lower relative centrifugal force (21,000g) of a microcentrifuge. We show that the 21,000g pellet is equivalent to that obtained at 100,000g and that it contains all of the membrane fractions expected in a conventional microsomal fraction. Our method incorporates specific manipulation of sample density throughout the procedure, with minimal preclearance, minimal volumes of extraction buffer, and minimal sedimentation pathlength. These features allow maximal membrane yields, enabling membrane isolation from limited amounts of material. We further demonstrate that conventional ultracentrifuge-based protocols give submaximal yields due to losses during early stages of the procedure; that is, extensive amounts of microsomal-type membranes can sediment prematurely during the typical preclearance steps. Our protocol avoids such losses, thereby ensuring maximal yield and a representative total membrane fraction. The principles of our method can be adapted for nonplant material.
Collapse
Affiliation(s)
- Lindy Abas
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences Vienna (Universität für Bodenkultur Wien), A-1190 Vienna, Austria.
| | | |
Collapse
|
69
|
Tang J, Kobayashi K, Suzuki M, Matsumoto S, Muranaka T. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:456-66. [PMID: 19929879 DOI: 10.1111/j.1365-313x.2009.04082.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Unlike animals, plants synthesize isoprenoids via two pathways, the cytosolic mevalonate (MVA) pathway and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. Little information is known about the mechanisms that regulate these complex biosynthetic networks over multiple organelles. To understand such regulatory mechanisms of the biosynthesis of isoprenoids in plants, we previously characterized the Arabidopsis mutant, lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, specific inhibitors of the MVA and MEP pathways, respectively. LOI1 encodes a pentatricopeptide repeat (PPR) protein localized in mitochondria that is thought to have RNA binding ability and function in post-transcriptional regulation of mitochondrial gene expression. LOI1 belongs to the DYW subclass of PPR proteins, which is hypothesized to be correlated with RNA editing. As a result of analysis of RNA editing of mitochondrial genes in loi1, a defect in RNA editing of three genes, nad4, ccb203 and cox3, was identified in loi1. These genes are related to the respiratory chain. Wild type (WT) treated with some respiration inhibitors mimicked the loi1 phenotype. Interestingly, HMG-CoA reductase activity of WT treated with lovastatin combined with antimycin A, an inhibitor of complex III in the respiratory chain, was higher than that of WT treated with only lovastatin, despite the lack of alteration of transcript or protein levels of HMGR. These results suggest that HMGR enzyme activity is regulated through the respiratory cytochrome pathway. Although various mechanisms exist for isoprenoid biosynthesis, our studies demonstrate the novel possibility that mitochondrial respiration plays potentially regulatory roles in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Jianwei Tang
- RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
70
|
Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S. Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct Integr Genomics 2010; 10:393-404. [DOI: 10.1007/s10142-009-0152-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 11/28/2022]
|
71
|
Flores-Pérez U, Pérez-Gil J, Closa M, Wright LP, Botella-Pavía P, Phillips MA, Ferrer A, Gershenzon J, Rodríguez-Concepción M. Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. MOLECULAR PLANT 2010; 3:101-112. [PMID: 20008452 DOI: 10.1093/mp/ssp100] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The biosynthesis of isoprenoids in plant cells occurs from precursors produced in the cytosol by the mevalonate (MVA) pathway and in the plastid by the methylerythritol 4-phosphate (MEP) pathway, but little is known about the mechanisms coordinating both pathways. Evidence of the importance of sugar signaling for such coordination in Arabidopsis thaliana is provided here by the characterization of a mutant showing an increased accumulation of MEP-derived isoprenoid products (chlorophylls and carotenoids) without changes in the levels of relevant MEP pathway transcripts, proteins, or enzyme activities. This mutant was found to be a new loss-of-function allele of PRL1 (Pleiotropic Regulatory Locus 1), a gene encoding a conserved WD-protein that functions as a global regulator of sugar, stress, and hormone responses, in part by inhibition of SNF1-related protein kinases (SnRK1). Consistent with the reported role of SnRK1 kinases in the phosphorylation and inactivation of the main regulatory enzyme of the MVA pathway (hydroxymethylglutaryl coenzyme-A reductase), its activity but not transcript or protein levels was reduced in prl1 seedlings. However, the accumulation of MVA-derived end products (sterols) was unaltered in mutant seedlings. Sucrose supplementation to wild-type seedlings phenocopied the prl1 mutation in terms of isoprenoid metabolism, suggesting that the observed isoprenoid phenotypes result from the increased sugar accumulation in the prl1 mutant. In summary, PRL1 appears to coordinate isoprenoid metabolism with sugar, hormone, and stress responses.
Collapse
Affiliation(s)
- Ursula Flores-Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Jordi Girona 18, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Nieto B, Forés O, Arró M, Ferrer A. Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase is regulated at the post-translational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways. PHYTOCHEMISTRY 2009; 70:53-9. [PMID: 19041104 DOI: 10.1016/j.phytochem.2008.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/11/2008] [Accepted: 10/14/2008] [Indexed: 05/04/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR, EC 1.1.1.34) catalyzes the major rate-limiting step in the mevalonate (MVA) pathway for isoprenoid biosynthesis. Its activity is regulated at different levels, from transcriptional to post-translational. Treatment of Arabidopsis thaliana plants with myriocin, a specific inhibitor of serine palmitoyltransferase (SPT), the first enzyme of sphingolipid biosynthesis, resulted in a concomitant reduction of both HMGR activity and the sterol content, which reveals regulatory cross-talk between these two lipid biosynthesis pathways. Myriocin-induced down-regulation of HMGR activity is exerted at the post-translational level, like the regulatory response of HMGR to enhancement or depletion of the flux through the sterol pathway.
Collapse
Affiliation(s)
- Benjamín Nieto
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmacia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
73
|
Kim SM, Kim YB, Kuzuyama T, Kim SU. Two copies of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (CMK) gene in Ginkgo biloba: molecular cloning and functional characterization. PLANTA 2008; 228:941-50. [PMID: 18668260 DOI: 10.1007/s00425-008-0794-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/16/2008] [Indexed: 05/23/2023]
Abstract
4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (CMK or YchB), the fourth enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway, phosphorylates the 2-hydroxyl group of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol in the presence of ATP. Two isogenes encoding CMK (GbCMK1 and GbCMK2) were cloned and characterized from Ginkgo biloba. The activities of both isozymes were confirmed by complementation assay using Escherichia coli NMW29, a ychB knock-out mutant. The transcript profiles of GbCMKs in the radicles and the cotyledons of the cultured Ginkgo biloba embryos demonstrated that the transcript levels of GbCMK1 were similar in both organs, whereas that of GbCMK2 was predominantly high in the ginkgolide-synthesizing radicles. Selective increases in the transcript abundance of GbCMK2 in the radicles, induced by light and methyl jasmonate treatments, were observed. These differential induction patterns of the transcripts imply GbCMK1 and GbCMK2 respectively have high correlations with the primary and the secondary metabolisms. The transit peptides of both isozymes delivered the fused green fluorescent protein (GFP) into the chloroplast in the Arabidopsis and the Nicotiana transient expression systems; interestingly, the transit peptide of GbCMK1 delivered the GFP protein into the cytosol and the nucleus in addition to the chloroplasts.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
| | | | | | | |
Collapse
|
74
|
Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. PLANT PHYSIOLOGY 2008; 148:1219-28. [PMID: 18988695 PMCID: PMC2577245 DOI: 10.1104/pp.108.127951] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/26/2008] [Indexed: 05/19/2023]
Affiliation(s)
- Maya Sapir-Mir
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
75
|
Conrado RJ, Varner JD, DeLisa MP. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr Opin Biotechnol 2008; 19:492-9. [DOI: 10.1016/j.copbio.2008.07.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
76
|
Ferella M, Li ZH, Andersson B, Docampo R. Farnesyl diphosphate synthase localizes to the cytoplasm of Trypanosoma cruzi and T. brucei. Exp Parasitol 2008; 119:308-12. [PMID: 18406406 DOI: 10.1016/j.exppara.2008.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 11/15/2022]
Abstract
The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes.
Collapse
Affiliation(s)
- Marcela Ferella
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
77
|
Kevei Z, Lougnon G, Mergaert P, Horváth GV, Kereszt A, Jayaraman D, Zaman N, Marcel F, Regulski K, Kiss GB, Kondorosi A, Endre G, Kondorosi E, Ané JM. 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. THE PLANT CELL 2007; 19:3974-89. [PMID: 18156218 PMCID: PMC2217646 DOI: 10.1105/tpc.107.053975] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/08/2007] [Accepted: 11/29/2007] [Indexed: 05/18/2023]
Abstract
NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalonate biosynthetic pathway leading to the production of a diverse array of isoprenoid compounds. Testing other HMGR members revealed a specific interaction between NORK and HMGR1. Mutagenesis and deletion analysis showed that this interaction requires the cytosolic active kinase domain of NORK and the cytosolic catalytic domain of HMGR1. NORK homologs from Lotus japonicus and Sesbania rostrata also interacted with Mt HMGR1, but homologous nonsymbiotic kinases of M. truncatula did not. Pharmacological inhibition of HMGR activities decreased nodule number and delayed nodulation, supporting the importance of the mevalonate pathway in symbiotic development. Decreasing HMGR1 expression in M. truncatula transgenic roots by RNA interference led to a dramatic decrease in nodulation, confirming that HMGR1 is essential for nodule development. Recruitment of HMGR1 by NORK could be required for production of specific isoprenoid compounds, such as cytokinins, phytosteroids, or isoprenoid moieties involved in modification of signaling proteins.
Collapse
Affiliation(s)
- Zoltán Kevei
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Merret R, Cirioni JR, Bach TJ, Hemmerlin A. A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Lett 2007; 581:5295-99. [PMID: 18028913 DOI: 10.1016/j.febslet.2007.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/25/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is unique in the first part of the cytoplasmic isoprenoid pathway, as it contains a membrane domain that includes ER-specific retention motifs. When fused to GFP, this domain targets two tobacco BY-2 HMGR isoforms differentially. While the first isoform is ER-localized, a second stress-induced one forms globular structures connected by tubular structures. A serine positioned upstream of the ER retention motif seems to be implicated in this specific subcellular localization. Surprisingly, these structures are closely connected to F-actin, and their intactness is dependent upon the integrity of the filaments or the action of a calmodulin antagonist.
Collapse
Affiliation(s)
- Rémy Merret
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université Louis Pasteur, Département Isoprénoïdes, 28 Rue Goethe, F-67083 Strasbourg, France
| | | | | | | |
Collapse
|
79
|
van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:752-62. [PMID: 17877699 DOI: 10.1111/j.1365-313x.2007.03273.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Geranyl diphosphate synthase (GPS) is generally considered to be responsible for the biosynthesis of monoterpene precursors only. However, reduction of LeGPS expression in tomato (Lycopersicon esculentum) by virus-induced gene silencing resulted in severely dwarfed plants. Further analysis of these dwarfed plants revealed a decreased gibberellin content, whereas carotenoid and chlorophyll levels were unaltered. Accordingly, the phenotype could be rescued by application of gibberellic acid. The dwarfed phenotype was also obtained in Arabidopsis thaliana plants transformed with RNAi constructs of AtGPS. These results link geranyl diphosphate (GPP) to the gibberellin biosynthesis pathway. They also demand a re-evaluation of the role of GPS in precursor synthesis for other di-, tri-, tetra- and/or polyterpenes and their derivatives.
Collapse
Affiliation(s)
- Chris C N van Schie
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
80
|
Muñoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:746-58. [PMID: 17714440 DOI: 10.1111/j.1467-7652.2007.00286.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.
Collapse
Affiliation(s)
- Jesús Muñoz-Bertomeu
- Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
| | | | | | | | | |
Collapse
|
81
|
Sasaki K, Saito T, Lämsä M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K. Plants utilize isoprene emission as a thermotolerance mechanism. PLANT & CELL PHYSIOLOGY 2007; 48:1254-62. [PMID: 17711876 DOI: 10.1093/pcp/pcm104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.
Collapse
Affiliation(s)
- Kanako Sasaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Suzuki M, Muranaka T. Molecular Genetics of Plant Sterol Backbone Synthesis. Lipids 2006; 42:47-54. [PMID: 17393210 DOI: 10.1007/s11745-006-1000-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Sterols, which are biosynthesized via the cytoplasmic mevalonate (MVA) pathway, are important structural components of the plasma membrane and precursors of steroid hormones in both vertebrates and plants. Ergosterol and cholesterol are the major sterols in yeast and vertebrates, respectively. In contrast, plants produce a wide variety of phytosterols, which have various functions in plant development. Although the general biosynthetic pathway to plant sterols has been defined, the details of the biochemical, physiological, and developmental functions of genes involved in the biosynthetic network and their regulation are not well understood. Molecular genetic analyses are an effective approach to use when studying these fascinating problems. Since three enzymes, 3-hydroxy-3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, and lanosterol synthase, have been functionally characterized in planta, we reviewed recent progress on these enzymes. Arabidopsis T-DNA and transposon insertion mutants are now widely available. The use of molecular genetics, molecular biology, and bioorganic chemical approaches on these mutants, as well as inhibitors of the MVA pathway, should help us to understand plant sterol biosynthesis comprehensively.
Collapse
Affiliation(s)
- Masashi Suzuki
- Metabolic Diversity Research Team, RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
83
|
Hills MJ, Roscoe TJ. Synthesis of Structural and Storage Lipids by the ER. PLANT CELL MONOGRAPHS 2006. [DOI: 10.1007/7089_056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
84
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
85
|
Nagegowda DA, Ramalingam S, Hemmerlin A, Bach TJ, Chye ML. Brassica juncea HMG-CoA synthase: localization of mRNA and protein. PLANTA 2005; 221:844-56. [PMID: 15770484 DOI: 10.1007/s00425-005-1497-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 01/29/2005] [Indexed: 05/24/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) synthase (HMGS; EC 2.3.3.10) synthesizes HMG-CoA, a substrate for mevalonate biosynthesis in the isoprenoid pathway. It catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA (AcAc-CoA) to yield S-HMG-CoA and HS-CoA. In Brassica juncea (Indian mustard), HMGS is encoded by four isogenes (BjHMGS1-BjHMGS4). We have already enzymatically characterized recombinant BjHMGS1 expressed in Escherichia coli, and have identified its residues that are significant in catalysis. To further study HMGS mRNA expression that is developmentally regulated in flowers and seedlings, we have examined its mRNA distribution by in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR). We observed predominant localization of HMGS mRNA in the stigmas and ovules of flower buds and in the piths of seedling hypocotyls. RT-PCR analysis revealed that BjHMGS1 and BjHMGS2 but not BjHMGS3 and BjHMGS4were expressed in floral buds. To investigate the subcellular localization of BjHMGS1, we fused BjHMGS1 translationally in-frame either to the N- or C-terminus of green fluorescent protein (GFP). BjHMGS1-GFP and GFP-BjHMGS1 fusions were used in particle gun bombardment of onion epidermal cells and tobacco BY-2 cells. The GFP-BjHMGS1 construct was also used in agroinfiltration of tobacco leaves. Both GFP-fusion proteins were observed transiently expressed in the cytosol on confocal microscopy of onion epidermal cells, tobacco BY-2 cells, and agroinfiltrated tobacco leaves. Further, subcellular fractionation of total proteins from transgenic plants expressing GFP-BjHMGS1 derived from Agrobacterium-mediated transformation confirmed that BjHMGS1 is a cytosolic enzyme. We suggest that the presence of BjHMGS isoforms is likely related to the specialization of each in different cellular and metabolic processes rather than to a different intracellular compartmentation of the enzyme.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
86
|
Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:280-91. [PMID: 15860425 DOI: 10.1016/j.pbi.2005.03.014] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metabolon formation and metabolic channeling in plant secondary metabolism enable plants to effectively synthesize specific natural products and to avoid metabolic interference. Channeling can involve different cell types, take advantage of compartmentalization within the same cell or proceed directly within a metabolon. New experimental approaches document the importance of channeling in the synthesis of isoprenoids, alkaloids, phenylpropanoids, flavonoids and cyanogenic glucosides. Metabolon formation and metabolic channeling in natural-product synthesis facilitate attempts to genetically engineer new pathways into plants to improve their content of valuable natural products. They also offer the opportunity to introduce new traits by genetic engineering to produce plant cultivars that adhere to the principle of substantial equivalence.
Collapse
Affiliation(s)
- Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|