51
|
de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:617-26. [PMID: 20937732 PMCID: PMC3003806 DOI: 10.1093/jxb/erq293] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 05/18/2023]
Abstract
Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development.
Collapse
Affiliation(s)
- Maaike de Jong
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Plant Cell Biology, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
52
|
Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL. Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1188-96. [PMID: 20570010 DOI: 10.1016/j.jplph.2010.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 05/14/2023]
Abstract
Gibberellin 20-oxidases, enzymes of gibberellin (GA) biosynthesis, play an important role in (GA) homeostasis. To investigate the regulation of tomato SlGA20ox1 expression, a genomic clone was isolated, its promoter transcriptionally fused to the GUS reporter gene, and the construct used to transform Arabidopsis. Expression was found in diverse vegetative (leaves and roots) and reproductive (flowers) organs. GUS staining was also localized in the columella of secondary roots. GA negative feed-back regulation of SlGA20ox1:GUS was shown to be active both in tomato and in transformed Arabidopsis. Auxin (indol-3-acetic acid, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid), triiodobenzoic acid (an inhibitor of auxin transport) and benzyladenine (a cytokinin) treatment induced SlGA20ox1:GUS expression associated with increased auxin content and/or signaling, detected using DR5:GUS expression as a marker. Interestingly, SlGA20ox:GUS expression was induced by auxin and root excision in the hypocotyl, an organ not showing GUS staining in control seedlings. In etiolated seedlings, SlGA20ox1:GUS expression occurred in the elongating hypocotyl region of etiolated seedlings and was down-regulated upon transfer to light associated with decrease of growth rate elongation. Our results show that feed-back, auxin and light regulation of SlGA20ox1 expression depends on DNA elements contained within the first 834bp of the 5' upstream promoter region. Putative DNA regulatory sequences involved in negative feed-back regulation and auxin response were identified in that promoter.
Collapse
Affiliation(s)
- Esmeralda Martí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | | | | |
Collapse
|
53
|
Serrani JC, Carrera E, Ruiz-Rivero O, Gallego-Giraldo L, Peres LEP, García-Martínez JL. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. PLANT PHYSIOLOGY 2010; 153:851-62. [PMID: 20388661 PMCID: PMC2879769 DOI: 10.1104/pp.110.155424] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/07/2010] [Indexed: 05/20/2023]
Abstract
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Collapse
|
54
|
Pandolfini T. Seedless fruit production by hormonal regulation of fruit set. Nutrients 2009; 1:168-77. [PMID: 22253976 PMCID: PMC3257607 DOI: 10.3390/nu1020168] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/18/2009] [Indexed: 12/05/2022] Open
Abstract
Seed and fruit development are intimately related processes controlled by internal signals and environmental cues. The absence of seeds is usually appreciated by consumers and producers because it increases fruit quality and fruit shelf-life. One method to produce seedless fruit is to develop plants able to produce fruits independently from pollination and fertilization of the ovules. The onset of fruit growth is under the control of phytohormones. Recent genomic studies have greatly contributed to elucidate the role of phytohormones in regulating fruit initiation, providing at the same time genetic methods for introducing seedlessness in horticultural plants.
Collapse
Affiliation(s)
- Tiziana Pandolfini
- Dipartimento di Scienze, Tecnologie, e Mercati della Vite e del Vino, University of Verona, 37029 San Floriano, Verona, Italy.
| |
Collapse
|
55
|
Pascual L, Blanca JM, Cañizares J, Nuez F. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC PLANT BIOLOGY 2009; 9:67. [PMID: 19480705 PMCID: PMC2700107 DOI: 10.1186/1471-2229-9-67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 05/29/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Tomato fruit set is a key process that has a great economic impact on crop production. We employed the Affymetrix GeneChip Tomato Genome Array to compare the transcriptome of a non-parthenocarpic line, UC82, with that of the parthenocarpic line RP75/59 (pat3/pat4 mutant). We analyzed the transcriptome under normal conditions as well as with forced parthenocarpic development in RP75/59, emasculating the flowers 2 days before anthesis. This analysis helps to understand the fruit set in tomato. RESULTS Differentially expressed genes were extracted with maSigPro, which is designed for the analysis of single and multiseries time course microarray experiments. 2842 genes showed changes throughout normal carpel development and fruit set. Most of them showed a change of expression at or after anthesis. The main differences between lines were concentrated at the anthesis stage. We found 758 genes differentially expressed in parthenocarpic fruit set. Among these genes we detected cell cycle-related genes that were still activated at anthesis in the parthenocarpic line, which shows the lack of arrest in the parthenocarpic line at anthesis. Key genes for the synthesis of gibberellins and ethylene, which were up-regulated in the parthenocarpic line were also detected. CONCLUSION Comparisons between array experiments determined that anthesis was the most different stage and the key point at which most of the genes were modulated. In the parthenocarpic line, anthesis seemed to be a short transitional stage to fruit set. In this line, the high GAs contends leads to the development of a parthenocarpic fruit, and ethylene may mimic pollination signals, inducing auxin synthesis in the ovary and the development of a jelly fruit.
Collapse
Affiliation(s)
- Laura Pascual
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jose M Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fernado Nuez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
56
|
Nitsch LMC, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, Mariani C, Vriezen WH. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. PLANTA 2009; 229:1335-46. [PMID: 19322584 DOI: 10.1007/s00425-009-0913-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 02/19/2009] [Indexed: 05/23/2023]
Abstract
Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60-76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8'-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8'-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.
Collapse
Affiliation(s)
- Lisette Maria Catharina Nitsch
- Department of Plant Cell Biology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez-Amador MA. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:318-32. [PMID: 19207215 DOI: 10.1111/j.1365-313x.2008.03781.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fruit development is usually triggered by ovule fertilization, and it requires coordination between seed development and the growth and differentiation of the ovary to host the seeds. Hormones are known to synchronize these two processes, but the role of each hormone, and the mechanism by which they interact, are still unknown. Here we show that auxin and gibberellins (GAs) act in a hierarchical scheme. The synthetic reporter construct DR5:GFP showed that fertilization triggered an increase in auxin response in the ovules, which could be mimicked by blocking polar auxin transport. As the application of GAs did not affect auxin response, the most likely sequence of events after fertilization involves auxin-mediated activation of GA synthesis. We have confirmed this, and have shown that GA biosynthesis upon fertilization is localized specifically in the fertilized ovules. Furthermore, auxin treatment caused changes in the expression of GA biosynthetic genes similar to those triggered by fertilization, and also restricted to the ovules. Finally, GA signaling was activated in ovules and valves, as shown by the rapid downregulation of the fusion protein RGA-GFP after pollination and auxin treatment. Taken together, this evidence suggests a model in which fertilization would trigger an auxin-mediated promotion of GA synthesis specifically in the ovule. The GAs synthesized in the ovules would be then transported to the valves to promote GA signaling and thus coordinate growth of the silique.
Collapse
Affiliation(s)
- Eavan Dorcey
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (CSIC-UPV), Avenida de los naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
58
|
de Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1523-32. [PMID: 19321650 DOI: 10.1093/jxb/erp094] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The initiation of tomato fruit growth, fruit set, is very sensitive to environmental conditions. Therefore, an understanding of the mechanisms that regulate this process can facilitate the production of this agriculturally valuable fruit crop. Over the years, it has been well established that tomato fruit set depends on successful pollination and fertilization, which trigger the fruit developmental programme through the activation of the auxin and gibberellin signalling pathways. However, the exact role of each of these two hormones is still poorly understood, probably because only few of the signalling components involved have been identified so far. Recent research on fruit set induced by hormone applications has led to new insights into hormone biosynthesis and signalling. The aim of this review is to consolidate the current knowledge on the role of auxin and gibberellin in tomato fruit set.
Collapse
Affiliation(s)
- Maaike de Jong
- Department of Plant Cell Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg, The Netherlands.
| | | | | |
Collapse
|
59
|
Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:922-34. [PMID: 18702668 DOI: 10.1111/j.1365-313x.2008.03654.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomato (Solanum lycopersicum L.) fruit-set and growth depend on gibberellins (GAs). Auxins, another kind of hormone, can also induce parthenocarpic fruit growth in tomato, although their possible interaction with GAs is unknown. We showed that fruit development induced by the auxins indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) were significantly reduced by the simultaneous application of inhibitors of GA biosynthesis, and that this effect was reversed by the application of GA(3). This suggested that the effect of auxin was mediated by GA. Parthenocarpic fruits induced by 2,4-D had higher levels of the active GA(1), its precursors and metabolites, than unpollinated non-treated ovaries, but similar levels as those found in pollinated ovaries. Application experiments of radioactive-labelled GAs to unpollinated ovaries showed than 2,4-D altered GA metabolism (both biosynthesis and catabolism) in vivo. Transcript levels of genes encoding copalyldiphosphate synthase (SlCPS), SlGA20ox1, SlGA20ox2 and SlGA20ox3, and SlGA3ox1 were higher in unpollinated ovaries treated with 2,4-D. In contrast, transcript levels of SlGA2ox2 (out of the five SlGA2ox genes known to encode this kind of GA-inactivating enzyme) were lower in ovaries treated with 2,4-D. Our results support the idea that auxins induce fruit-set and growth in tomato, at least partially, by enhancing GA biosynthesis (GA 20-oxidase, GA 3-oxidase and CPS), and probably by decreasing GA inactivation (GA2ox2) activity, thereby leading to higher levels of GA(1). The expression of diverse Aux/indole-3-acetic acid (IAA) and auxin response factors, which may be involved in this effect of auxin, was also altered in 2,4-D-induced ovaries.
Collapse
Affiliation(s)
- Juan Carlos Serrani
- Instituto de Biología Molecular y Celular de Plantas (Universidad Politécnica de Valencia-CSIC), Valencia, Spain
| | | | | | | |
Collapse
|
60
|
Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. THE NEW PHYTOLOGIST 2008; 177:60-76. [PMID: 18028300 DOI: 10.1111/j.1469-8137.2007.02254.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant hormones are considered to be important mediators of the fruit developmental signal after pollination. The role of phytohormones in tomato (Solanum lycopersicum) fruit set was investigated here. Transcriptome analysis of ovaries was performed using two complementary approaches: cDNA-amplified fragment length polymorphism (AFLP) and microarray analysis. The gene expression profiles obtained suggest that, in addition to auxin and gibberellin, ethylene and abscisic acid (ABA) are involved in regulating fruit set. Before fruit development, many genes involved in biotic and abiotic responses are active in the ovary. In addition, genes involved in ethylene and ABA biosynthesis were strongly expressed, suggesting relatively high ethylene and ABA concentrations before fruit set. Induction of fruit development, either by pollination or by gibberellin application, attenuated expression of all ethylene and ABA biosynthesis and response genes within 24 h. It is proposed that the function of ABA and ethylene in fruit set might be antagonistic to that of auxin and gibberellin in order to keep the ovary in a temporally protected and dormant state; either to protect the ovary tissue or to prevent fruit development before pollination and fertilization occur.
Collapse
Affiliation(s)
- Wim H Vriezen
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Richard Feron
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Fabio Maretto
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Jasper Keijman
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Celestina Mariani
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| |
Collapse
|
61
|
Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:865-76. [PMID: 17883372 DOI: 10.1111/j.1365-313x.2007.03282.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DELLA proteins are plant nuclear factors that restrain growth and proliferation in response to hormonal signals. The effects of the manipulation of the DELLA pathway in the making of a berry-like fruit were investigated. The expression of the Arabidopsis thaliana gain-of-function DELLA allele Atgai (del) in tomato (Solanum lycopersicum L.) produced partially sterile dwarf plants and compacted influorescences, as expected for a constitutively activated growth repressor. In contrast, antisense silencing of the single endogenous tomato DELLA gene homologue (SlDELLA) produced slender-like plants with elongated flower trusses. Interestingly, the depletion of SlDELLA in tomato was sufficient to overcome the growth arrest normally imposed on the ovary at anthesis, resulting in parthenocarpic fruits in the absence of pollination. Antisense SlDELLA-engineered fruits were smaller in size and elongated in shape compared with wild type. Cell number estimations showed that fruit set, resulting from reduced SlDELLA expression, arose from activated cell elongation at the longitudinal and lateral axes of the fruit pericarp, bypassing phase-II (post-pollination) cell divisions. Parthenocarpy caused by SlDELLA depletion is facultative, as hand pollination restored wild-type fruit phenotype. This indicates that fertilization-associated SlDELLA-independent signals are operational in ovary-fruit transitions. SlDELLA was also found to restrain growth in other reproductive structures, affecting style elongation, stylar hair primordial growth and stigma development.
Collapse
Affiliation(s)
- Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
62
|
Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. PLANT PHYSIOLOGY 2007; 145:351-66. [PMID: 17766399 PMCID: PMC2048734 DOI: 10.1104/pp.107.104174] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Abstract
Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:beta-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato ('Monalbo') resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in homozygous Atarf8-4 mutants. Collectively these data suggest that similar mechanisms involving auxin signaling exist to inhibit parthenocarpic fruit set in tomato and Arabidopsis.
Collapse
Affiliation(s)
- Marc Goetz
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Glen Osmond, South Australia 5064, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL. Gibberellin regulation of fruit set and growth in tomato. PLANT PHYSIOLOGY 2007; 145:246-57. [PMID: 17660355 PMCID: PMC1976567 DOI: 10.1104/pp.107.098335] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The role of gibberellins (GAs) in tomato (Solanum lycopersicum) fruit development was investigated. Two different inhibitors of GA biosynthesis (LAB 198999 and paclobutrazol) decreased fruit growth and fruit set, an effect reversed by GA(3) application. LAB 198999 reduced GA(1) and GA(8) content, but increased that of their precursors GA(53), GA(44), GA(19), and GA(20) in pollinated fruits. This supports the hypothesis that GA(1) is the active GA for tomato fruit growth. Unpollinated ovaries developed parthenocarpically in response to GA(3) > GA(1) = GA(4) > GA(20), but not to GA(19), suggesting that GA 20-oxidase activity was limiting in unpollinated ovaries. This was confirmed by analyzing the effect of pollination on transcript levels of SlCPS, SlGA20ox1, -2, and -3, and SlGA3ox1 and -2, encoding enzymes of GA biosynthesis. Pollination increased transcript content of SlGA20ox1, -2, and -3, and SlCPS, but not of SlGA3ox1 and -2. To investigate whether pollination also altered GA inactivation, full-length cDNA clones of genes encoding enzymes catalyzing GA 2-oxidases (SlGA2ox1, -2, -3, -4, and -5) were isolated and characterized. Transcript levels of these genes did not decrease early after pollination (5-d-old fruits), but transcript content reduction of all of them, mainly of SlGA2ox2, was found later (from 10 d after anthesis). We conclude that pollination mediates fruit set by activating GA biosynthesis mainly through up-regulation of GA20ox. Finally, the phylogenetic reconstruction of the GA2ox family clearly showed the existence of three gene subfamilies, and the phylogenetic position of SlGA2ox1, -2, -3, -4, and -5 was established.
Collapse
Affiliation(s)
- Juan Carlos Serrani
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
64
|
Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. PLANTA 2007; 226:877-88. [PMID: 17503074 DOI: 10.1007/s00425-007-0533-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/18/2007] [Indexed: 05/15/2023]
Abstract
We investigated the role of gibberellins (GAs) in the phenotype of parthenocarpic fruit (pat), a recessive mutation conferring parthenocarpy in tomato (Solanum lycopersicum L.). Novel phenotypes that parallel those reported in plants repeatedly treated with gibberellic acid or having a GA-constitutive response indicate that the pat mutant probably expresses high levels of GA. The retained sensitivity to the GA-biosynthesis inhibitor paclobutrazol reveals that this condition is dependent on GA biosynthesis. Expression analysis of genes encoding key enzymes involved in GA biosynthesis shows that in normal tomato ovaries, the GA20ox1 transcript is in low copy number before anthesis and only pollination and fertilization increase its transcription levels and, thus, GA biosynthesis. In the unpollinated ovaries of the pat mutant, this mechanism is de-regulated and GA20ox1 is constitutively expressed, indicating that a high GA concentration could play a part in the parthenocarpic phenotype. The levels of endogenous GAs measured in the floral organs of the pat mutant support such a hypothesis. Collectively, the data indicate that transcriptional regulation of GA20ox1 mediates pollination-induced fruit set in tomato and that parthenocarpy in pat results from the mis-regulation of this mechanism. As genes involved in the control of GA synthesis (LeT6, LeT12 and LeCUC2) and response (SPY) are also altered in the pat ovary, it is suggested that the pat mutation affects a regulatory gene located upstream of the control of fruit set exerted by GAs.
Collapse
Affiliation(s)
- Irene Olimpieri
- Dipartimento di Agrobiologia e Agrochimica, Sezione di Genetica, Università degli Studi della Tuscia, Via S.C. de Lellis snc, 01100 Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
65
|
Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. PLANT PHYSIOLOGY 2007; 144:1520-30. [PMID: 17478633 PMCID: PMC1914118 DOI: 10.1104/pp.107.100305] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parthenocarpy, the formation of seedless fruits in the absence of functional fertilization, is a desirable trait for several important crop plants, including tomato (Solanum lycopersicum). Seedless fruits can be of great value for consumers, the processing industry, and breeding companies. In this article, we propose a novel strategy to obtain parthenocarpic tomatoes by down-regulation of the flavonoid biosynthesis pathway using RNA interference (RNAi)-mediated suppression of chalcone synthase (CHS), the first gene in the flavonoid pathway. In CHS RNAi plants, total flavonoid levels, transcript levels of both Chs1 and Chs2, as well as CHS enzyme activity were reduced by up to a few percent of the corresponding wild-type values. Surprisingly, all strong Chs-silenced tomato lines developed parthenocarpic fruits. Although a relation between flavonoids and parthenocarpic fruit development has never been described, it is well known that flavonoids are essential for pollen development and pollen tube growth and, hence, play an essential role in plant reproduction. The observed parthenocarpic fruit development appeared to be pollination dependent, and Chs RNAi fruits displayed impaired pollen tube growth. Our results lead to novel insight in the mechanisms underlying parthenocarpic fruit development. The potential of this technology for applications in plant breeding and biotechnology will be discussed.
Collapse
Affiliation(s)
- Elio G W M Schijlen
- Plant Research International, Business Unit Bioscience, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. THE PLANT CELL 2006; 18:1873-86. [PMID: 16829592 PMCID: PMC1533983 DOI: 10.1105/tpc.105.037192] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/21/2006] [Accepted: 06/08/2006] [Indexed: 05/10/2023]
Abstract
Fruit and seed formation in plants is normally initiated after pollination and fertilization, and, in the absence of fertilization, flowers senesce. In the Arabidopsis thaliana mutant fruit without fertilization, a mutation in AUXIN RESPONSE FACTOR8 (ARF8) results in the uncoupling of fruit development from pollination and fertilization and gives rise to seedless (parthenocarpic) fruit. Parthenocarpy was confirmed in two additional recessive alleles and was caused by mutations within the coding region of ARF8. Genetic experiments indicate that ARF8 acts as an inhibitor to stop further carpel development in the absence of fertilization and the generation of signals required to initiate fruit and seed development. Expression of ARF8 was found to be regulated at multiple levels, and transcriptional autoregulation of ARF8 was observed. Analysis of plants transformed with a transcriptional P(ARF8):beta-glucuronidase (GUS) construct or a translational ARF8:GUS fusion construct displayed distinct developmental regulation of the reporter in floral tissues involved in pollination and fertilization and in the carpel wall. After fertilization, the level of GUS activity declined in the developing seed, while in unfertilized ovules that are destined to senesce, ARF8:GUS expression spread throughout the ovule. This is consistent with a proposed role for ARF8 in restricting signal transduction processes in ovules and growth in pistils until the fruit initiation cue.
Collapse
Affiliation(s)
- Marc Goetz
- Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Horticulture Unit, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
67
|
Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. THE PLANT CELL 2005; 17:2676-92. [PMID: 16126837 PMCID: PMC1242265 DOI: 10.1105/tpc.105.033415] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Auxin/indole-3-acetic acid (Aux/IAA) proteins are transcriptional regulators that mediate many aspects of plant responses to auxin. While functions of most Aux/IAAs have been defined mainly by gain-of-function mutant alleles in Arabidopsis thaliana, phenotypes associated with loss-of-function mutations have been scarce and subtle. We report here that the downregulation of IAA9, a tomato (Solanum lycopersicum) gene from a distinct subfamily of Aux/IAA genes, results in a pleiotropic phenotype, consistent with its ubiquitous expression pattern. IAA9-inhibited lines have simple leaves instead of wild-type compound leaves, and fruit development is triggered before fertilization, giving rise to parthenocarpy. This indicates that IAA9 is a key mediator of leaf morphogenesis and fruit set. In addition, antisense plants displayed auxin-related growth alterations, including enhanced hypocotyl/stem elongation, increased leaf vascularization, and reduced apical dominance. Auxin dose-response assays revealed that IAA9 downregulated lines were hypersensitive to auxin, although the only early auxin-responsive gene that was found to be upregulated in the antisense lines was IAA3. The activity of the IAA3 promoter was stimulated in the IAA9 antisense genetic background, indicating that IAA9 acts in planta as a transcriptional repressor of auxin signaling. While no mutation in any member of subfamily IV has been reported to date, the phenotypes associated with the downregulation of IAA9 reveal distinct and novel roles for members of the Aux/IAA gene family.
Collapse
Affiliation(s)
- Hua Wang
- Unité Mixte de Recherche 990, Institut National de la Recherche Agronomique/Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. THE PLANT CELL 2005. [PMID: 16126837 DOI: 10.1105/tpc.105.033415.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Auxin/indole-3-acetic acid (Aux/IAA) proteins are transcriptional regulators that mediate many aspects of plant responses to auxin. While functions of most Aux/IAAs have been defined mainly by gain-of-function mutant alleles in Arabidopsis thaliana, phenotypes associated with loss-of-function mutations have been scarce and subtle. We report here that the downregulation of IAA9, a tomato (Solanum lycopersicum) gene from a distinct subfamily of Aux/IAA genes, results in a pleiotropic phenotype, consistent with its ubiquitous expression pattern. IAA9-inhibited lines have simple leaves instead of wild-type compound leaves, and fruit development is triggered before fertilization, giving rise to parthenocarpy. This indicates that IAA9 is a key mediator of leaf morphogenesis and fruit set. In addition, antisense plants displayed auxin-related growth alterations, including enhanced hypocotyl/stem elongation, increased leaf vascularization, and reduced apical dominance. Auxin dose-response assays revealed that IAA9 downregulated lines were hypersensitive to auxin, although the only early auxin-responsive gene that was found to be upregulated in the antisense lines was IAA3. The activity of the IAA3 promoter was stimulated in the IAA9 antisense genetic background, indicating that IAA9 acts in planta as a transcriptional repressor of auxin signaling. While no mutation in any member of subfamily IV has been reported to date, the phenotypes associated with the downregulation of IAA9 reveal distinct and novel roles for members of the Aux/IAA gene family.
Collapse
Affiliation(s)
- Hua Wang
- Unité Mixte de Recherche 990, Institut National de la Recherche Agronomique/Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Gorguet B, van Heusden AW, Lindhout P. Parthenocarpic fruit development in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:131-9. [PMID: 15822008 DOI: 10.1055/s-2005-837494] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Parthenocarpic fruit development is a very attractive trait for growers and consumers. In tomato, three main sources of facultative parthenocarpy, pat, pat-2, pat-3/pat-4, are known to have potential applications in agriculture. The parthenocarpic fruit development in these lines is triggered by a deregulation of the hormonal balance in some specific tissues. Auxins and gibberellins are considered as the key elements in parthenocarpic fruit development of those lines. An increased level of these hormones in the ovary can substitute for pollination and trigger fruit development. This has opened up genetic engineering approaches for parthenocarpy that have given promising results, both in quality and quantity of seedless fruit production.
Collapse
Affiliation(s)
- B Gorguet
- Laboratory of Plant Breeding, Graduate School of Plant Sciences, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands.
| | | | | |
Collapse
|
70
|
Beraldi D, Picarella ME, Soressi GP, Mazzucato A. Fine mapping of the parthenocarpic fruit ( pat) mutation in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:209-16. [PMID: 14564391 DOI: 10.1007/s00122-003-1442-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 08/12/2003] [Indexed: 05/23/2023]
Abstract
The parthenocarpic fruit ( pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum x Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato- Arabidopsis microsynteny seems to be a short-term objective.
Collapse
Affiliation(s)
- D Beraldi
- Dipartimento di Agrobiologia e Agrochimica, Sezione Genetica, Università degli Studi della Tuscia, Via S.C. de Lellis, 01100, Viterbo, Italy
| | | | | | | |
Collapse
|
71
|
Fos M, Proaño K, Alabadí D, Nuez F, Carbonell J, García-Martínez JL. Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. PLANT PHYSIOLOGY 2003; 131:359-66. [PMID: 12529543 PMCID: PMC166815 DOI: 10.1104/pp.013037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 09/13/2002] [Accepted: 10/07/2002] [Indexed: 05/19/2023]
Abstract
Facultative parthenocarpy induced by the recessive mutation pat-2 in tomato (Lycopersicon esculentum Mill.) depends on gibberellins (GAs) and is associated with changes in GA content in unpollinated ovaries. Polyamines (PAs) have also been proposed to play a role in early tomato fruit development. We therefore investigated whether PAs are able to induce parthenocarpy and whether the pat-2 mutation alters the content and metabolism of PAs in unpollinated ovaries. Application of putrescine, spermidine, and spermine to wild-type unpollinated tomato ovaries (cv Madrigal [MA/wt]) induced partial parthenocarpy. Parthenocarpic growth of MA/pat-2 (a parthenocarpic near-isogenic line to MA/wt) ovaries was negated by paclobutrazol (GA biosynthesis inhibitor), and this inhibition was counteracted by spermidine. Application of alpha-difluoromethyl-ornithine (-Orn) and/or alpha-difluoromethyl-arginine (-Arg), irreversible inhibitors of the putrescine biosynthesis enzymes Orn decarboxylase (ODC) and Arg decarboxylase, respectively, prevented growth of unpollinated MA/pat-2 ovaries. Alpha-difluoromethyl-Arg inhibition was counteracted by putrescine and GA(3), whereas that of alpha-difluoromethyl-Orn was counteracted by GA(3) but not by putrescine or spermidine. In unpollinated MA/pat-2 ovaries, the content of free spermine was significantly higher than in MA/wt ovaries. ODC activity was higher in pat-2 ovaries than in MA/wt. Transcript levels of genes encoding ODC and spermidine synthase were also higher in MA/pat-2. All together, these results strongly suggest that the parthenocarpic ability of pat-2 mutants depends on elevated PAs levels in unpollinated mutant ovaries, which correlate with an activation of the ODC pathway, probably as a consequence of elevated GA content in unpollinated pat-2 tomato ovaries.
Collapse
Affiliation(s)
- Mariano Fos
- Departmento de Biología Vegetal, Universidad Politécnica de Valencia, 46022-Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
72
|
Fos M, Proaño K, Nuez F, García-Martínez JL. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. PHYSIOLOGIA PLANTARUM 2001; 111:545-550. [PMID: 11299021 DOI: 10.1034/j.1399-3054.2001.1110416.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato (Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent-kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2-4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5-12 ng g-1) of GA3, a GA found at less than 0.5 ng g-1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.
Collapse
Affiliation(s)
- Mariano Fos
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Avda de los Naranjos s/n, E-46022 Valencia, Spain; Departamento de Biología Vegetal, Universidad Politécnica de Valencia and Avda de los Naranjos s/n, E-46022 Valencia, Spain; Departamento de Biotecnología (Genética y Mejora Vegetal), Centro de Conservación y Mejora de la Agrodiversidad, Universidad Politécnica de Valencia, Avda de los Naranjos s/n, E-46022 Valencia, Spain
| | | | | | | |
Collapse
|