51
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
52
|
Bricker TM, Mummadisetti MP, Frankel LK. Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:227-46. [PMID: 26390944 DOI: 10.1016/j.jphotobiol.2015.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/24/2023]
Abstract
Tandem mass spectrometry often coupled with chemical modification techniques, is developing into increasingly important tool in structural biology. These methods can provide important supplementary information concerning the structural organization and subunit make-up of membrane protein complexes, identification of conformational changes occurring during enzymatic reactions, identification of the location of posttranslational modifications, and elucidation of the structure of assembly and repair complexes. In this review, we will present a brief introduction to Photosystem II, tandem mass spectrometry and protein modification techniques that have been used to examine the photosystem. We will then discuss a number of recent case studies that have used these techniques to address open questions concerning PS II. These include the nature of subunit-subunit interactions within the phycobilisome, the interaction of phycobilisomes with Photosystem I and the Orange Carotenoid Protein, the location of CyanoQ, PsbQ and PsbP within Photosystem II, and the identification of phosphorylation and oxidative modification sites within the photosystem. Finally, we will discuss some of the future prospects for the use of these methods in examining other open questions in PS II structural biochemistry.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Manjula P Mummadisetti
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
53
|
Ifuku K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 2015; 79:1223-31. [DOI: 10.1080/09168451.2015.1031078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
54
|
Sacharz J, Bryan SJ, Yu J, Burroughs NJ, Spence EM, Nixon PJ, Mullineaux CW. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol Microbiol 2015; 96:448-62. [PMID: 25601560 PMCID: PMC4949578 DOI: 10.1111/mmi.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones.
Collapse
Affiliation(s)
- Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
55
|
Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes. Biointerphases 2015; 11:019001. [PMID: 26700470 DOI: 10.1116/1.4938090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In plants, algae, and cyanobacteria, photosystem 2 (PS2) catalyzes the light driven oxidation of water. The main products of this reaction are protons and molecular oxygen. In vitro, however, it was demonstrated that reactive oxygen species like hydrogen peroxide are obtained as partially reduced side products. The transition from oxygen to hydrogen peroxide evolution might be induced by light triggered degradation of PS2's active center. Herein, the authors propose an analytical approach to investigate light induced bioelectrocatalytic processes such as PS2 catalyzed water splitting. By combining chronoamperometry and fluorescence microscopy, the authors can simultaneously monitor the photocurrent and the hydrogen peroxide evolution of light activated, solvent exposed PS2 complexes, which have been immobilized on a functionalized gold electrode. The authors show that under limited electron mediation PS2 displays a lower photostability that correlates with an enhanced H2O2 generation as a side product of the light induced water oxidation.
Collapse
|
56
|
Plohnke N, Seidel T, Kahmann U, Rögner M, Schneider D, Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol Cell Proteomics 2015; 14:572-84. [PMID: 25561504 PMCID: PMC4349978 DOI: 10.1074/mcp.m114.042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.
Collapse
Affiliation(s)
- Nicole Plohnke
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias Seidel
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Uwe Kahmann
- ¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dirk Schneider
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany;
| |
Collapse
|
57
|
Najafpour MM, Fekete M, Sedigh DJ, Aro EM, Carpentier R, Eaton-Rye JJ, Nishihara H, Shen JR, Allakhverdiev SI, Spiccia L. Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catal 2015. [DOI: 10.1021/cs5015157] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Monika Fekete
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Leone Spiccia
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| |
Collapse
|
58
|
Hou X, Fu A, Garcia VJ, Buchanan BB, Luan S. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity. Proc Natl Acad Sci U S A 2015; 112:1613-8. [PMID: 25605904 PMCID: PMC4321295 DOI: 10.1073/pnas.1424040112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In earlier studies we have identified FKBP20-2 and CYP38 as soluble proteins of the chloroplast thylakoid lumen that are required for the formation of photosystem II supercomplexes (PSII SCs). Subsequent work has identified another potential candidate functional in SC formation (PSB27). We have followed up on this possibility and isolated mutants defective in the PSB27 gene. In addition to lack of PSII SCs, mutant plants were severely stunted when cultivated with light of variable intensity. The stunted growth was associated with lower PSII efficiency and defective starch accumulation. In response to high light exposure, the mutant plants also displayed enhanced ROS production, leading to decreased biosynthesis of anthocyanin. Unexpectedly, we detected a second defect in the mutant, namely in CP26, an antenna protein known to be required for the formation of PSII SCs that has been linked to state transitions. Lack of PSII SCs was found to be independent of PSB27, but was due to a mutation in the previously described cp26 gene that we found had no effect on light adaptation. The present results suggest that PSII SCs, despite being required for state transitions, are not associated with acclimation to changing light intensity. Our results are consistent with the conclusion that PSB27 plays an essential role in enabling plants to adapt to fluctuating light intensity through a mechanism distinct from photosystem II supercomplexes and state transitions.
Collapse
Affiliation(s)
- Xin Hou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Aigen Fu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Veder J Garcia
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
59
|
Cormann KU, Bartsch M, Rögner M, Nowaczyk MM. Localization of the CyanoP binding site on photosystem II by surface plasmon resonance spectroscopy. FRONTIERS IN PLANT SCIENCE 2014; 5:595. [PMID: 25414711 PMCID: PMC4220643 DOI: 10.3389/fpls.2014.00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII), a large multi subunit membrane protein complex localized in the thylakoid membrane of cyanobacteria and chloroplasts, is the only known enzyme that catalyzes the light-driven oxidation of water. In addition to the membrane intrinsic part of PSII, efficient oxygen evolution requires soluble protein subunits at its luminal interface. In contrast to the detailed crystal structure of the active cyanobacterial complex the characterization of intermediate PSII species related to its assembly and repair is hampered by their instability or low abundance. As most structural variations of the corresponding PSII species are based on a different set of protein factors bound to the luminal interface of the complex we developed a system for interaction analysis between PSII and its soluble interaction partners based on surface plasmon resonance (SPR) spectroscopy. The assay was validated by the correct localization of the extrinsic PSII proteins PsbO, PsbV, and PsbU on the luminal PSII surface and used to determine the unknown binding position of CyanoP, the cyanobacterial homolog of higher plant PsbP. The CyanoP binding site was clearly localized in the center of PSII at a position, which is occupied by the PsbO subunit in mature PSII complexes. Consistently, we demonstrate selective binding of CyanoP to an inactive PSII assembly intermediate that lacks the extrinsic subunits PsbO, PsbV, and PsbU. These findings suggest, that CyanoP functions in the dynamic lifecycle of PSII, possibly in the association of CP47 and CP43 or in photoactivation of the oxygen-evolving complex.
Collapse
Affiliation(s)
| | | | | | - Marc M. Nowaczyk
- *Correspondence: Marc M. Nowaczyk, Plant Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany e-mail:
| |
Collapse
|
60
|
Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. PHOTOSYNTHESIS RESEARCH 2014; 122:57-67. [PMID: 24838684 PMCID: PMC4180030 DOI: 10.1007/s11120-014-0010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ.
Collapse
Affiliation(s)
- Franck Michoux
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Present Address: Alkion Biopharma, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Kenji Takasaka
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Karim Maghlaoui
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - James Barber
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - James W. Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
61
|
Removal of both Ycf48 and Psb27 inSynechocystissp. PCC 6803 disrupts Photosystem II assembly and alters QA−oxidation in the mature complex. FEBS Lett 2014; 588:3751-60. [DOI: 10.1016/j.febslet.2014.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/07/2014] [Accepted: 08/09/2014] [Indexed: 02/03/2023]
|
62
|
Mabbitt PD, Wilbanks SM, Eaton-Rye JJ. Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:96-107. [PMID: 24656878 DOI: 10.1016/j.plaphy.2014.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PS II) is a macromolecular complex responsible for light-driven oxidation of water and reduction of plastoquinone as part of the photosynthetic electron transport chain found in thylakoid membranes. Each PS II complex is composed of at least 20 protein subunits and over 80 cofactors. The biogenesis of PS II requires further hydrophilic and membrane-spanning proteins which are not part of the active holoenzyme. Many of these biogenesis proteins make transient interactions with specific PS II assembly intermediates: sometimes these are essential for biogenesis while in other examples they are required for optimizing assembly of the mature complex. In this review the function and structure of the Psb27, Psb28 and Ycf48 hydrophilic assembly factors is discussed by combining structural, biochemical and physiological information. Each of these assembly factors has homologues in all oxygenic photosynthetic organisms. We provide a simple overview for the roles of these protein factors in cyanobacterial PS II assembly emphasizing their participation in both photosystem biogenesis and recovery from photodamage.
Collapse
Affiliation(s)
- Peter D Mabbitt
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
63
|
Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 2014; 114:4175-205. [PMID: 24684576 PMCID: PMC4002066 DOI: 10.1021/cr4004874] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
64
|
Jin H, Liu B, Luo L, Feng D, Wang P, Liu J, Da Q, He Y, Qi K, Wang J, Wang HB. HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis. THE PLANT CELL 2014; 26:1213-29. [PMID: 24632535 PMCID: PMC4001379 DOI: 10.1105/tpc.113.122424] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 05/18/2023]
Abstract
Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII-light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light.
Collapse
|
65
|
MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci U S A 2014; 111:4638-43. [PMID: 24550459 DOI: 10.1073/pnas.1323063111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PsbQ is a luminal extrinsic protein component that regulates the water splitting activity of photosystem II (PSII) in plants, algae, and cyanobacteria. However, PsbQ is not observed in the currently available crystal structures of PSII from thermophilic cyanobacteria. The structural location of PsbQ within the PSII complex has therefore remained unknown. Here, we report chemical cross-linking followed by immunodetection and liquid chromatography/tandem MS analysis of a dimeric PSII complex isolated from the model cyanobacterium, Synechocystis sp. PCC 6803, to determine the binding site of PsbQ within PSII. Our results demonstrate that PsbQ is closely associated with the PsbO and CP47 proteins, as revealed by cross-links detected between (120)K of PsbQ and (180)K and (59)K of PsbO, and between (102)K of PsbQ and (440)D of CP47. We further show that genetic deletion of the psbO gene results in the complete absence of PsbQ in PSII complexes as well as the loss of the dimeric form of PSII. Overall, our data provide a molecular-level description of the enigmatic binding site of PsbQ in PSII in a cyanobacterium. These results also help us understand the sequential incorporation of the PsbQ protein during the PSII assembly process, as well as its stabilizing effect on the oxygen evolution activity of PSII.
Collapse
|
66
|
Sobotka R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2014; 119:223-32. [PMID: 23377990 DOI: 10.1007/s11120-013-9797-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein-protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Microbiology CAS, Opatovický mlyn, Třeboň, Czech Republic,
| |
Collapse
|
67
|
Matthes A, Köhl K, Schulze WX. SILAC and alternatives in studying cellular proteomes of plants. Methods Mol Biol 2014; 1188:65-83. [PMID: 25059605 DOI: 10.1007/978-1-4939-1142-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative proteomics by metabolic labeling has a high impact on the growing field of plant systems biology. SILAC has been pioneered and optimized for plant cell culture systems allowing for SILAC-based quantitative experiments in specialized experimental setups. In comparison to other model organisms, the application of SILAC to whole plants is challenging. As autotrophic organisms, plants under their natural growth conditions can hardly be fully labeled with stable isotope-coded amino acids. The metabolic labeling with inorganic nitrogen is therefore the method of choice for most whole-plant physiological questions. Plants can easily metabolize different inorganic nitrogen isotopes. The incorporation of the labeled inorganic nitrogen then results in proteins and metabolites with distinct molecular mass, which can be detected on a mass spectrometer. In comparative quantitative experiments, similarly as in SILAC experiments, treated and untreated samples are differentially labeled by nitrogen isotopes and jointly processed, thereby minimizing sample-to-sample variation. In recent years, heavy nitrogen labeling has become a widely used strategy in quantitative proteomics and novel approaches were developed for metabolite identification. Here we present a typical hydroponics setup, the workflow for processing of samples, mass spectrometry and data analysis for large-scale metabolic labeling experiments of whole plants.
Collapse
Affiliation(s)
- Annemarie Matthes
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Golm, Germany
| | | | | |
Collapse
|
68
|
Suorsa M, Rantala M, Danielsson R, Järvi S, Paakkarinen V, Schröder WP, Styring S, Mamedov F, Aro EM. Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1463-71. [PMID: 24296034 DOI: 10.1016/j.bbabio.2013.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/01/2023]
Abstract
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Ravi Danielsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Virpi Paakkarinen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Wolfgang P Schröder
- Umeå Plant Science Center and Department of Chemistry, Linnaeus väg 10, University of Umeå, SE-901 87 Umeå, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden.
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
69
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
70
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
71
|
Mabbitt PD, Eaton-Rye JJ, Wilbanks SM. Mutational analysis of the stability of Psb27 from Synechocystis sp. PCC 6803: implications for models of Psb27 structure and binding to CP43. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:787-93. [DOI: 10.1007/s00249-013-0926-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/27/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022]
|
72
|
Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 2013; 288:23529-42. [PMID: 23775073 DOI: 10.1074/jbc.m113.484659] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ'. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane.
Collapse
Affiliation(s)
- Tomasz Krupnik
- Department of Plant Molecular Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Glöckner C, Kern J, Broser M, Zouni A, Yachandra V, Yano J. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle. J Biol Chem 2013; 288:22607-20. [PMID: 23766513 DOI: 10.1074/jbc.m113.476622] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.
Collapse
Affiliation(s)
- Carina Glöckner
- Institut für Chemie/Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Liu H, Chen J, Huang RYC, Weisz D, Gross ML, Pakrasi HB. Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803. J Biol Chem 2013; 288:14212-14220. [PMID: 23546881 DOI: 10.1074/jbc.m113.467613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSII repair cycle is required for sustainable photosynthesis in oxygenic photosynthetic organisms. In cyanobacteria and higher plants, proteolysis of the precursor D1 protein (pD1) to expose a C-terminal carboxylate group is an essential step leading to coordination of the Mn4CaO5 cluster, the site of water oxidation. Psb27 appears to associate with both pD1- and D1-containing PSII assembly intermediates by closely interacting with CP43. Here, we report that reduced binding affinity between CP43 and Psb27 is triggered by the removal of the C-terminal extension of the pD1 protein. A mass spectrometry-based footprinting strategy was adopted to probe solvent-exposed aspartic and glutamic acid residues on the CP43 protein. By comparing the extent of footprinting between HT3ΔctpAΔ27PSII and HT3ΔctpAPSII, two genetically modified PSII assembly complexes, we found that Psb27 binds to CP43 on the side of Loop E distal to the pseudo-symmetrical D1-D2 axis. By comparing a second pair of PSII assembly complexes, we discovered that Loop E of CP43 undergoes a significant conformational rearrangement due to the removal of the pD1 C-terminal extension, altering the Psb27-CP43 binding interface. The significance of this conformational rearrangement is discussed in the context of recruitment of the PSII lumenal extrinsic proteins and Mn4CaO5 cluster assembly. In addition to CP43's previously known function as one of the core PSII antenna proteins, this work demonstrates that Loop E of CP43 plays an important role in the functional assembly of the Water Oxidizing Center (WOC) during PSII biogenesis.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jiawei Chen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Richard Y-C Huang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Daniel Weisz
- Department of Biology, Washington University, St. Louis, Missouri 63130; Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130.
| |
Collapse
|
75
|
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:609-35. [PMID: 23451783 DOI: 10.1146/annurev-arplant-050312-120124] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
76
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
77
|
Kopečná J, Komenda J, Bučinská L, Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. PLANT PHYSIOLOGY 2012; 160:2239-50. [PMID: 23037506 PMCID: PMC3510144 DOI: 10.1104/pp.112.207274] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/02/2012] [Indexed: 05/03/2023]
Abstract
Cyanobacteria acclimate to high-light conditions by adjusting photosystem stoichiometry through a decrease of photosystem I (PSI) abundance in thylakoid membranes. As PSI complexes bind the majority of chlorophyll (Chl) in cyanobacterial cells, it is accepted that the mechanism controlling PSI level/synthesis is tightly associated with the Chl biosynthetic pathway. However, how Chl is distributed to photosystems under different light conditions remains unknown. Using radioactive labeling by (35)S and by (14)C combined with native/two-dimensional electrophoresis, we assessed the synthesis and accumulation of photosynthetic complexes in parallel with the synthesis of Chl in Synechocystis sp. PCC 6803 cells acclimated to different light intensities. Although cells acclimated to higher irradiances (150 and 300 μE m(-2)s(-1)) exhibited markedly reduced PSI content when compared with cells grown at lower irradiances (10 and 40 μE m(-2) s(-1)), they grew much faster and synthesized significantly more Chl, as well as both photosystems. Interestingly, even under high irradiance, almost all labeled de novo Chl was localized in the trimeric PSI, whereas only a weak Chl labeling in photosystem II (PSII) was accompanied by the intensive (35)S protein labeling, which was much stronger than in PSI. These results suggest that PSII subunits are mostly synthesized using recycled Chl molecules previously released during PSII repair-driven protein degradation. In contrast, most of the fresh Chl is utilized for synthesis of PSI complexes likely to maintain a constant level of PSI during cell proliferation.
Collapse
Affiliation(s)
- Jana Kopečná
- Institute of Microbiology, Department of Phototrophic Microorganisms, Academy of Sciences, 37981 Trebon, Czech Republic; and Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Department of Phototrophic Microorganisms, Academy of Sciences, 37981 Trebon, Czech Republic; and Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Lenka Bučinská
- Institute of Microbiology, Department of Phototrophic Microorganisms, Academy of Sciences, 37981 Trebon, Czech Republic; and Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Department of Phototrophic Microorganisms, Academy of Sciences, 37981 Trebon, Czech Republic; and Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
78
|
Sakata S, Mizusawa N, Kubota-Kawai H, Sakurai I, Wada H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:50-9. [PMID: 23084968 DOI: 10.1016/j.bbabio.2012.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 01/15/2023]
Abstract
Psb28 is an extrinsic protein of photosystem II (PSII), which is conserved among photosynthetic organisms from cyanobacteria to higher plants. A unicellular cyanobacterium, Synechocystis sp. PCC 6803, has two homologs of Psb28, Psb28-1 and Psb28-2. However, the role of these proteins remains poorly understood. In this study, we disrupted the psb28-1 (sll1398) and psb28-2 (slr1739) genes in wild-type Synechocystis sp. PCC 6803 and examined their photosynthetic properties to elucidate the physiological role of Psb28 in photosynthesis. We also disrupted the psb28-1 gene in a dgdA mutant defective in the biosynthesis of digalactosyldiacylglycerol, in which Psb28-1 significantly accumulates in PSII. The disruption of the psb28-1 gene in the wild-type resulted in growth retardation under high-light conditions at high temperatures with a low rate of restoration of photodamaged photosynthetic machinery. Similar phenomena were observed at normal growth temperatures in the psb28-1/dgdA double mutant. In contrast, disruption of psb28-2 in the wild-type and dgdA mutant did not affect host strain phenotype, suggesting that Psb28-2 does not contribute to the recovery of PSII. In addition, protein analysis using strains expressing His-tagged Psb28-1 revealed that Psb28-1 is mainly associated with the CP43-less PSII monomer. In the dgdA mutant, the CP43-less PSII monomer accumulated to a greater extent than in the wild-type, and its accumulation caused greater accumulation of Psb28-1 in PSII. These results demonstrate that Psb28-1 plays an important role in PSII repair through association with the CP43-less monomer, particularly at high temperatures.
Collapse
Affiliation(s)
- Shinya Sakata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
79
|
Komenda J, Sobotka R, Nixon PJ. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:245-51. [PMID: 22386092 DOI: 10.1016/j.pbi.2012.01.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 05/20/2023]
Abstract
Plants, algae and cyanobacteria grow because of their ability to use sunlight to extract electrons from water. This vital reaction is catalysed by the Photosystem II (PSII) complex, a large multi-subunit pigment-protein complex embedded in the thylakoid membrane. Recent results show that assembly of PSII occurs in a step-wise fashion in defined regions of the membrane system, involves conserved auxiliary factors and is closely coupled to chlorophyll biosynthesis. PSII is also repaired following damage by light. FtsH proteases play an important role in selectively removing damaged proteins from the complex, both in chloroplasts and cyanobacteria, whilst undamaged subunits and pigments are recycled. The chloroplastic Deg proteases play a supplementary role in PSII repair.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Laboratory of Photosynthesis, Opatovický mlýn, Třeboň, Czech Republic
| | | | | |
Collapse
|
80
|
Bernát G, Schreiber U, Sendtko E, Stadnichuk IN, Rexroth S, Rögner M, Koenig F. Unique properties vs. common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. PLANT & CELL PHYSIOLOGY 2012; 53:528-542. [PMID: 22302714 DOI: 10.1093/pcp/pcs009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The atypical unicellular cyanobacterium Gloeobacter violaceus PCC 7421, which diverged very early during the evolution of cyanobacteria, can be regarded as a key organism for understanding many structural, functional, regulatory and evolutionary aspects of oxygenic photosynthesis. In the present work, the performance of two basic photosynthetic adaptation/protection mechanisms, common to all other oxygenic photoautrophs, had been challenged in this ancient cyanobacterium which lacks thylakoid membranes: state transitions and non-photochemical fluorescence quenching. Both low temperature fluorescence spectra and room temperature fluorescence transients show that G. violaceus is capable of performing state transitions similar to evolutionarily more recent cyanobacteria, being in state 2 in darkness and in state 1 upon illumination by weak blue or far-red light. Compared with state 2, variable fluorescence yield in state 1 is strongly enhanced (almost 80%), while the functional absorption cross-section of PSII is only increased by 8%. In contrast to weak blue light, which enhances fluorescence yield via state 1 formation, strong blue light reversibly quenches Chl fluorescence in G. violaceus. This strongly suggests regulated heat dissipation which is triggered by the orange carotenoid protein whose presence was directly proven by immunoblotting and mass spectrometry in this primordial cyanobacterium. The results are discussed in the framework of cyanobacterial evolution.
Collapse
Affiliation(s)
- Gábor Bernát
- Plant Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
81
|
Nowaczyk MM, Krause K, Mieseler M, Sczibilanski A, Ikeuchi M, Rögner M. Deletion of psbJ leads to accumulation of Psb27-Psb28 photosystem II complexes in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1339-45. [PMID: 22387395 DOI: 10.1016/j.bbabio.2012.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/16/2023]
Abstract
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27-Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (<10kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using (15)N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50μmol photons m(-2) s(-1)). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Marc M Nowaczyk
- Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
Michoux F, Takasaka K, Boehm M, Komenda J, Nixon PJ, Murray JW. Crystal structure of the Psb27 assembly factor at 1.6 Å: implications for binding to Photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 110:169-75. [PMID: 22193820 DOI: 10.1007/s11120-011-9712-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/26/2011] [Indexed: 05/24/2023]
Abstract
The biogenesis and oxygen-evolving activity of cyanobacterial Photosystem II (PSII) is dependent on a number of accessory proteins not found in the crystallised dimeric complex. These include Psb27, a small lipoprotein attached to the lumenal side of PSII, which has been assigned a role in regulating the assembly of the Mn(4)Ca cluster catalysing water oxidation. To gain a better understanding of Psb27, we have determined in this study the crystal structure of the soluble domain of Psb27 from Thermosynechococcus elongatus to a resolution of 1.6 Å. The structure is a four-helix bundle, similar to the recently published solution structures of Psb27 from Synechocystis PCC 6803 obtained by nuclear magnetic resonance (NMR) spectroscopy. Importantly, the crystal structure presented here helps us resolve the differences between the NMR-derived structural models. Potential binding sites for Psb27 within PSII are discussed in light of recent biochemical data in the literature.
Collapse
Affiliation(s)
- Franck Michoux
- Division of Molecular Biosciences, Imperial College London, Wolfson Biochemistry Building, South Kensington Campus, London, SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
83
|
Arsova B, Kierszniowska S, Schulze WX. The use of heavy nitrogen in quantitative proteomics experiments in plants. TRENDS IN PLANT SCIENCE 2012; 17:102-12. [PMID: 22154826 DOI: 10.1016/j.tplants.2011.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 05/04/2023]
Abstract
In the growing field of plant systems biology, there is an undisputed need for methods allowing accurate quantitation of proteins and metabolites. As autotrophic organisms, plants can easily metabolize different nitrogen isotopes, resulting in proteins and metabolites with distinct molecular mass that can be separated on a mass spectrometer. In comparative quantitative experiments, treated and untreated samples are differentially labeled by nitrogen isotopes and jointly processed, thereby minimizing sample-to-sample variation. In recent years, heavy nitrogen labeling has become a widely used strategy in quantitative proteomics and novel approaches have been developed for metabolite identification. Here, we present an overview of currently used experimental strategies in heavy nitrogen labeling in plants and provide background on the history and function of this quantitation technique.
Collapse
Affiliation(s)
- Borjana Arsova
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
84
|
Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2012; 158:476-86. [PMID: 22086423 PMCID: PMC3252115 DOI: 10.1104/pp.111.184184] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
We have investigated the location of the Psb27 protein and its role in photosystem (PS) II biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. Native gel electrophoresis revealed that Psb27 was present mainly in monomeric PSII core complexes but also in smaller amounts in dimeric PSII core complexes, in large PSII supercomplexes, and in the unassembled protein fraction. We conclude from analysis of assembly mutants and isolated histidine-tagged PSII subcomplexes that Psb27 associates with the "unassembled" CP43 complex, as well as with larger complexes containing CP43, possibly in the vicinity of the large lumenal loop connecting transmembrane helices 5 and 6 of CP43. A functional role for Psb27 in the biogenesis of CP43 is supported by the decreased accumulation and enhanced fragmentation of unassembled CP43 after inactivation of the psb27 gene in a mutant lacking CP47. Unexpectedly, in strains unable to assemble PSII, a small amount of Psb27 comigrated with monomeric and trimeric PSI complexes upon native gel electrophoresis, and Psb27 could be copurified with histidine-tagged PSI isolated from the wild type. Yeast two-hybrid assays suggested an interaction of Psb27 with the PsaB protein of PSI. Pull-down experiments also supported an interaction between CP43 and PSI. Deletion of psb27 did not have drastic effects on PSII assembly and repair but did compromise short-term acclimation to high light. The tentative interaction of Psb27 and CP43 with PSI raises the possibility that PSI might play a previously unrecognized role in the biogenesis/repair of PSII.
Collapse
Affiliation(s)
- Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences, 37981 Trebon, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
The role of lipids in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:194-208. [DOI: 10.1016/j.bbabio.2011.04.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 11/22/2022]
|
86
|
Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem II assembly intermediates. Proc Natl Acad Sci U S A 2011; 108:18536-41. [PMID: 22031695 DOI: 10.1073/pnas.1111597108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII), a large multisubunit pigment-protein complex localized in the thylakoid membrane of cyanobacteria and chloroplasts, mediates light-driven evolution of oxygen from water. Recently, a high-resolution X-ray structure of the mature PSII complex has become available. Two PSII polypeptides, D1 and CP43, provide many of the ligands to an inorganic Mn(4)Ca center that is essential for water oxidation. Because of its unusual redox chemistry, PSII often undergoes degradation followed by stepwise assembly. Psb27, a small luminal polypeptide, functions as an important accessory factor in this elaborate assembly pathway. However, the structural location of Psb27 within PSII assembly intermediates has remained elusive. Here we report that Psb27 binds to CP43 in such assembly intermediates. We treated purified genetically tagged PSII assembly intermediate complexes from the cyanobacterium Synechocystis 6803 with chemical cross-linkers to examine intermolecular interactions between Psb27 and various PSII proteins. First, the water-soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was used to cross-link proteins with complementary charged groups in close association to one another. In the His27△ctpAPSII preparation, a 58-kDa cross-linked species containing Psb27 and CP43 was identified. This species was not formed in the HT3△ctpA△psb27PSII complex in which Psb27 was absent. Second, the homobifunctional thiol-cleavable cross-linker 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP) was used to reversibly cross-link Psb27 to CP43 in His27△ctpAPSII preparations, which allowed the use of liquid chromatography/tandem MS to map the cross-linking sites as Psb27K(63)↔CP43D(321) (trypsin) and CP43K(215)↔Psb27D(58)AGGLK(63)↔CP43D(321) (chymotrypsin), respectively. Our data suggest that Psb27 acts as an important regulatory protein during PSII assembly through specific interactions with the luminal domain of CP43.
Collapse
|
87
|
Shi LX, Hall M, Funk C, Schröder WP. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:13-25. [PMID: 21907181 DOI: 10.1016/j.bbabio.2011.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/12/2022]
Abstract
Photosystem II is a unique complex capable of absorbing light and splitting water. The complex has been thoroughly studied and to date there are more than 40 proteins identified, which bind to the complex either stably or transiently. Another special feature of this complex is the unusually high content of low molecular mass proteins that represent more than half of the proteins. In this review we summarize the recent findings on the low molecular mass proteins (<15kDa) and present an overview of the newly identified components as well. We have also performed co-expression analysis of the genes encoding PSII proteins to see if the low molecular mass proteins form a specific sub-group within the Photosystem II complex. Interestingly we found that the chloroplast-localized genes encoding PSII proteins display a different response to environmental and stress conditions compared to the nuclear localized genes. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
88
|
Dietzel L, Bräutigam K, Steiner S, Schüffler K, Lepetit B, Grimm B, Schöttler MA, Pfannschmidt T. Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis. THE PLANT CELL 2011; 23:2964-77. [PMID: 21880991 PMCID: PMC3180804 DOI: 10.1105/tpc.111.087049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Accepted: 07/30/2011] [Indexed: 05/18/2023]
Abstract
Within dense plant populations, strong light quality gradients cause unbalanced excitation of the two photosystems resulting in reduced photosynthetic efficiency. Plants redirect such imbalances by structural rearrangements of the photosynthetic apparatus via state transitions and photosystem stoichiometry adjustments. However, less is known about the function of photosystem II (PSII) supercomplexes in this context. Here, we show in Arabidopsis thaliana that PSII supercomplex remodeling precedes and facilitates state transitions. Intriguingly, the remodeling occurs in the short term, paralleling state transitions, but is also present in a state transition-deficient mutant, indicating that PSII supercomplex generation is independently regulated and does not require light-harvesting complex phosphorylation and movement. Instead, PSII supercomplex remodeling involves reversible phosphorylation of PSII core subunits (preferentially of CP43) and requires the luminal PSII subunit Psb27 for general formation and structural stabilization. Arabidopsis knockout mutants lacking Psb27 display highly accelerated state transitions, indicating that release of PSII supercomplexes is required for phosphorylation and subsequent movement of the antenna. Downregulation of PSII supercomplex number by physiological light treatments also results in acceleration of state transitions confirming the genetic analyses. Thus, supercomplex remodeling is a prerequisite and an important kinetic determinant of state transitions.
Collapse
Affiliation(s)
- Lars Dietzel
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Katharina Bräutigam
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Sebastian Steiner
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Kristin Schüffler
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Bernard Lepetit
- Institut für Biologie I, Abteilung für Pflanzenphysiologie Universität Leipzig, 04103 Leipzig, Germany
| | - Bernhard Grimm
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität Berlin, 10115 Berlin, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Thomas Pfannschmidt
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
- Address correspondence to
| |
Collapse
|
89
|
The extrinsic proteins of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:121-42. [PMID: 21801710 DOI: 10.1016/j.bbabio.2011.07.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/08/2023]
Abstract
In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn(4)CaO(5) cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
90
|
Grasse N, Mamedov F, Becker K, Styring S, Rögner M, Nowaczyk MM. Role of novel dimeric Photosystem II (PSII)-Psb27 protein complex in PSII repair. J Biol Chem 2011; 286:29548-55. [PMID: 21737447 DOI: 10.1074/jbc.m111.238394] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. We show that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 °C) and high light stress (1000 μmol of photons × m(-2) × s(-1)) led to complete inhibition of growth in a Δpsb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Δpsb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions.
Collapse
Affiliation(s)
- Nicole Grasse
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Assembly of the water-oxidizing complex in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:204-11. [DOI: 10.1016/j.jphotobiol.2011.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/21/2022]
|
92
|
Kota U, Goshe MB. Advances in qualitative and quantitative plant membrane proteomics. PHYTOCHEMISTRY 2011; 72:1040-60. [PMID: 21367437 DOI: 10.1016/j.phytochem.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.
Collapse
Affiliation(s)
- Uma Kota
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
93
|
Friedrich B, Fritsch J, Lenz O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr Opin Biotechnol 2011; 22:358-64. [DOI: 10.1016/j.copbio.2011.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/30/2022]
|
94
|
Liu H, Roose JL, Cameron JC, Pakrasi HB. A genetically tagged Psb27 protein allows purification of two consecutive photosystem II (PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium. J Biol Chem 2011; 286:24865-71. [PMID: 21592967 DOI: 10.1074/jbc.m111.246231] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a large membrane bound molecular machine that catalyzes light-driven oxygen evolution from water. PSII constantly undergoes assembly and disassembly because of the unavoidable damage that results from its normal photochemistry. Thus, under physiological conditions, in addition to the active PSII complexes, there are always PSII subpopulations incompetent of oxygen evolution, but are in the process of undergoing elaborate biogenesis and repair. These transient complexes are difficult to characterize because of their low abundance, structural heterogeneity, and thermodynamic instability. In this study, we show that a genetically tagged Psb27 protein allows for the biochemical purification of two monomeric PSII assembly intermediates, one with an unprocessed form of D1 (His27ΔctpAPSII) and a second one with a mature form of D1 (His27PSII). Both forms were capable of light-induced charge separation, but unable to photooxidize water, largely because of the absence of a functional tetramanganese cluster. Unexpectedly, there was a significant amount of the extrinsic lumenal PsbO protein in the His27PSII, but not in the His27ΔctpAPSII complex. In contrast, two other lumenal proteins, PsbU and PsbV, were absent in both of these PSII intermediate complexes. Additionally, the only cytoplasmic extrinsic protein, Psb28 was detected in His27PSII complex. Based on these data, we have presented a refined model of PSII biogenesis, illustrating an important role of Psb27 as a gate-keeper during the complex assembly process of the oxygen-evolving centers in PSII.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
95
|
Rengstl B, Oster U, Stengel A, Nickelsen J. An intermediate membrane subfraction in cyanobacteria is involved in an assembly network for Photosystem II biogenesis. J Biol Chem 2011; 286:21944-51. [PMID: 21531723 DOI: 10.1074/jbc.m111.237867] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early steps in the biogenesis of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 are thought to occur in a specialized membrane fraction that is characterized by the specific accumulation of the PSII assembly factor PratA and its interaction partner pD1, the precursor of the D1 protein of PSII. Here, we report the molecular characterization of this membrane fraction, called the PratA-defined membrane (PDM), with regard to its lipid and pigment composition and its association with PSII assembly factors, including YCF48, Slr1471, Sll0933, and Pitt. We demonstrate that YCF48 and Slr1471 are present and that the chlorophyll precursor chlorophyllide a accumulates in the PDM. Analysis of PDMs from various mutant lines suggests a central role for PratA in the spatial organization of PSII biogenesis. Moreover, quantitative immunoblot analyses revealed a network of interdependences between several PSII assembly factors and chlorophyll synthesis. In addition, formation of complexes containing both YCF48 and Sll0933 was substantiated by co-immunoprecipitation experiments. The findings are integrated into a refined model for PSII biogenesis in Synechocystis 6803.
Collapse
Affiliation(s)
- Birgit Rengstl
- Molekulare Pflanzenwissenschaften, Biozentrum, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
96
|
Reinhold R, Bareth B, Balleininger M, Wissel M, Rehling P, Mick DU. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast. Hum Mol Genet 2011; 20:2379-93. [PMID: 21470975 DOI: 10.1093/hmg/ddr145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1.
Collapse
Affiliation(s)
- Robert Reinhold
- Abteilung für Biochemie II, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
97
|
Sobotka R, Tichy M, Wilde A, Hunter CN. Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. PLANT PHYSIOLOGY 2011; 155:1735-47. [PMID: 21081693 PMCID: PMC3091120 DOI: 10.1104/pp.110.167528] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 05/20/2023]
Abstract
Ferrochelatase (FeCH) catalyzes the insertion of Fe(2+) into protoporphyrin, forming protoheme. In photosynthetic organisms, FeCH and magnesium chelatase lie at a biosynthetic branch point where partitioning down the heme and chlorophyll (Chl) pathways occurs. Unlike their mammalian, yeast, and other bacterial counterparts, cyanobacterial and algal FeCHs as well as FeCH2 isoform from plants possess a carboxyl-terminal Chl a/b-binding (CAB) domain with a conserved Chl-binding motif. The CAB domain is connected to the FeCH catalytic core by a proline-rich linker sequence (region II). In order to dissect the regulatory, catalytic, and structural roles of the region II and CAB domains, we analyzed a FeCH ΔH347 mutant that retains region II but lacks the CAB domain and compared it with the ΔH324-FeCH mutant that lacks both these domains. We found that the CAB domain is not required for catalytic activity but is essential for dimerization of FeCH; its absence causes aberrant accumulation of Chl-protein complexes under high light accompanied by high levels of the Chl precursor chlorophyllide. Thus, the CAB domain appears to serve mainly a regulatory function, possibly in balancing Chl biosynthesis with the synthesis of cognate apoproteins. Region II is essential for the catalytic function of the plastid-type FeCH enzyme, although the low residual activity of the ΔH324-FeCH is more than sufficient to furnish the cellular demand for heme. We propose that the apparent surplus of FeCH activity in the wild type is critical for cell viability under high light due to a regulatory role of FeCH in the distribution of Chl into apoproteins.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Microbiology, Department of Autotrophic Microorganisms, 379 81 Trebon, Czech Republic.
| | | | | | | |
Collapse
|
98
|
Kawakami K, Umena Y, Iwai M, Kawabata Y, Ikeuchi M, Kamiya N, Shen JR. Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:319-25. [DOI: 10.1016/j.bbabio.2010.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 02/03/2023]
|
99
|
Fagerlund RD, Eaton-Rye JJ. The lipoproteins of cyanobacterial photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:191-203. [PMID: 21349737 DOI: 10.1016/j.jphotobiol.2011.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII) complexes from cyanobacteria and plants perform water splitting and plastoquinone reduction and yet have a different complement of lumenal extrinsic proteins. Whereas PSII from all organisms has the PsbO extrinsic protein, crystal structures of PSII from cyanobacteria have PsbV and PsbU while green algae and higher plants instead contain the extrinsic PsbP and PsbQ subunits. Proteomic studies in Synechocystis sp. PCC 6803 identified three further extrinsic proteins in the thylakoid lumen that are associated with cyanobacterial PSII and these are predicted to attach to the thylakoid membrane via a lipidated N-terminus. These proteins are cyanobacterial homologues to the PsbP and PsbQ subunits as well as to Psb27, an additional extrinsic protein associated with "inactive" photosystems that lack the other extrinsic polypeptides. The PsbQ homologue is not present in Prochlorococcus species but otherwise these proteins have been identified in most cyanobacteria although our phylogenetic analyses identified some strains that lack an apparent motif for lipidation in one or other of these subunits. Over the past decade the physiological function of these additional lipoproteins has been investigated in several cyanobacterial strains and recently the structures for each have been solved. This review will evaluate the physiological and structural results obtained for these lipid-attached extrinsic proteins and in silico protein docking of these proteins to PSII centers will be presented.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
100
|
Thangaraj B, Ryan CM, Souda P, Krause K, Faull KF, Weber APM, Fromme P, Whitelegge JP. Data-directed top-down Fourier-transform mass spectrometry of a large integral membrane protein complex: photosystem II from Galdieria sulphuraria. Proteomics 2011; 10:3644-56. [PMID: 20845333 DOI: 10.1002/pmic.201000190] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-resolution top-down MS was used to characterize eleven integral and five peripheral subunits of the 750 kDa photosystem II complex from the eukaryotic red alga, Galdieria sulphuraria. The primary separation used LC MS with concomitant fraction collection (LC-MS+), yielding around 40 intact mass tags at 100 ppm mass accuracy on a low-resolution ESI mass spectrometer, whose retention and mass were used to guide subsequent high-resolution top-down nano-electrospray FT ion-cyclotron resonance MS experiments (FT-MS). Both collisionally activated and electron capture dissociation were used to confirm the presence of eleven small subunits to mass accuracy within 5 ppm; PsbE, PsbF, PsbH, PsbI, PsbJ, PsbK, PsbL, PsbM, PsbT, PsbX and PsbZ. All subunits showed covalent modifications that fall into three classes including retention of initiating formyl-methionine, removal of methionine at the N-terminus with or without acetylation, and removal of a longer N-terminal peptide. Peripheral subunits identified by top-down analysis included oxygen-evolving complex subunits PsbO, PsbU, PsbV, as well as Psb28 (PsbW) and Psb27 ("PsbZ-like"). Top-down high-resolution MS provides the necessary precision, typically less than 5 ppm, for identification and characterization of polypeptide composition of these important membrane protein complexes.
Collapse
Affiliation(s)
- Balakumar Thangaraj
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|