51
|
Zhang Z, Tong X, Liu SY, Chai LX, Zhu FF, Zhang XP, Zou JZ, Wang XB. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Sci Rep 2019; 9:3187. [PMID: 30816193 PMCID: PMC6395819 DOI: 10.1038/s41598-019-39436-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023] Open
Abstract
As obligate intracellular phytopathogens, plant viruses must take advantage of hosts plasmodesmata and phloem vasculature for their local and long-distance transports to establish systemic infection in plants. In contrast to well-studied virus local transports, molecular mechanisms and related host genes governing virus systemic trafficking are far from being understood. Here, we performed a forward genetic screening to identify Arabidopsis thaliana mutants with enhanced susceptibility to a 2b-deleted mutant of cucumber mosaic virus (CMV-2aT∆2b). We found that an uncharacterized Piezo protein (AtPiezo), an ortholog of animal Piezo proteins with mechanosensitive (MS) cation channel activities, was required for inhibiting systemic infection of CMV-2aT∆2b and turnip mosaic virus tagged a green fluorescent protein (GFP) (TuMV-GFP). AtPiezo is induced by virus infection, especially in the petioles of rosette leaves. Thus, we for the first time demonstrate the biological function of Piezo proteins in plants, which might represent a common antiviral strategy because many monocot and dicot plant species have a single Piezo ortholog.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Long-Xiang Chai
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fei-Fan Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing-Ze Zou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
52
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
53
|
Niu D, Lin XL, Kong X, Qu GP, Cai B, Lee J, Jin JB. SIZ1-Mediated SUMOylation of TPR1 Suppresses Plant Immunity in Arabidopsis. MOLECULAR PLANT 2019; 12:215-228. [PMID: 30543996 DOI: 10.1016/j.molp.2018.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/11/2023]
Abstract
Plant immune responses are tightly regulated to ensure their appropriate deployment. Overexpression of TOPLESS-RELATED 1 (TPR1), a SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1)-interacting protein, results in autoimmunity that reduces plant growth and development. However, how TPR1 activity is regulated remains unknown. Loss of function of SIZ1, a (SUMO) E3 ligase, induces an autoimmune response, partially due to elevated SNC1 levels. Here we show that SNC1 expression is upregulated in Arabidopsis thaliana siz1-2 due to positive-feedback regulation by salicylic acid. SIZ1 physically interacts with TPR1 and facilitates its SUMO modification. The K282 and K721 residues in TPR1 serve as critical SUMO attachment sites. Simultaneous introduction of K282R and K721R substitutions in TPR1 blocked its SUMOylation, enhanced its transcriptional co-repressor activity, and increased its association with HISTONE DEACETYLASE 19 (HDA19), suggesting that SUMOylation of TPR1 represses its transcriptional co-repressor activity and inhibits its interaction with HDA19. In agreement with this finding, the simultaneous introduction of K282R and K721R substitutions enhanced TPR1-mediated immunity, and the tpr1 mutation partially suppressed autoimmunity in siz1-2. These results demonstrate that SIZ1-mediated SUMOylation of TPR1 represses plant immunity, which at least partly contributes to the suppression of autoimmunity under non-pathogenic conditions to ensure proper plant development.
Collapse
Affiliation(s)
- De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Li Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiangxiong Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, South Korea
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
54
|
Rosa MTG, Almeida DM, Pires IS, da Rosa Farias D, Martins AG, da Maia LC, de Oliveira AC, Saibo NJM, Oliveira MM, Abreu IA. Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC PLANT BIOLOGY 2018; 18:349. [PMID: 30541427 PMCID: PMC6291987 DOI: 10.1186/s12870-018-1547-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND SUMOylation is an essential eukaryotic post-translation modification that, in plants, regulates numerous cellular processes, ranging from seed development to stress response. Using rice as a model crop plant, we searched for potential regulatory points that may influence the activity of the rice SUMOylation machinery genes. RESULTS We analyzed the presence of putative cis-acting regulatory elements (CREs) within the promoter regions of the rice SUMOylation machinery genes and found CREs related to different cellular processes, including hormone signaling. We confirmed that the transcript levels of genes involved in target-SUMOylation, containing ABA- and GA-related CREs, are responsive to treatments with these hormones. Transcriptional analysis in Nipponbare (spp. japonica) and LC-93-4 (spp. indica), showed that the transcript levels of all studied genes are maintained in the two subspecies, under normal growth. OsSUMO3 is an exceptional case since it is expressed at low levels or is not detectable at all in LC-93-4 roots and shoots, respectively. We revealed post-transcriptional regulation by alternative splicing (AS) for all genes studied, except for SUMO coding genes, OsSIZ2, OsOTS3, and OsELS2. Some AS forms have the potential to alter protein domains and catalytic centers. We also performed the molecular and phenotypic characterization of T-DNA insertion lines of some of the genes under study. Knockouts of OsFUG1 and OsELS1 showed increased SUMOylation levels and non-overlapping phenotypes. The fug1 line showed a dwarf phenotype, and significant defects in fertility, seed weight, and panicle architecture, while the els1 line showed early flowering and decreased plant height. We suggest that OsELS1 is an ortholog of AtEsd4, which was also supported by our phylogenetic analysis. CONCLUSIONS Overall, we provide a comprehensive analysis of the rice SUMOylation machinery and discuss possible effects of the regulation of these genes at the transcriptional and post-transcriptional level. We also contribute to the characterization of two rice SUMO proteases, OsELS1 and OsFUG1.
Collapse
Affiliation(s)
- Margarida T. G. Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Diego M. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM), Montpellier, France
| | - Inês S. Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- Frontiers Media SA, Avenue du Tribunal-Fédéral 34, CH-1015 Lausanne, Switzerland
| | - Daniel da Rosa Farias
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Alice G. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - António Costa de Oliveira
- Plant Genomics and Breeding Center, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
- IBET, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
55
|
Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, Zhou X. Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. MOLECULAR PLANT 2018; 11:1466-1481. [PMID: 30523782 DOI: 10.1016/j.molp.2018.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 05/13/2023]
Abstract
Many geminivirus C4 proteins induce severe developmental abnormalities in plants. We previously demonstrated that Tomato leaf curl Yunnan virus (TLCYnV) C4 induces plant developmental abnormalities at least partically by decreasing the accumulation of NbSKη, an ortholog of Arabidopsis BIN2 kinase involved in the brassinosteroid signaling pathway, in the nucleus through directing it to the plasma membrane. However, the molecular mechanism by which the membrane-associated C4 modifies the localization of NbSKη in the host cell remains unclear. Here, we show that TLCYnV C4 is a nucleocytoplasmic shuttle protein, and that C4 shuttling is accompanied by nuclear export of NbSKη. TLCYnV C4 is phosphorylated by NbSKη in the nucleus, which promotes myristoylation of the viral protein. Myristoylation of phosphorylated C4 favors its interaction with exportin-α (XPO I), which in turn facilitates nuclear export of the C4/NbSKη complex. Supporting this model, chemical inhibition of N-myristoyltransferases or exportin-α enhanced nuclear retention of C4, and mutations of the putative phosphorylation or myristoylation sites in C4 resulted in increased nuclear retention of C4 and thus decreased severity of C4-induced developmental abnormalities. The impact of C4 on development is also lessened when a nuclear localization signal or a nuclear export signal is added to its C-terminus, restricting it to a specific cellular niche and therefore impairing nucleocytoplasmic shuttling. Taken together, our results suggest that nucleocytoplasmic shuttling of TLCYnV C4, enabled by phosphorylation by NbSKη, myristoylation, and interaction with exportin-α, is critical for its function as a pathogenicity factor.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
56
|
Wu G, Cui X, Chen H, Renaud JB, Yu K, Chen X, Wang A. Dynamin-Like Proteins of Endocytosis in Plants Are Coopted by Potyviruses To Enhance Virus Infection. J Virol 2018; 92:e01320-18. [PMID: 30258010 PMCID: PMC6232491 DOI: 10.1128/jvi.01320-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyan Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hui Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
57
|
Augustine RC, Vierstra RD. SUMOylation: re-wiring the plant nucleus during stress and development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:143-154. [PMID: 30014889 DOI: 10.1016/j.pbi.2018.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 05/08/2023]
Abstract
Conjugation of small ubiquitin-related modifier (SUMO) to intracellular proteins provides a dynamic regulatory mechanism that enables plants to rapidly defend against environmental challenges. SUMOylation of mostly nuclear proteins is among the fastest stress responses observed but precisely how this post-translational modification provides stress resilience remains unclear. Here, we describe the plant SUMO system and its expanding target catalog, which implicates this modification in DNA repair, chromatin modification/remodeling, transcriptional activation/repression, epigenetics, and RNA metabolism, with a likely outcome being extensive nuclear re-wiring to withstand stress. In parallel, studies have linked SUMO to developmental programs such as gametogenesis and gene silencing. The accumulating data support the notion that SUMOylation substantially influences the transcriptional and epigenetic landscapes to promote stress tolerance and developmental progression.
Collapse
Affiliation(s)
- Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
58
|
Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, Ruiz-Albert J, Luna AP, van den Burg HA, Bejarano ER. Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018. [PMID: 29950424 DOI: 10.1101/305789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
Affiliation(s)
- Manuel Arroyo-Mateos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Blanca Sabarit
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Miguel A Sánchez-Durán
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tabata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Keygene NV, Wageningen, The Netherlands
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
59
|
Benlloch R, Lois LM. Sumoylation in plants: mechanistic insights and its role in drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4539-4554. [PMID: 29931319 DOI: 10.1093/jxb/ery233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Post-translational modification by SUMO is an essential process that has a major role in the regulation of plant development and stress responses. Such diverse biological functions are accompanied by functional diversification among the SUMO conjugation machinery components and regulatory mechanisms that has just started to be identified in plants. In this review, we focus on the current knowledge of the SUMO conjugation system in plants in terms of components, substrate specificity, cognate interactions, enzyme activity, and subcellular localization. In addition, we analyze existing data on the role of SUMOylation in plant drought tolerance in model plants and crop species, paying attention to the genetic approaches used to stimulate or inhibit endogenous SUMO conjugation. The role in drought tolerance of potential SUMO targets identified in proteomic analyses is also discussed. Overall, the complexity of SUMOylation and the multiple genetic and environmental factors that are integrated to confer drought tolerance highlight the need for significant efforts to understand the interplay between SUMO and drought.
Collapse
Affiliation(s)
- Reyes Benlloch
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| |
Collapse
|
60
|
Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018; 92:JVI.00611-18. [PMID: 29950424 DOI: 10.1128/jvi.00611-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
|
61
|
Zhang X, Dong K, Xu K, Zhang K, Jin X, Yang M, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus infection requires PKA-mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. THE NEW PHYTOLOGIST 2018; 218:1570-1585. [PMID: 29453938 DOI: 10.1111/nph.15065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The Barley stripe mosaic virus (BSMV) γb protein is a viral suppressor of RNA silencing (VSR) and symptom determinant. However, it is unclear how post-translational modification affects the different functions of γb. Here, we demonstrate that γb is phosphorylated at Ser-96 by a PKA-like kinase in vivo and in vitro. Mutant viruses containing a nonphosphorylatable substitution (BSMVS96A or BSMVS96R ) exhibited reduced viral accumulation in Nicotiana benthamiana due to transient induction of the cell death response that constrained the virus to necrotic areas. By contrast, a BSMVS96D mutant virus that mimics γb phosphorylation spread similarly to the wild-type virus. Furthermore, the S96A mutant had reduced local and systemic γb VSR activity due to having compromised its binding activity to 21-bp dsRNA. However, overexpression of other VSRs in trans or in cis failed to rescue the necrosis induced by BSMVS96A , demonstrating that suppression of cell death by γb phosphorylation is functionally distinct from its RNA silencing suppressor activities. These results provide new insights into the function of γb phosphorylation in regulating RNA silencing and the BSMV-induced host cell death response, and contribute to our understanding of how the virus optimizes the balance between viral replication and virus survival in the host plants during virus infection.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
62
|
Li F, Zhang C, Li Y, Wu G, Hou X, Zhou X, Wang A. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat Commun 2018; 9:1268. [PMID: 29593293 PMCID: PMC5871769 DOI: 10.1038/s41467-018-03658-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/28/2018] [Indexed: 01/22/2023] Open
Abstract
Autophagy emerges as an essential immunity defense against intracellular pathogens. Here we report that turnip mosaic virus (TuMV) infection activates autophagy in plants and that Beclin1 (ATG6), a core component of autophagy, inhibits virus replication. Beclin1 interacts with NIb, the RNA-dependent RNA polymerase (RdRp) of TuMV, via the highly conserved GDD motif and the interaction complex is targeted for autophagic degradation likely through the adaptor protein ATG8a. Beclin1-mediated NIb degradation is inhibited by autophagy inhibitors. Deficiency of Beclin1 or ATG8a enhances NIb accumulation and promotes viral infection and vice versa. These data suggest that Beclin1 may be a selective autophagy receptor. Overexpression of a Beclin1 truncation mutant that binds to NIb but lacks the ability to mediate NIb degradation also inhibits virus replication. The Beclin1-RdRp interaction further extends to several RNA viruses. Thus Beclin1 restricts viral infection through suppression and also likely autophagic degradation of the viral RdRp.
Collapse
Affiliation(s)
- Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Changwei Zhang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada.
- Department of Biology, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
63
|
Park SH, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A. NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:846-861. [PMID: 28941316 DOI: 10.1111/tpj.13723] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD-enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2-fold increase) and 48 (≥2-fold reduction) are significantly differentially accumulated in the PD-enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α-expansin designated NbEXPA1, a cell wall loosening protein, is PD-specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA-dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD-proteome dataset that is useful in future studies to expound PD biology and PD-mediated virus-host interactions but also characterizes NbEXPA1 as the first PD-specific cell wall loosening protein and its essential role in potyviral infection.
Collapse
Affiliation(s)
- Sang-Ho Park
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Fangfang Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Wentao Shen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Lihua Guo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Mark Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
64
|
Cui X, Yaghmaiean H, Wu G, Wu X, Chen X, Thorn G, Wang A. The C-terminal region of the Turnip mosaic virus P3 protein is essential for viral infection via targeting P3 to the viral replication complex. Virology 2017; 510:147-155. [PMID: 28735115 DOI: 10.1016/j.virol.2017.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Like other positive-strand RNA viruses, plant potyviruses assemble viral replication complexes (VRCs) on modified cellular membranes. Potyviruses encode two membrane proteins, 6K2 and P3. The former is known to play pivotal roles in the formation of membrane-associated VRCs. However, P3 remains to be one of the least characterized potyviral proteins. The P3 cistron codes for P3 as well as P3N-PIPO which results from RNA polymerase slippage. In this study, we show that the P3N-PIPO of Turnip mosaic virus (TuMV) is required for viral cell-to-cell movement but not for viral replication. We demonstrate that the C-terminal region of P3 (P3C) is indispensable for P3 to form cytoplasmic punctate inclusions and target VRCs. We reveal that TuMV mutants that lack P3C are replication-defective. Taken together, these data suggest that the P3 cistron has two distinct functions: P3N-PIPO as a dedicated movement protein and P3 as an essential component of the VRC.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Hoda Yaghmaiean
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Guanwei Wu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Xiaoyun Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; College of Agriculture and Food Science, Zhejiang A&F University, Linan, Zhejiang 311300, China
| | - Xin Chen
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Greg Thorn
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada; Department of Biology, Western University, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
65
|
Cheng X, Wang A. Multifaceted defense and counter-defense in co-evolutionary arms race between plants and viruses. Commun Integr Biol 2017. [PMCID: PMC5595414 DOI: 10.1080/19420889.2017.1341025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- School of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
66
|
He Z, Huang T, Ao K, Yan X, Huang Y. Sumoylation, Phosphorylation, and Acetylation Fine-Tune the Turnover of Plant Immunity Components Mediated by Ubiquitination. FRONTIERS IN PLANT SCIENCE 2017; 8:1682. [PMID: 29067028 PMCID: PMC5641357 DOI: 10.3389/fpls.2017.01682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitination-mediated protein degradation plays a crucial role in the turnover of immune proteins through rapid alteration of protein levels. Specifically, the over-accumulation of immune proteins and consequent activation of immune responses in uninfected cells is prevented through degradation. Protein post-translational modifications can influence and affect ubiquitination. There is accumulating evidence that suggests sumoylation, phosphorylation, and acetylation differentially affect the stability of immune-related proteins, so that control over the accumulation or degradation of proteins is fine-tuned. In this paper, we review the function and mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant disease resistance responses, focusing on how ubiquitination reacts with sumoylation, phosphorylation, and acetylation to regulate plant disease resistance signaling pathways. Future research directions are suggested in order to provide ideas for signaling pathway studies, and to advance the implementation of disease resistance proteins in economically important crops.
Collapse
Affiliation(s)
- Zhouqing He
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tingting Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofang Yan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Yan Huang,
| |
Collapse
|