51
|
Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. THE PLANT CELL 2008; 20:786-802. [PMID: 18326829 PMCID: PMC2329944 DOI: 10.1105/tpc.107.052647] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 02/04/2008] [Accepted: 02/15/2008] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plants. This analysis of Arabidopsis thaliana HOT5 (sensitive to hot temperatures), which is required for thermotolerance, uncovers a role of NO in thermotolerance and plant development. HOT5 encodes S-nitrosoglutathione reductase (GSNOR), which metabolizes the NO adduct S-nitrosoglutathione. Two hot5 missense alleles and two T-DNA insertion, protein null alleles were characterized. The missense alleles cannot acclimate to heat as dark-grown seedlings but grow normally and can heat-acclimate in the light. The null alleles cannot heat-acclimate as light-grown plants and have other phenotypes, including failure to grow on nutrient plates, increased reproductive shoots, and reduced fertility. The fertility defect of hot5 is due to both reduced stamen elongation and male and female fertilization defects. The hot5 null alleles show increased nitrate and nitroso species levels, and the heat sensitivity of both missense and null alleles is associated with increased NO species. Heat sensitivity is enhanced in wild-type and mutant plants by NO donors, and the heat sensitivity of hot5 mutants can be rescued by an NO scavenger. An NO-overproducing mutant is also defective in thermotolerance. Together, our results expand the importance of GSNOR-regulated NO homeostasis to abiotic stress and plant development.
Collapse
Affiliation(s)
- Ung Lee
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
52
|
Navakoudis E, Ioannidis NE, Dörnemann D, Kotzabasis K. Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:948-55. [PMID: 17560538 DOI: 10.1016/j.bbabio.2007.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 11/28/2022]
Abstract
Considerably low methanol concentrations of 0.5% (v/v), induce an immense increase in biomass production in cultures of the unicellular green alga Scenedesmus obliquus compared to controls without additional methanol. The effect is light-regulated and it mimics high-CO2 induced changes of the molecular structure and function of the photosynthetic apparatus. There is evidence that methanol enhances under high light conditions by molecular changes in the LHCII--a decrease of the functional antenna-size per active reaction center--the photochemical effectiveness of the absorbed energy. This means that the non-photochemical quenching (NPQ) is minimized and thereby the overall dissipation energy. Experiments with mutants of Scenedesmus Wt produced evidence that the LHCII is the locus of the mechanism which regulates the methanol effect. The employed mutants were Wt-LHC, lacking a functioning LHCII, the light-dependent greening mutant C-2A', and the double mutant C-2A'-LHC, combining both mutations.
Collapse
Affiliation(s)
- E Navakoudis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
53
|
Filella I, Peñuelas J, Llusià J. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. THE NEW PHYTOLOGIST 2006; 169:135-44. [PMID: 16390425 DOI: 10.1111/j.1469-8137.2005.01570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses.
Collapse
Affiliation(s)
- Iolanda Filella
- Unitat Ecofisiologia CSIC-CEAB-CREAF, Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | |
Collapse
|
54
|
Sy A, Timmers ACJ, Knief C, Vorholt JA. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 2005; 71:7245-52. [PMID: 16269765 PMCID: PMC1287603 DOI: 10.1128/aem.71.11.7245-7252.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Facultative methylotrophic bacteria of the genus Methylobacterium are commonly found in association with plants. Inoculation experiments were performed to study the importance of methylotrophic metabolism for colonization of the model legume Medicago truncatula. Competition experiments with Methylobacterium extorquens wild-type strain AM1 and methylotrophy mutants revealed that the ability to use methanol as a carbon and energy source provides a selective advantage during colonization of M. truncatula. Differences in the fitness of mutants defective in different stages of methylotrophic metabolism were found; whereas approximately 25% of the mutant incapable of oxidizing methanol to formaldehyde (deficient in methanol dehydrogenase) was recovered, 10% or less of the mutants incapable of oxidizing formaldehyde to CO2 (defective in biosynthesis of the cofactor tetrahydromethanopterin) was recovered. Interestingly, impaired fitness of the mutant strains compared with the wild type was found on leaves and roots. Single-inoculation experiments showed, however, that mutants with defects in methylotrophy were capable of plant colonization at the wild-type level, indicating that methanol is not the only carbon source that is accessible to Methylobacterium while it is associated with plants. Fluorescence microscopy with a green fluorescent protein-labeled derivative of M. extorquens AM1 revealed that the majority of the bacterial cells on leaves were on the surface and that the cells were most abundant on the lower, abaxial side. However, bacterial cells were also found in the intercellular spaces inside the leaves, especially in the epidermal cell layer and immediately underneath this layer.
Collapse
Affiliation(s)
- Abdoulaye Sy
- Laboratoire des Interactions Plantes Micro-organismes, INRA/CNRS, BP27, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
55
|
Copolovici LO, Filella I, Llusià J, Niinemets U, Peñuelas J. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. PLANT PHYSIOLOGY 2005; 139:485-96. [PMID: 16126854 PMCID: PMC1203397 DOI: 10.1104/pp.105.065995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/02/2005] [Accepted: 07/06/2005] [Indexed: 05/04/2023]
Abstract
Heat stress resistance of foliar photosynthetic apparatus was investigated in the Mediterranean monoterpene-emitting evergreen sclerophyll species Quercus ilex. Leaf feeding with fosmidomycin, which is a specific inhibitor of the chloroplastic isoprenoid synthesis pathway, essentially stopped monoterpene emission and resulted in the decrease of the optimum temperature of photosynthetic electron transport from approximately 38 degrees C to approximately 30 degrees C. The heat stress resistance was partly restored by fumigation with 4 to 5 nmol mol(-1) air concentrations of monoterpene alpha-pinene but not with fumigations with monoterpene alcohol alpha-terpineol. Analyses of monoterpene physicochemical characteristics demonstrated that alpha-pinene was primarily distributed to leaf gas and lipid phases, while alpha-terpineol was primarily distributed to leaf aqueous phase. Thus, for a common monoterpene uptake rate, alpha-terpineol is less efficient in stabilizing membrane liquid-crystalline structure and as an antioxidant in plant membranes. Furthermore, alpha-terpineol uptake rate (U) strongly decreased with increasing temperature, while the uptake rates of alpha-pinene increased with increasing temperature, providing a further explanation of the lower efficiency of thermal protection by alpha-terpineol. The temperature-dependent decrease of alpha-terpineol uptake was both due to decreases in stomatal conductance, g(w), and increased volatility of alpha-terpineol at higher temperature that decreased the monoterpene diffusion gradient between the ambient air (F(A)) and leaf (F(I); U = g(w)[F(A) - F(I)]). Model analyses suggested that alpha-pinene reacted within the leaf at higher temperatures, possibly within the lipid phase, thereby avoiding the decrease in diffusion gradient, F(A) - F(I). Thus, these data contribute to the hypothesis of the antioxidative protection of leaf membranes during heat stress by monoterpenes. These data further suggest that fumigation with the relatively low atmospheric concentrations of monoterpenes that are occasionally observed during warm windless days in the Mediterranean canopies may significantly improve the heat tolerance of nonemitting vegetation that grows intermixed with emitting species.
Collapse
Affiliation(s)
- Lucian O Copolovici
- Department of Plant Physiology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | | | | | | |
Collapse
|
56
|
Yurimoto H, Kato N, Sakai Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. CHEM REC 2005; 5:367-75. [PMID: 16278835 DOI: 10.1002/tcr.20056] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methanol is a valuable raw material used in the manufacture of useful chemicals as well as a potential source of energy to replace coal and petroleum. Biotechnological interest in the microbial utilization of methanol has increased because it is an ideal carbon source and can be produced from renewable biomass. Formaldehyde, a cytotoxic compound, is a central metabolic intermediate in methanol metabolism. Therefore, microorganisms utilizing methanol have adopted several metabolic strategies to cope with the toxicity of formaldehyde. Formaldehyde is initially detoxified through trapping by some cofactors, such as glutathione, mycothiol, tetrahydrofolate, and tetrahydromethanopterin, before being oxidized to CO2. Alternatively, free formaldehyde can be trapped by sugar phosphates as the first reaction in the C1 assimilation pathways: the xylulose monophosphate pathway for yeasts and the ribulose monophosphate (RuMP) pathway for bacteria. In yeasts, although formaldehyde generation and consumption takes place in the peroxisome, the cytosolic formaldehyde oxidation pathway also plays a role in formaldehyde detoxification as well as energy formation. The key enzymes of the RuMP pathway are found in a variety of microorganisms including bacteria and archaea. Regulation of the genes encoding these enzymes and their catalytic mechanisms depend on the physiological traits of these organisms during evolution.
Collapse
Affiliation(s)
- Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
57
|
Cojocariu C, Kreuzwieser J, Rennenberg H. Correlation of short-chained carbonyls emitted from Picea abies with physiological and environmental parameters. THE NEW PHYTOLOGIST 2004; 162:717-727. [PMID: 33873774 DOI: 10.1111/j.1469-8137.2004.01061.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The spectrum and diurnal course of carbonyl exchange of mature Norway spruce (Picea abies) was analysed in a temperate forest and under controlled conditions. In parallel, plant physiological and meteorological parameters were determined. • Spruce emitted acetaldehyde, formaldehyde and acetone under field and laboratory conditions. • Carbonyl emissions were highest at midday, for acetaldehyde amounting up to 100 nmol m-2 min-1 . During darkness uptake was also observed. Fumigation of spruce seedlings with acetaldehyde indicated a compensation point of c. 6 ppb. The exchange rates were strongly correlated with temperature and mass flow of ethanol in the xylem sap. The studies further indicated that the height of a twig on the tree affects its carbonyl emission rates. • The present findings support the view that acetaldehyde emission by spruce is related to mass flow of ethanol in the xylem sap, as previously shown for tree seedlings under controlled conditions. The basis of formaldehyde and acetone emissions by spruce is still not clear and remains to be studied in further experiments.
Collapse
Affiliation(s)
- Cristian Cojocariu
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie; Albert-Ludwigs-Universität Freiburg, George-Köhler-Alle, Gebäude. 053/054, D-79110 Freiburg im Breisgau, Germany
| | - Jürgen Kreuzwieser
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie; Albert-Ludwigs-Universität Freiburg, George-Köhler-Alle, Gebäude. 053/054, D-79110 Freiburg im Breisgau, Germany
| | - Heinz Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie; Albert-Ludwigs-Universität Freiburg, George-Köhler-Alle, Gebäude. 053/054, D-79110 Freiburg im Breisgau, Germany
| |
Collapse
|
58
|
Marx CJ, Miller JA, Chistoserdova L, Lidstrom ME. Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 2004; 186:2173-8. [PMID: 15028703 PMCID: PMC374398 DOI: 10.1128/jb.186.7.2173-2178.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 12/30/2003] [Indexed: 11/20/2022] Open
Abstract
Burkholderia species are free-living bacteria with a versatile metabolic lifestyle. The genome of B. fungorum LB400 is predicted to encode three different pathways for formaldehyde oxidation: an NAD-linked, glutathione (GSH)-independent formaldehyde dehydrogenase; an NAD-linked, GSH-dependent formaldehyde oxidation system; and a tetrahydromethanopterin-methanofuran-dependent formaldehyde oxidation system. The other Burkholderia species for which genome sequences are available, B. mallei, B. pseudomallei, and B. cepacia, are predicted to contain only the first two of these pathways. The roles of the three putative formaldehyde oxidation pathways in B. fungorum LB400 have been assessed via knockout mutations in each of these pathways, as well as in all combinations of knockouts. The resulting mutants have the expected loss of enzyme activities and exhibit defects of varying degrees of severity during growth on choline, a formaldehyde-producing substrate. Our data suggest that all three pathways are involved in formaldehyde detoxification and are functionally redundant under the tested conditions.
Collapse
Affiliation(s)
- Christopher J Marx
- Department of Microbiology, University of Washington, Seattle, Washington 98195-2180, USA
| | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Ray Fall
- Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
60
|
Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. PLANT PHYSIOLOGY 2003; 132:2248-55. [PMID: 12913179 PMCID: PMC181308 DOI: 10.1104/pp.103.022277] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ADH2 gene codes for the Arabidopsis glutathione-dependent formaldehyde dehydrogenase (FALDH), an enzyme involved in formaldehyde metabolism in eukaryotes. In the present work, we have investigated the potential role of FALDH in detoxification of exogenous formaldehyde. We have generated a yeast (Saccharomyces cerevisiae) mutant strain (sfa1Delta) by in vivo deletion of the SFA1 gene that codes for the endogenous FALDH. Overexpression of Arabidopsis FALDH in this mutant confers high resistance to formaldehyde added exogenously, which demonstrates the functional conservation of the enzyme through evolution and supports its essential role in formaldehyde metabolism. To investigate the role of the enzyme in plants, we have generated Arabidopsis transgenic lines with modified levels of FALDH. Plants overexpressing the enzyme show a 25% increase in their efficiency to take up exogenous formaldehyde, whereas plants with reduced levels of FALDH (due to either a cosuppression phenotype or to the expression of an antisense construct) show a marked slower rate and reduced ability for formaldehyde detoxification as compared with the wild-type Arabidopsis. These results show that the capacity to take up and detoxify high concentrations of formaldehyde is proportionally related to the FALDH activity in the plant, revealing the essential role of this enzyme in formaldehyde detoxification.
Collapse
Affiliation(s)
- Hakima Achkor
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
61
|
Cape JN. Effects of airborne volatile organic compounds on plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2003; 122:145-57. [PMID: 12535603 DOI: 10.1016/s0269-7491(02)00273-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of oxygenated hydrocarbons on plants. Plants are a significant emission source of short-chain alcohols, aldehydes and ketones. Peroxyacetyl nitrate (PAN) has a well-documented history as damaging to vegetation. There have been few long-term experimental studies despite the field evidence for damaging effects. Early studies in California have been followed by more recent data from east Asia, but there is still a dearth of information on the potential for effects of PAN and related peroxyacyl nitrates on vegetation typical of regions around tropical and sub-tropical cities where PAN pollution is increasingly important. The lack of long-term measurements, coupled with the available evidence that effects are not linearly related to 'dose' measured as the product of exposure concentration and time, means that the possibility of adverse effects of VOCs on vegetation cannot be safely rejected, particularly in urban and industrial areas. Although reproductive processes (flowering, seed production) appear to be most sensitive, there have been no experimental studies on subsequent seed viability and the consequences at the ecosystem level of changes to plant phenology. The potential for VOC metabolites to accumulate in plant tissue has been demonstrated, but any subsequent effects on herbivores and phytophagous insects have yet to be investigated.
Collapse
Affiliation(s)
- J N Cape
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK.
| |
Collapse
|
62
|
Theodoridou A, Dörnemann D, Kotzabasis K. Light-dependent induction of strongly increased microalgal growth by methanol. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:189-98. [PMID: 12399030 DOI: 10.1016/s0304-4165(02)00438-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low methanol concentrations (about 0.5% v/v) induce biomass production in cultures of the unicellular green alga Scenedesmus obliquus by more than 300%, compared to controls without this solvent. This effect on the microalgal growth was found to be dependent on the solvent concentration, the packed cell volume (PCV), light intensity and light quality. It could be shown that methanol addition leads to a decrease in size of the light harvesting complex (LHC) on the basis of chlorophylls and proteins, and thus to changes in structure and functioning of the photosynthetic apparatus. These alterations lead to enhanced photosynthesis and respiration rates. The action of methanol on the photosynthetic apparatus is thus comparable to the effect of enhanced CO(2) concentrations. These findings support the previously proposed pathway for methanol metabolization with CO(2) as the final product. We conclude that the subsequent assimilation of the increased CO(2) amounts by the Calvin-Benson cycle is a possible explanation for the methanol-mediated increase in biomass production in terms of PCV. The methanol effect is observed only in the light and in the presence of a functioning photosynthetic apparatus. Preliminary action spectra suggest that the primary photoreceptor is a chlorophyll-protein complex with two absorption maxima at 680 and 430 nm, which may possibly be attributed to the reaction center of photosystem II (PSII).
Collapse
Affiliation(s)
- A Theodoridou
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | | | | |
Collapse
|
63
|
Kreuzwieser J, Cojocariu C, Jüssen V, Rennenberg H. Elevated atmospheric CO 2 causes seasonal changes in carbonyl emissions from Quercus ilex. THE NEW PHYTOLOGIST 2002; 154:327-333. [PMID: 33873441 DOI: 10.1046/j.1469-8137.2002.00394.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The effect of elevated atmospheric CO2 on the carbonyl emissions of leaves from two Mediterranean oak species (Quercus ilex and Q. pubescens) was analyzed under field conditions. • Physiological and meteorological parameters were determined in parallel with measurements of carbonyl emissions. Gas exchange was quantified in dynamic cuvettes combined with an infrared gas analyzer. • Acetaldehyde and acetone emissions from leaves of Q. ilex were enhanced by elevated CO2 in the autumn (from 14-40 nmol m-2 min-1 and from 2-8 nmol m-2 min-1 , respectively), but not in the summer. No significant effects were found for leaves of Q. pubescens. The effects of CO2 on Q. ilex were mainly a result of decreased emissions by control trees under ambient CO2 concentrations in the autumn; emissions from trees exposed to elevated CO2 remained at a high level. • Elevated atmospheric CO2 causes autumnal changes in carbonyl emissions from Quercus ilex. These effects suggest that the production of acetaldehyde and acetone depend on developmental factors. It is not yet clear whether the altered carbonyl emissions are a unique feature of Q. ilex.
Collapse
Affiliation(s)
| | - Cristian Cojocariu
- Institute for Forest Botany and Tree Physiology; Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, D-79110 Freiburg i. Br, Germany
| | - Vera Jüssen
- Institute for Forest Botany and Tree Physiology; Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, D-79110 Freiburg i. Br, Germany
| | - Heinz Rennenberg
- Institute for Forest Botany and Tree Physiology; Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, D-79110 Freiburg i. Br, Germany
| |
Collapse
|
64
|
Hanson AD, Roje S. ONE-CARBON METABOLISM IN HIGHER PLANTS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:119-137. [PMID: 11337394 DOI: 10.1146/annurev.arplant.52.1.119] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabolism of one-carbon (C1) units is essential to plants, and plant C1 metabolism has novel features not found in other organisms-plus some enigmas. Despite its centrality, uniqueness, and mystery, plant C1 biochemistry has historically been quite poorly explored, in part because its enzymes and intermediates tend to be labile and low in abundance. Fortunately, the integration of molecular and genetic approaches with biochemical ones is now driving rapid advances in knowledge of plant C1 enzymes and genes. An overview of these advances is presented. There has also been progress in measuring C1 metabolite fluxes and pool sizes, although this remains challenging and there are relatively few data. In the future, combining reverse genetics with flux and pool size determinations should lead to quantitative understanding of how plant C1 pathways function. This is a prerequisite for their rational engineering.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611; e-mail:
| | | |
Collapse
|
65
|
Vogg G, Mattes E, Polack A, Sandermann H. Tumor promoters in commercial indoor-plant cultivars of the Euphorbiaceae. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107:753-756. [PMID: 10464076 PMCID: PMC1566443 DOI: 10.1289/ehp.99107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Certain decorative indoor-plant cultivars are derived from toxic wild plant species. Native members of the Euphorbiaceae (spurge) contain highly irritating and tumor-promoting diterpene esters. Plant breeders and gardeners are constantly searching for less toxic cultivars of the popular Euphorbiaceae indoor plants. In this investigation, 22 commercial cultivars of Euphorbiaceae indoor plants were examined for tumor promoter contents by high-performance liquid chromatography (HPLC). Cultivars of E. milii (E. lomii hybrids), and in particular E. leuconeura, contained ingenol derivatives, whereas cultivars of E. pulcherrima and Codiaeum variegatum were devoid of these compounds. Tumor-promoting activity was assessed by induction of a luciferase reporter gene, which was placed under the control of an Epstein-Barr virus early antigen promoter. The response was closely correlated with ingenol ester content; the latex of the two E. leuconeura cultivars tested gave the strongest response. The HPLC and bioassay methods used in this study provide a basis for the development of nontoxic indoor-plant cultivars and perhaps for consumer-oriented labeling.
Collapse
Affiliation(s)
- G Vogg
- GSF-National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Oberschleissheim, Germany
| | | | | | | |
Collapse
|
66
|
Sandermann H. Plant Metabolism of Organic Xenobiotics. Status and Prospects of the ‘Green Liver’ Concept. PLANT BIOTECHNOLOGY AND IN VITRO BIOLOGY IN THE 21ST CENTURY 1999. [DOI: 10.1007/978-94-011-4661-6_74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
67
|
Barber RD, Donohue TJ. Pathways for transcriptional activation of a glutathione-dependent formaldehyde dehydrogenase gene. J Mol Biol 1998; 280:775-84. [PMID: 9671549 DOI: 10.1006/jmbi.1998.1900] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The widespread occurrence of glutathione-dependent formaldehyde dehydrogenases (GSH-FDH) suggests that this enzyme serves a conserved function in preventing the cytogenetic and potentially lethal interaction of formaldehyde with nucleic acids, proteins and other cell constituents. Despite this potential role of GSH-FDH, little is known about how its expression is regulated. Here, we identify metabolic and genetic signals that activate transcription of a GSH-FDH gene (adhI) in the bacterium Rhodobacter sphaeroides. Activity of the adhI promoter is increased by both exogenous formaldehyde and metabolic sources of this toxin. Elevated adhI promoter activity in DeltaGSH-FDH mutants implicates formaldehyde or the glutathione adduct that serves as a GSH-FDH substrate, S-hydroxymethylglutathione, as a transcriptional effector. From studying adhI expression in different host mutants, we find that the photosynthetic response regulator PrrA and the trans-acting spd-7 mutation increase function of this promoter. The behavior of a nested set of adhI::lacZ fusions indicates that activation by formaldehyde, PrrA and spd-7 requires only sequences 55 bp upstream of the start of transcription. A working model is presented to explain how GSH-FDH expression responds to formaldehyde and global signals generated from the reduced pyridine nucleotide produced by the activity of this enzyme.
Collapse
Affiliation(s)
- R D Barber
- Graduate Program in Cell and Molecular Biology, University of Wisconsin at Madison, Madison, WI 43706, USA
| | | |
Collapse
|
68
|
Fliegmann J, Sandermann H. Maize glutathione-dependent formaldehyde dehydrogenase cDNA: a novel plant gene of detoxification. PLANT MOLECULAR BIOLOGY 1997; 34:843-854. [PMID: 9290637 DOI: 10.1023/a:1005872222490] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD(+)- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenase from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.
Collapse
Affiliation(s)
- J Fliegmann
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Biochemische Pflanzenpathologie, Oberschleissheim, Germany
| | | |
Collapse
|
69
|
Dolferus R, Osterman JC, Peacock WJ, Dennis ES. Cloning of the Arabidopsis and rice formaldehyde dehydrogenase genes: implications for the origin of plant ADH enzymes. Genetics 1997; 146:1131-41. [PMID: 9215914 PMCID: PMC1208041 DOI: 10.1093/genetics/146.3.1131] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway.
Collapse
Affiliation(s)
- R Dolferus
- CSIRO, Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
70
|
Kondo T, Hasegawa K, Uchida R, Onishi M, Mizukami A, Omasa K. Absorption of Atmospheric Formaldehyde by Deciduous Broad-Leaved, Evergreen Broad-Leaved, and Coniferous Tree Species. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1996. [DOI: 10.1246/bcsj.69.3673] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
71
|
Martínez MC, Achkor H, Persson B, Fernández MR, Shafqat J, Farrés J, Jörnvall H, Parés X. Arabidopsis formaldehyde dehydrogenase. Molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class p and liver class I alcohol dehydrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:849-57. [PMID: 8944774 DOI: 10.1111/j.1432-1033.1996.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A glutathione-dependent formaldehyde dehydrogenase (class III alcohol dehydrogenase) has been characterized from Arabidopsis thaliana. This plant enzyme exhibits kinetic and molecular properties in common with the class III forms from mammals, with a K(m) for S-hydroxymethylglutathione of 1.4 microM, an anodic electrophoretic mobility (pI: 5.3-5.6) and a cross-reaction with anti-(rat class III alcohol dehydrogenase) antibodies. The enzyme structure, deduced from the cDNA sequence, fits into the complex system of alcohol dehydrogenases and shows that all life forms share the class III protein type. The corresponding mRNA is 1.4 kb and present in all plant organs; a single copy of the gene is found in the genome. The class III structural variability is different from that of the ethanol-active enzyme types in both vertebrates (class I) and plants (class P), although class P conserves more of the class III properties than class I does. Also the enzymatic properties differ between the two ethanol-active classes. Active-site variability and exchanges at essential residues (Leu/Gly57, Asp/Arg115) may explain the distinct kinetics. These patterns are consistent with two different metabolic roles for the ethanol-active enzymes, a more constant function, reduction of acetaldehyde during hypoxia, for class P, and a more variable function, the detoxication of alcohols and participation in metabolic conversions, for class I. A sequence motif, Pro-Xaa-Ile/Val-Xaa-Gly-His-Glu-Xaa-Xaa-Gly, common to all medium-chain alcohol dehydrogenases is defined.
Collapse
Affiliation(s)
- M C Martínez
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Muir PS, Shirazi AM. Effects of formaldehyde-enriched mists on Pseudotsuga menziesii (Mirbel) Franco and Lobaria pulmonaria (L.) Hoffm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1996; 94:227-234. [PMID: 15093509 DOI: 10.1016/s0269-7491(96)00054-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/1995] [Accepted: 04/16/1996] [Indexed: 05/24/2023]
Abstract
The atmosphere in some areas is polluted with formaldehyde (HCHO); however, little is known about effects of HCHO on plants at concentrations resembling those in polluted areas. The effects of simulated fogwater enriched with HCHO on seedlings of Pseudotsuga menziesii (Mirbel) Franco (Douglas fir) and pendants of Lobaria pulmonaria (L.) Hoffm. were assessed. Plants were treated with HCHO-enriched fog (target concentrations of 100, 500, and 1000 microm) during five 4-night mist sessions. Growth and nitrogenase activity (acetylene reduction rate) for lichens and growth and timing of bud-break for Douglas fir were monitored. Nitrogenase activity was lowest in lichens treated at the highest HCHO concentration after all but the first mist session, and it declined significantly with increasing HCHO concentration after the final mist session (R(2) = 0.60, p = 0.02). However, differences in nitrogenase activity among treatments were generally not statistically significant (most p values from ANOVAs were >/= 0.20). Formaldehyde did not affect growth of the lichens. Budbreak of Douglas firs was slightly delayed and height growth was slightly depressed with increasing HCHO concentration, although effects were not statistically significant.
Collapse
Affiliation(s)
- P S Muir
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall 2082, Corvallis, OR 97331-2902, USA
| | | |
Collapse
|
73
|
Abstract
Phytotoxic effects of ozone are described with emphasis on secondary plant metabolism. Numerous ozone-induced genes, enzymes and stress metabolites of antioxidative and phytopathological defense reactions have been discovered for herbaceous plants and forest tree species. Ozone induces reactions normally elicited by viral and microbial pathogens. The molecular basis (receptors, signal chains) for induction by ozone remains to be elucidated. The induced stress reactions seem to change plant predisposition to either enhanced tolerance or susceptibility for a second stressor. The following topics are discussed: ozone and biotic disease, the role of ozone on field sites and ozone limit values.
Collapse
Affiliation(s)
- H Sandermann
- GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Biochemische Pflanzenpathologie, Oberschleissheim, Germany.
| |
Collapse
|
74
|
Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development). PLANT PHYSIOLOGY 1995; 108:1359-1368. [PMID: 12228547 PMCID: PMC157513 DOI: 10.1104/pp.108.4.1359] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests.
Collapse
Affiliation(s)
- M. Nemecek-Marshall
- University of Colorado, Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado 80309-0215
| | | | | | | | | |
Collapse
|