51
|
Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 2020; 12:1253-1279. [PMID: 32538147 DOI: 10.4155/fmc-2020-0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rise of antibiotic-resistant infections has been well documented and the need for novel antibiotics cannot be overemphasized. US FDA approved antibiotics target only a small fraction of bacterial cell wall or membrane components, well-validated antimicrobial targets. In this review, we highlight small molecules that inhibit relatively unexplored cell wall and membrane targets. Some of these targets include teichoic acids-related proteins (DltA, LtaS, TarG and TarO), lipid II, Mur family enzymes, components of LPS assembly (MsbA, LptA, LptB and LptD), penicillin-binding protein 2a in methicillin-resistant Staphylococcus aureus, outer membrane protein transport (such as LepB and BamA) and lipoprotein transport components (LspA, LolC, LolD and LolE). Inhibitors of SecA, cell division protein, FtsZ and compounds that kill persister cells via membrane targeting are also covered.
Collapse
|
52
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
53
|
Huecas S, Canosa-Valls AJ, Araújo-Bazán L, Ruiz FM, Laurents DV, Fernández-Tornero C, Andreu JM. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J 2020; 287:4048-4067. [PMID: 31997533 DOI: 10.1111/febs.15235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
The essential bacterial division protein FtsZ uses GTP binding and hydrolysis to assemble into dynamic filaments that treadmill around the Z-ring, guiding septal wall synthesis and cell division. FtsZ is a structural homolog of tubulin and a target for discovering new antibiotics. Here, using FtsZ from the pathogen S. aureus (SaFtsZ), we reveal that, prior to assembly, FtsZ monomers require nucleotide binding for folding; this is possibly relevant to other mesophilic FtsZs. Apo-SaFtsZ is essentially unfolded, as assessed by nuclear magnetic resonance and circular dichroism. Binding of GTP (≥ 1 mm) dramatically shifts the equilibrium toward the active folded protein. Supportingly, SaFtsZ refolded with GDP crystallizes in a native structure. Apo-SaFtsZ also folds with 3.4 m glycerol, enabling high-affinity GTP binding (KD 20 nm determined by isothermal titration calorimetry) similar to thermophilic stable FtsZ. Other stabilizing agents that enhance nucleotide binding include ethylene glycol, trimethylamine N-oxide, and several bacterial osmolytes. High salt stabilizes SaFtsZ without bound nucleotide in an inactive twisted conformation. We identified a cavity behind the SaFtsZ-GDP nucleotide-binding pocket that harbors different small compounds, which is available for extended nucleotide-replacing inhibitors. Furthermore, we devised a competition assay to detect any inhibitors that overlap the nucleotide site of SaFtsZ, or Escherichia coli FtsZ, employing osmolyte-stabilized apo-FtsZs and the specific fluorescence anisotropy change in mant-GTP upon dissociation from the protein. This robust assay provides a basis to screening for high-affinity GTP-replacing ligands, which combined with structural studies and phenotypic profiling should facilitate development of a next generation of FtsZ-targeting antibacterial inhibitors.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | | | - José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| |
Collapse
|
54
|
Buroni S, Makarov V, Scoffone VC, Trespidi G, Riccardi G, Chiarelli LR. The cell division protein FtsZ as a cellular target to hit cystic fibrosis pathogens. Eur J Med Chem 2020; 190:112132. [PMID: 32066012 DOI: 10.1016/j.ejmech.2020.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/25/2022]
Abstract
Cystic fibrosis is a rare genetic disease characterized by the production of dehydrated mucus in the lung able to trap bacteria and rendering their proliferation particularly dangerous, thus leading to chronic infections. Among these bacteria, Staphylococcus aureus and Pseudomonas aeruginosa play a major role while, within emerging pathogens, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, Burkholderia cepacia complex species, as well as non-tuberculous mycobacteria are listed. Since a common feature of these bacteria is the high level of drug resistance, cell division, and in particular FtsZ, has been explored as a novel therapeutic target for the design of new molecules with antibacterial properties. This review summarizes and provides insight into recent advances in the discovery of compounds targeting FtsZ: the majority of them exhibit anti-staphylococcal activity, while a few were directed against the cystic fibrosis Gram negative pathogens.
Collapse
Affiliation(s)
- Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
55
|
Casiraghi A, Suigo L, Valoti E, Straniero V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics (Basel) 2020; 9:E69. [PMID: 32046082 PMCID: PMC7167804 DOI: 10.3390/antibiotics9020069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
Binary fission is the most common mode of bacterial cell division and is mediated by a multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance in orchestrating the whole division system make this protein a fascinating target in antibiotic research. Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently, in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their main protein binding sites and following a medicinal chemistry approach.
Collapse
Affiliation(s)
| | | | | | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Luigi Mangiagalli, 25, 20133 Milano, Italy; (A.C.); (L.S.); (E.V.)
| |
Collapse
|
56
|
Schumacher MA, Ohashi T, Corbin L, Erickson HP. High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP. Acta Crystallogr F Struct Biol Commun 2020; 76:94-102. [PMID: 32039891 PMCID: PMC7010359 DOI: 10.1107/s2053230x20001132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/05/2022] Open
Abstract
Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.
Collapse
Affiliation(s)
- Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| | - Tomoo Ohashi
- Department of Cell Biology, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| | - Lauren Corbin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Harold P. Erickson
- Department of Biochemistry, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| |
Collapse
|
57
|
Yoshizawa T, Fujita J, Terakado H, Ozawa M, Kuroda N, Tanaka SI, Uehara R, Matsumura H. Crystal structures of the cell-division protein FtsZ from Klebsiella pneumoniae and Escherichia coli. Acta Crystallogr F Struct Biol Commun 2020; 76:86-93. [PMID: 32039890 PMCID: PMC7010355 DOI: 10.1107/s2053230x2000076x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
FtsZ, a tubulin-like GTPase, is essential for bacterial cell division. In the presence of GTP, FtsZ polymerizes into filamentous structures, which are key to generating force in cell division. However, the structural basis for the molecular mechanism underlying FtsZ function remains to be elucidated. In this study, crystal structures of the enzymatic domains of FtsZ from Klebsiella pneumoniae (KpFtsZ) and Escherichia coli (EcFtsZ) were determined at 1.75 and 2.50 Å resolution, respectively. Both FtsZs form straight protofilaments in the crystals, and the two structures adopted relaxed (R) conformations. The T3 loop, which is involved in GTP/GDP binding and FtsZ assembly/disassembly, adopted a unique open conformation in KpFtsZ, while the T3 loop of EcFtsZ was partially disordered. The crystal structure of EcFtsZ can explain the results from previous functional analyses using EcFtsZ mutants.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruna Terakado
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shun-ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Uehara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
58
|
Ferrer-González E, Fujita J, Yoshizawa T, Nelson JM, Pilch AJ, Hillman E, Ozawa M, Kuroda N, Al-Tameemi HM, Boyd JM, LaVoie EJ, Matsumura H, Pilch DS. Structure-Guided Design of a Fluorescent Probe for the Visualization of FtsZ in Clinically Important Gram-Positive and Gram-Negative Bacterial Pathogens. Sci Rep 2019; 9:20092. [PMID: 31882782 PMCID: PMC6934700 DOI: 10.1038/s41598-019-56557-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Addressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor. Crystallographic studies have enabled us to identify the optimal position for tethering the fluorophore that facilitates the high-affinity FtsZ binding of BOFP. Fluorescence anisotropy studies demonstrate that BOFP binds the FtsZ proteins from the Gram-positive pathogens Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae with Kd values of 0.6-4.6 µM. Significantly, BOFP binds the FtsZ proteins from the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii with an even higher affinity (Kd = 0.2-0.8 µM). Fluorescence microscopy studies reveal that BOFP can effectively label FtsZ in all the above Gram-positive and Gram-negative pathogens. In addition, BOFP is effective at monitoring the impact of non-fluorescent inhibitors on FtsZ localization in these target pathogens. Viewed as a whole, our results highlight the utility of BOFP as a powerful tool for identifying new broad-spectrum FtsZ inhibitors and understanding their mechanisms of action.
Collapse
Affiliation(s)
- Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-087, Japan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Julia M Nelson
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Alyssa J Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Elani Hillman
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Hassan M Al-Tameemi
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan.
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
59
|
Straniero V, Sebastián-Pérez V, Hrast M, Zanotto C, Casiraghi A, Suigo L, Zdovc I, Radaelli A, De Giuli Morghen C, Valoti E. Benzodioxane-Benzamides as Antibacterial Agents: Computational and SAR Studies to Evaluate the Influence of the 7-Substitution in FtsZ Interaction. ChemMedChem 2019; 15:195-209. [PMID: 31750973 DOI: 10.1002/cmdc.201900537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/08/2019] [Indexed: 01/24/2023]
Abstract
FtsZ is a crucial prokaryotic protein involved in bacterial cell replication. It recently arose as a promising target in the search for antimicrobial agents able to fight antimicrobial resistance. In this work, going on with our structure-activity relationship (SAR) study, we developed variously 7-substituted 1,4-benzodioxane compounds, linked to the 2,6-difluorobenzamide by a methylenoxy bridge. Compounds exhibit promising antibacterial activities not only against multidrug-resistant Staphylococcus aureus, but also on mutated Escherichia coli strains, thus enlarging their spectrum of action toward Gram-negative bacteria as well. Computational studies elucidated, through a validated FtsZ binding protocol, the structural features of new promising derivatives as FtsZ inhibitors.
Collapse
Affiliation(s)
- Valentina Straniero
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | | | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milano, Italy
| | - Andrea Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Lorenzo Suigo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Irena Zdovc
- Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Antonia Radaelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milano, Italy
| | | | - Ermanno Valoti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
60
|
Carro L. Recent Progress in the Development of Small-Molecule FtsZ Inhibitors as Chemical Tools for the Development of Novel Antibiotics. Antibiotics (Basel) 2019; 8:E217. [PMID: 31717975 PMCID: PMC6963470 DOI: 10.3390/antibiotics8040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
Antibiotics are potent pharmacological weapons against bacterial pathogens, nevertheless their efficacy is becoming compromised due to the worldwide emergence and spread of multidrug-resistant bacteria or "superbugs". Antibiotic resistance is rising to such dangerous levels that the treatment of bacterial infections is becoming a clinical challenge. Therefore, urgent action is needed to develop new generations of antibiotics that will help tackle this increasing and serious public health problem. Due to its essential role in bacterial cell division, the tubulin-like protein FtsZ has emerged as a promising target for the development of novel antibiotics with new mechanisms of action. This review highlights the medicinal chemistry efforts towards the identification of small-molecule FtsZ inhibitors with antibacterial activity in the last three years.
Collapse
Affiliation(s)
- Laura Carro
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
61
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
62
|
FtsZ inhibitors as a new genera of antibacterial agents. Bioorg Chem 2019; 91:103169. [PMID: 31398602 DOI: 10.1016/j.bioorg.2019.103169] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022]
Abstract
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.
Collapse
|
63
|
Discovery of 1,3,4-oxadiazol-2-one-containing benzamide derivatives targeting FtsZ as highly potent agents of killing a variety of MDR bacteria strains. Bioorg Med Chem 2019; 27:3179-3193. [DOI: 10.1016/j.bmc.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022]
|
64
|
Dhaked HPS, Ray S, Battaje RR, Banerjee A, Panda D. Regulation ofStreptococcus pneumoniaeFtsZ assembly by divalent cations: paradoxical effects of Ca2+on the nucleation and bundling of FtsZ polymers. FEBS J 2019; 286:3629-3646. [DOI: 10.1111/febs.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Shashikant Ray
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
- Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar India
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Dulal Panda
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| |
Collapse
|
65
|
Zhang TY, Wu YY, Zhang MY, Cheng J, Dube B, Yu HJ, Zhang YX. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep 2019; 9:8319. [PMID: 31165765 PMCID: PMC6549247 DOI: 10.1038/s41598-019-44810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
A total amount of 116 fungal strains, belonging to 30 genera, were acquired from the rhizosphere soil and plant of Galinsoga parviflora. A strain SYPF 7336, isolated from the rhizospheric soil, was identified as Seltsamia galinsogisoli sp. nov., by morphological and molecular analyses, which displayed high antibacterial activity. In order to study the secondary metabolites of Seltsamia galinsogisoli sp. nov., nine compounds were successfully seperated from the strain fermentation broth, including two new compounds and seven known compounds. Their structures were elucidated based on spectral analysis including 1D and 2D NMR. All the seperated compounds were evaluated for their antimicrobial activities. Compounds 2, 5 and 1 displayed antimicrobial activities against Staphylococcus aureus with MIC values of 25, 32 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of S. aureus to be swollen to a volume of 1.4 to 1.7-fold after treatment with compounds 1, 2 and 5, respectively. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 1, 2 and 5.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Blessings Dube
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Jia Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
66
|
At the Heart of Bacterial Cytokinesis: The Z Ring. Trends Microbiol 2019; 27:781-791. [PMID: 31171437 DOI: 10.1016/j.tim.2019.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022]
Abstract
Bacterial cell division is mediated by the divisome which is organized by the Z ring, a cytoskeletal element formed by the polymerization of the tubulin homologue FtsZ. Despite billions of years of bacterial evolution, the Z ring is nearly universal among bacteria that have a cell wall and divide by binary fission. Recent studies have revealed the mechanism of cooperative assembly of FtsZ and that the Z ring consists of patches of FtsZ filaments tethered to the membrane that treadmill to distribute the septal biosynthetic machinery. Here, we summarize these advances and discuss questions raised by these new findings.
Collapse
|
67
|
Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces. Int J Mol Sci 2019; 20:ijms20102545. [PMID: 31137602 PMCID: PMC6566678 DOI: 10.3390/ijms20102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
We have used a simple model system to test the prediction that surface attachment strength of filaments presenting a torsion would affect their shape and properties. FtsZ from E. coli containing one cysteine in position 2 was covalently attached to a lipid bilayer containing maleimide lipids either in their head group (to simulate tight attachment) or at the end of a polyethylene glycol molecule attached to the head group (to simulate loose binding). We found that filaments tightly attached grew straight, growing from both ends, until they formed a two-dimensional lattice. Further monomer additions to their sides generated a dense layer of oriented filaments that fully covered the lipid membrane. After this point the surface became unstable and the bilayer detached from the surface. Filaments with a loose binding were initially curved and later evolved into straight thicker bundles that destabilized the membrane after reaching a certain surface density. Previously described theoretical models of FtsZ filament assembly on surfaces that include lateral interactions, spontaneous curvature, torsion, anchoring to the membrane, relative geometry of the surface and the filament ‘living-polymer’ condition in the presence of guanosine triphosphate (GTP) can offer some clues about the driving forces inducing these filament rearrangements.
Collapse
|
68
|
Erickson HP. Microtubule Assembly from Single Flared Protofilaments-Forget the Cozy Corner? Biophys J 2019; 116:2240-2245. [PMID: 31122668 DOI: 10.1016/j.bpj.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Abstract
A paradigm shift for models of MT assembly is suggested by a recent cryo-electron microscopy study of microtubules (MTs). Previous assembly models have been based on the two-dimensional lattice of the MT wall, where incoming subunits can add with longitudinal and lateral bonds. The new study of McIntosh et al. concludes that the growing ends of MTs separate into flared single protofilaments. This means that incoming subunits must add onto the end of single protofilaments, forming only a longitudinal bond. How can growth of single-stranded protofilaments exhibit cooperative assembly with a critical concentration? An answer is suggested by FtsZ, the bacterial tubulin homolog, which assembles into single-stranded protofilaments. Cooperative assembly of FtsZ is thought to be based on conformational changes that switch the longitudinal bond from low to high affinity when the subunit is incorporated in a protofilament. This novel mechanism may also apply to tubulin assembly and could be the primary mechanism for assembly onto single flared protofilaments.
Collapse
Affiliation(s)
- Harold P Erickson
- Departments of Cell Biology, Biochemistry, and Biomedical Engineering, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
69
|
Barák I, Muchová K, Labajová N. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 2019; 14:353-363. [PMID: 30855188 DOI: 10.2217/fmb-2018-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis is a rod-shaped bacterium which divides precisely at mid-cell during vegetative growth. Unlike Escherichia coli, another model organism used for studying cell division, B. subtilis can also divide asymmetrically during sporulation, the simplest cell differentiation process. The asymmetrically positioned sporulation septum serves as a morphological foundation for establishing differential gene expression in the smaller forespore and larger mother cell. Both vegetative and sporulation septation events are fine-tuned with cell cycle, and placement of both septa are highly precise. We understand in some detail how this is achieved during vegetative growth but have limited information about how the asymmetric septation site is determined during sporulation.
Collapse
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Naďa Labajová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
70
|
Araújo‐Bazán L, Huecas S, Valle J, Andreu D, Andreu JM. Synthetic developmental regulator MciZ targets FtsZ across
Bacillus
species and inhibits bacterial division. Mol Microbiol 2019; 111:965-980. [DOI: 10.1111/mmi.14198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Javier Valle
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | - David Andreu
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | | |
Collapse
|
71
|
Lui HK, Gao W, Cheung KC, Jin WB, Sun N, Kan JW, Wong IL, Chiou J, Lin D, Chan EW, Leung YC, Chan TH, Chen S, Chan KF, Wong KY. Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, non-cytotoxic and orally bioavailable FtsZ inhibitor. Eur J Med Chem 2019; 163:95-115. [DOI: 10.1016/j.ejmech.2018.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
72
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
73
|
Hakeem S, Singh I, Sharma P, Uppal A, Khajuria Y, Verma V, Uversky VN, Chandra R. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J Biomol Struct Dyn 2019; 37:4361-4373. [PMID: 30466358 DOI: 10.1080/07391102.2018.1548979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The prevailing multi-drug resistance in Mycobacterium tuberculosis continues to remain one of the main challenges to combat tuberculosis. Hence, it becomes imperative to focus on novel drug targets. Filamenting temperature-sensitive mutant Z (FtsZ) is an essential cell division protein, a eukaryotic tubulin homologue and a promising drug target. During cytokinesis, FtsZ polymerises in the presence of GTP to form Z-ring and recruits other proteins at this site that eventually lead to the formation of daughter cells. Benzimidazoles were experimentally shown to inhibit Mtb-FtsZ, with one of the benzimidazole derivatives, M1, being reported to have the minimum inhibitory concentration (MIC) value of 3.13 µg/mL. In the present study, mechanism of destabilisation of FtsZ in the presence of M1 was computationally investigated in the presence of its substrate GTP/GDP employing molecular dynamics (MD) simulation analysis, principal component analysis (PCA), molecular mechanics combined with the generalised Born and surface area continuum salvation (MM-GBSA) and density functional theory (DFT). From the analyses, it is proposed that binding of M1 in the inter-domain cleft induces structural changes in the GTP-binding region that affect GTP binding, thus switching the preference of this protein towards depolymerised state and eventually inhibiting the cell division. Hence, this study provides mechanistic insights into the design of novel benzimidazole inhibitors against Mtb-FtsZ. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Supriya Hakeem
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Inderpal Singh
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Preeti Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Anshul Uppal
- School of Physics, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Yugal Khajuria
- School of Physics, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Vijeshwar Verma
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Russia
| | - Ratna Chandra
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| |
Collapse
|
74
|
Kusuma KD, Griffith R, Harry EJ, Bottomley AL, Ung AT. In silico Analysis of FtsZ Crystal Structures Towards a New Target for Antibiotics. Aust J Chem 2019. [DOI: 10.1071/ch18347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bacterial cell division protein FtsZ is conserved in most bacteria and essential for viability. There have been concerted efforts in developing inhibitors that target FtsZ as potential antibiotics. Key to this is an in-depth understanding of FtsZ structure at the molecular level across diverse bacterial species to ensure inhibitors have high affinity for the FtsZ target in a variety of clinically relevant pathogens. In this study, we show that FtsZ structures differ in three ways: (1) the H7 helix curvature; (2) the dimensions of the interdomain cleft; and (3) the opening/closing mechanism of the interdomain cleft, whereas no differences were observed in the dimensions of the nucleotide-binding pocket and T7 loop. Molecular dynamics simulation may suggest that there are two possible mechanisms for the process of opening and closing of the interdomain cleft on FtsZ structures. This discovery highlights significant differences between FtsZ structures at the molecular level and this knowledge is vital in assisting the design of potent FtsZ inhibitors.
Collapse
|
75
|
Bi F, Song D, Zhang N, Liu Z, Gu X, Hu C, Cai X, Venter H, Ma S. Design, synthesis and structure-based optimization of novel isoxazole-containing benzamide derivatives as FtsZ modulators. Eur J Med Chem 2018; 159:90-103. [DOI: 10.1016/j.ejmech.2018.09.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
|
76
|
Guan F, Yu J, Yu J, Liu Y, Li Y, Feng XH, Huang KC, Chang Z, Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. eLife 2018; 7:35578. [PMID: 29889022 PMCID: PMC6050046 DOI: 10.7554/elife.35578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.
Collapse
Affiliation(s)
- Fenghui Guan
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Jiayu Yu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Yu
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Yang Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying Li
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Zengyi Chang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Ye
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| |
Collapse
|
77
|
Park KT, Dajkovic A, Wissel M, Du S, Lutkenhaus J. MinC and FtsZ mutant analysis provides insight into MinC/MinD-mediated Z ring disassembly. J Biol Chem 2018; 293:5834-5846. [PMID: 29414773 DOI: 10.1074/jbc.m117.815894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
The Min system negatively regulates the position of the Z ring, which serves as a scaffold for the divisome that mediates bacterial cytokinesis. In Escherichia coli, this system consists of MinC, which antagonizes assembly of the tubulin homologue FtsZ. MinC is recruited to the membrane by MinD and induced by MinE to oscillate between the cell poles. MinC is a dimer with each monomer consisting of functionally distinct MinCN and MinCC domains, both of which contact FtsZ. According to one model, MinCC/MinD binding to the FtsZ tail positions MinCN at the junction of two GDP-containing subunits in the filament, leading to filament breakage. Others posit that MinC sequesters FtsZ-GDP monomers or that MinCN caps the minus end of FtsZ polymers and that MinCC interferes with lateral interactions between FtsZ filaments. Here, we isolated minC mutations that impair MinCN function and analyzed FtsZ mutants resistant to MinC/MinD. Surprisingly, we found mutations in both minC and ftsZ that differentiate inhibition by MinC from inhibition by MinC/MinD. Analysis of these mutations suggests that inhibition of the Z ring by MinC alone is due to sequestration, whereas inhibition by MinC/MinD is not. In conclusion, our genetic and biochemical data support the model that MinC/MinD fragments FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Alex Dajkovic
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Mark Wissel
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shishen Du
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Joe Lutkenhaus
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
78
|
Osawa M, Erickson HP. Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division. Front Microbiol 2018; 9:111. [PMID: 29445369 PMCID: PMC5797765 DOI: 10.3389/fmicb.2018.00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bacterial cytokinesis begins with the assembly of FtsZ into a Z ring at the center of the cell. The Z-ring constriction in Gram-negative bacteria may occur in an environment where the periplasm and the cytoplasm are isoosmotic, but in Gram-positive bacteria the constriction may have to overcome a substantial turgor pressure. We address three potential sources of invagination force. (1) FtsZ itself may generate force by curved protofilaments bending the attached membrane. This is sufficient to constrict liposomes in vitro. However, this force is on the order of a few pN, and would not be enough to overcome turgor. (2) Cell wall (CW) synthesis may generate force by pushing the plasma membrane from the outside. However, this would probably require some kind of Brownian ratchet to separate the CW and membrane sufficiently to allow a glycan strand to slip in. The elastic element is not obvious. (3) Excess membrane production has the potential to contribute significantly to the invagination force. If the excess membrane is produced under the CW, it would force the membrane to bleb inward. We propose here that a combination of FtsZ pulling from the inside, and excess membrane pushing membrane inward may generate a substantial constriction force at the division site. This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for CW growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane.
Collapse
Affiliation(s)
- Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
79
|
Ballu S, Itteboina R, Sivan SK, Manga V. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations. J Recept Signal Transduct Res 2018; 38:61-70. [DOI: 10.1080/10799893.2018.1426607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Srilata Ballu
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramesh Itteboina
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sree Kanth Sivan
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Vijjulatha Manga
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
80
|
Huecas S, Ramírez-Aportela E, Vergoñós A, Núñez-Ramírez R, Llorca O, Díaz JF, Juan-Rodríguez D, Oliva MA, Castellen P, Andreu JM. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail. Biophys J 2017; 113:1831-1844. [PMID: 29045877 DOI: 10.1016/j.bpj.2017.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022] Open
Abstract
FtsZ is a self-assembling GTPase that forms, below the inner membrane, the mid-cell Z-ring guiding bacterial division. FtsZ monomers polymerize head to tail forming tubulin-like dynamic protofilaments, whose organization in the Z-ring is an unresolved problem. Rather than forming a well-defined structure, FtsZ protofilaments laterally associate in vitro into polymorphic condensates typically imaged on surfaces. We describe here nanoscale self-organizing properties of FtsZ assemblies in solution that underlie Z-ring assembly, employing time-resolved x-ray scattering and cryo-electron microscopy. We find that FtsZ forms bundles made of loosely bound filaments of variable length and curvature. Individual FtsZ protofilaments further bend upon nucleotide hydrolysis, highlighted by the observation of some large circular structures with 2.5-5° curvature angles between subunits, followed by disassembly end-products consisting of highly curved oligomers and 16-subunit -220 Å diameter mini-rings, here observed by cryo-electron microscopy. Neighbor FtsZ filaments in bundles are laterally spaced 70 Å, leaving a gap in between. In contrast, close contact between filament core structures (∼50 Å spacing) is observed in straight polymers of FtsZ constructs lacking the C-terminal tail, which is known to provide a flexible tether essential for FtsZ functions in cell division. Changing the length of the intrinsically disordered C-tail linker modifies the interfilament spacing. We propose that the linker prevents dynamic FtsZ protofilaments in bundles from sticking to one another, holding them apart at a distance similar to the lateral spacing observed by electron cryotomography in several bacteria and liposomes. According to this model, weak interactions between curved polar FtsZ protofilaments through their the C-tails may facilitate the coherent treadmilling dynamics of membrane-associated FtsZ bundles in reconstituted systems, as well as the recently discovered movement of FtsZ clusters around bacterial Z-rings that is powered by GTP hydrolysis and guides correct septal cell wall synthesis and cell division.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | - Oscar Llorca
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain; Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | | | | | - María A Oliva
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Patricia Castellen
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain; Department of Chemistry, State University of Ponta Grossa, Paraná, Brazil
| | - José M Andreu
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
81
|
Chan KF, Sun N, Yan SC, Wong ILK, Lui HK, Cheung KC, Yuan J, Chan FY, Zheng Z, Chan EWC, Chen S, Leung YC, Chan TH, Wong KY. Efficient Synthesis of Amine-Linked 2,4,6-Trisubstituted Pyrimidines as a New Class of Bacterial FtsZ Inhibitors. ACS OMEGA 2017; 2:7281-7292. [PMID: 30023544 PMCID: PMC6044853 DOI: 10.1021/acsomega.7b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 06/08/2023]
Abstract
We have recently identified a new class of filamenting temperature-sensitive mutant Z (FtsZ)-interacting compounds that possess a 2,4,6-trisubstituted pyrimidine-quinuclidine scaffold with moderate antibacterial activity. Employing this scaffold as a molecular template, a compound library of amine-linked 2,4,6-trisubstituted pyrimidines with 99 candidates was successfully established by employing an efficient convergent synthesis designed to explore their structure-activity relationship. The results of minimum inhibitory concentration (MIC) assay against Staphylococcus aureus strains and cytotoxicity assay against the mouse L929 cell line identified those compounds with potent antistaphylococcal properties (MIC ranges from 3 to 8 μg/mL) and some extent of cytotoxicity against normal cells (IC50 ranges from 6 to 27 μM). Importantly, three compounds also exhibited potent antibacterial activities against nine clinically isolated methicillin-resistant S. aureus (MRSA) strains. One of the compounds, 14av_amine16, exhibited low spontaneous frequency of resistance, low toxicity against Galleria mellonella larvae, and the ability to rescue G. mellonella larvae (20% survival rate at a dosage of 100 mg/kg) infected with a lethal dose of MRSA ATCC 43300 strain. Biological characterization of compound 14av_amine16 by saturation transfer difference NMR, light scattering assay, and guanosine triphosphatase hydrolysis assay with purified S. aureus FtsZ protein verified that it interacted with the FtsZ protein. Such a property of FtsZ inhibitors was further confirmed by observing iconic filamentous cell phenotype and mislocalization of the Z-ring formation of Bacillus subtilis. Taken together, these 2,4,6-trisubstituted pyrimidine derivatives represent a novel scaffold of S. aureus FtsZ inhibitors.
Collapse
Affiliation(s)
- Kin-Fai Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ning Sun
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Siu-Cheong Yan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Iris L K Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Hok-Kiu Lui
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwan-Choi Cheung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jian Yuan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fung-Yi Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Edward W C Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun-Chung Leung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tak Hang Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Kwok-Yin Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
82
|
Tripathy S, Azam MA, Jupudi S, Sahu SK. Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors. J Biomol Struct Dyn 2017; 36:3218-3230. [PMID: 28938860 DOI: 10.1080/07391102.2017.1384401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R2 = .8319), cross validated coefficient (Q2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R2 = .83) and test set (R2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD-ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.
Collapse
Affiliation(s)
- Swayansiddha Tripathy
- a Department of Pharmaceutical Sciences , Utkal University, Vani Vihar , Bhubaneswar 751004 , Odisha , India
| | - Mohammed Afzal Azam
- b Department of Pharmaceutical Chemistry , J.S.S. College of Pharmacy (Constituent College of JSS University, Mysore) , Ooty 643001 , Tamil Nadu , India
| | - Srikanth Jupudi
- b Department of Pharmaceutical Chemistry , J.S.S. College of Pharmacy (Constituent College of JSS University, Mysore) , Ooty 643001 , Tamil Nadu , India
| | - Susanta Kumar Sahu
- a Department of Pharmaceutical Sciences , Utkal University, Vani Vihar , Bhubaneswar 751004 , Odisha , India
| |
Collapse
|
83
|
Mitchell MO. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. J Mol Model 2017; 23:287. [PMID: 28942498 DOI: 10.1007/s00894-017-3452-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023]
Abstract
The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.
Collapse
Affiliation(s)
- Miguel O Mitchell
- American Institutes for Research, 1000 Thomas Jefferson St. NW, Washington, DC, 20007-3835, USA.
| |
Collapse
|
84
|
Fujita J, Maeda Y, Mizohata E, Inoue T, Kaul M, Parhi AK, LaVoie EJ, Pilch DS, Matsumura H. Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem Biol 2017; 12:1947-1955. [PMID: 28621933 PMCID: PMC5705026 DOI: 10.1021/acschembio.7b00323] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S. aureus FtsZ (SaFtsZ) that confer resistance to TXA707 have been observed, with mutations in the Gly196 and Gly193 residues being among the most prevalent. Here, we describe structural studies of an FtsZ inhibitor, TXA6101, which retains activity against MRSA isolates that express either G196S or G193D mutant FtsZ. We present the crystal structures of TXA6101 in complex with both wild-type SaFtsZ and G196S mutant SaFtsZ, as well the crystal structure of TXA707 in complex with wild-type SaFtsZ. Comparison of the three structures reveals a molecular basis for the differential targeting abilities of TXA6101 and TXA707. The greater structural flexibility of TXA6101 relative to TXA707 enables TXA6101 to avoid steric clashes with Ser196 and Asp193. Our structures also demonstrate that the binding of TXA6101 induces previously unobserved conformational rearrangements of SaFtsZ residues in the binding pocket. In aggregate, the structures reported in this work reveal key factors for overcoming drug resistance mutations in SaFtsZ and offer a structural basis for the design of FtsZ inhibitors with enhanced antibacterial potency and reduced susceptibility to mutational resistance.
Collapse
Affiliation(s)
- Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Yoko Maeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ajit K. Parhi
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, NJ, 08852, USA
| | - Edmond J. LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Daniel S. Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Shiga 525-8577, JAPAN
| |
Collapse
|
85
|
Wagstaff JM, Tsim M, Oliva MA, García-Sanchez A, Kureisaite-Ciziene D, Andreu JM, Löwe J. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments. mBio 2017; 8:e00254-17. [PMID: 28465423 PMCID: PMC5414002 DOI: 10.1128/mbio.00254-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ), we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ's conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.IMPORTANCE The FtsZ protein is a key molecule during bacterial cell division. FtsZ forms filaments that organize cell membrane constriction, as well as remodeling of the cell wall, to divide cells. FtsZ functions through nucleotide-driven filament dynamics that are poorly understood at the molecular level. In particular, mechanisms for cooperative assembly (nonlinear dependency on concentration) and treadmilling (preferential growth at one filament end and loss at the other) have remained elusive. Here, we show that most likely all FtsZ proteins have two distinct conformations, a "closed" form in monomeric FtsZ and an "open" form in filaments. The conformational switch that occurs upon polymerization explains cooperativity and, in concert with polymerization-dependent nucleotide hydrolysis, efficient treadmilling of FtsZ polymers.
Collapse
Affiliation(s)
| | - Matthew Tsim
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - María A Oliva
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
86
|
Fujita J, Harada R, Maeda Y, Saito Y, Mizohata E, Inoue T, Shigeta Y, Matsumura H. Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J Struct Biol 2017; 198:65-73. [PMID: 28456664 DOI: 10.1016/j.jsb.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
The tubulin-homolog protein FtsZ is essential for bacterial cell division. FtsZ polymerizes to form protofilaments that assemble into a contractile ring-shaped structure in the presence of GTP. Recent studies showed that FtsZ treadmilling coupled with the GTPase activity drives cell wall synthesis and bacterial cell division. The treadmilling caused by assembly and disassembly of FtsZ links to a conformational change of the monomer from a tense (T) to a relaxed (R) state, but considerable controversy still remains concerning the mechanism. In this study, we report crystal structures of FtsZ from Staphylococcus aureus corresponding to the T and R state conformations in the same crystal, indicating the structural equilibrium of the two state. The two structures identified a key residue Arg29, whose importance was also confirmed by our modified MD simulations. Crystal structures of the R29A mutant showed T and R state-like conformations with slight but important structural changes compared to those of wild-type. Collectively, these data provide new insights for understanding how intramolecular interactions are related to the structural transition of FtsZ.
Collapse
Affiliation(s)
- Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Harada
- Graduate School of Pure and Applied Sciences/Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Yoko Maeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Saito
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences/Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
87
|
Sridevi D, Sudhakar KU, Ananthathatmula R, Nankar RP, Doble M. Mutation at G103 of MtbFtsZ Altered their Sensitivity to Coumarins. Front Microbiol 2017; 8:578. [PMID: 28428773 PMCID: PMC5382161 DOI: 10.3389/fmicb.2017.00578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Coumarins are natural polyphenol lactones comprising of fused rings of benzene and α-pyrone. The current study demonstrates the inhibitory effect of coumarins with various substitutions on Mycobacterium smegmatis mc2 155. We also demonstrate the effect of pomegranate (Punica granatum) extract containing ellagic acid, on M. smegmatis as well as their affect on MtbFtsZ (FtsZ from Mycobacterium tuberculosis). The ellagic acid extracts from pomegranate peels inhibit mycobacteria with a MIC of 25 μM and 0.3 to 3.5 mg/mL, respectively, but failed to inhibit the polymerization of MtbFtsZ. However, the coumarins were shown to inhibit the polymerization and GTPase activity of the protein as well as have an inhibitory affect on M. smegmatis mc2 155. Docking of the most active coumarin (7-Dimethyl-4-methyl coumarin with MIC of 38.7 μM) to the GTP binding site suggests that it interacted with the G103 residue. Based on the docking results two mutants of varying activity (G103S and G103A) were constructed to elucidate the interaction of MtbFtsZ and coumarins. Mutation of G103 with Serine (a bulky group) results in an inactive mutant and substitution with alanine produces a variant that retains most of the activity of the wild type. There is a disruption of the protofilament formation of the MtbFtsZ upon interaction with coumarins as demonstrated by TEM. The coumarins increase the length of Mycobacteria five times and MtbFtsZ localization is disturbed. The mutant proteins altered the GTPase and polymerization activity of coumarins as compared to wild type protein. The results here support that coumarins inhibit proliferation of Mycobacteria by targeting the assembly of MtbFtsZ and provide the possible binding site of coumarins on MtbFtsZ. This study may aid in the design of natural products as anti-mycobacterial agents. The currently reported GTP analogs for FtsZ are toxic to the human cell lines; natural coumarins targeting the GTP binding site of MtbFtsZ may hold promise as an important drug lead for tuberculosis treatment.
Collapse
Affiliation(s)
- Duggirala Sridevi
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Karpagam U Sudhakar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Ragamanvitha Ananthathatmula
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Rakesh P Nankar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology MadrasChennai, India
| |
Collapse
|
88
|
Matsui T, Lallo S, Nisa K, Morita H. Filamenting temperature-sensitive mutant Z inhibitors from Glycyrrhiza glabra and their inhibitory mode of action. Bioorg Med Chem Lett 2017; 27:1420-1424. [DOI: 10.1016/j.bmcl.2017.01.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
89
|
Chen Y, Porter K, Osawa M, Augustus AM, Milam SL, Joshi C, Osteryoung KW, Erickson HP. The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments. J Biol Chem 2017; 292:5207-5215. [PMID: 28174299 DOI: 10.1074/jbc.m116.767715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/06/2017] [Indexed: 01/09/2023] Open
Abstract
FtsZ is a homolog of eukaryotic tubulin and is present in almost all bacteria and many archaea, where it is the major cytoskeletal protein in the Z ring, required for cell division. Unlike some other cell organelles of prokaryotic origin, chloroplasts have retained FtsZ as an essential component of the division machinery. However, chloroplast FtsZs have been challenging to study because they are difficult to express and purify. To this end, we have used a FATT tag expression system to produce as soluble proteins the two chloroplast FtsZs from Galdieria sulphuraria, a thermophilic red alga. GsFtsZA and GsFtsZB assembled individually in the presence of GTP, forming large bundles of protofilaments. GsFtsZA also assembled in the presence of GDP, the first member of the FtsZ/tubulin superfamily to do so. Mixtures of GsFtsZA and GsFtsZB assembled protofilament bundles and hydrolyzed GTP at a rate approximately equal to the sum of their individual rates, suggesting a random co-assembly. GsFtsZA assembly by itself in limiting GTP gave polymers that remained stable for a prolonged time. However, when GsFtsZB was added, the co-polymers disassembled with enhanced kinetics, suggesting that the GsFtsZB regulates and enhances disassembly dynamics. GsFtsZA-mts (where mts is a membrane-targeting amphipathic helix) formed Z ring-like helices when expressed in Escherichia coli Co-expression of GsFtsZB (without an mts) gave co-assembly of both into similar helices. In summary, we provide biochemical evidence that GsFtsZA assembles as the primary scaffold of the chloroplast Z ring and that GsFtsZB co-assembly enhances polymer disassembly and dynamics.
Collapse
Affiliation(s)
- Yaodong Chen
- From the College of Life Science, Northwest University, Xi'an, ShaanXi, China 710069.,the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Katie Porter
- the Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312
| | - Masaki Osawa
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Anne Marie Augustus
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Sara L Milam
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Chandra Joshi
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Katherine W Osteryoung
- the Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312
| | - Harold P Erickson
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| |
Collapse
|
90
|
Saeloh D, Wenzel M, Rungrotmongkol T, Hamoen LW, Tipmanee V, Voravuthikunchai SP. Effects of rhodomyrtone on Gram-positive bacterial tubulin homologue FtsZ. PeerJ 2017; 5:e2962. [PMID: 28168121 PMCID: PMC5292029 DOI: 10.7717/peerj.2962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Rhodomyrtone, a natural antimicrobial compound, displays potent activity against many Gram-positive pathogenic bacteria, comparable to last-defence antibiotics including vancomycin and daptomycin. Our previous studies pointed towards effects of rhodomyrtone on the bacterial membrane and cell wall. In addition, a recent molecular docking study suggested that the compound could competitively bind to the main bacterial cell division protein FtsZ. In this study, we applied a computational approach (in silico), in vitro, and in vivo experiments to investigate molecular interactions of rhodomyrtone with FtsZ. Using molecular simulation, FtsZ conformational changes were observed in both (S)- and (R)-rhodomyrtone binding states, compared with the three natural states of FtsZ (ligand-free, GDP-, and GTP-binding states). Calculations of free binding energy showed a higher affinity of FtsZ to (S)-rhodomyrtone (−35.92 ± 0.36 kcal mol−1) than the GDP substrate (−23.47 ± 0.25 kcal mol−1) while less affinity was observed in the case of (R)-rhodomyrtone (−18.11 ± 0.11 kcal mol−1). In vitro experiments further revealed that rhodomyrtone reduced FtsZ polymerization by 36% and inhibited GTPase activity by up to 45%. However, the compound had no effect on FtsZ localization in Bacillus subtilis at inhibitory concentrations and cells also did not elongate after treatment. Higher concentrations of rhodomyrtone did affect localization of FtsZ and also affected localization of its membrane anchor proteins FtsA and SepF, showing that the compound did not specifically inhibit FtsZ but rather impaired multiple divisome proteins. Furthermore, a number of cells adopted a bean-like shape suggesting that rhodomyrtone possibly possesses further targets involved in cell envelope synthesis and/or maintenance.
Collapse
Affiliation(s)
- Dennapa Saeloh
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Michaela Wenzel
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam , Netherlands
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Center of Innovative Nanotechnology, Chulalongkorn University, Bongkok, Thailand
| | - Leendert Willem Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam , Netherlands
| | - Varomyalin Tipmanee
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand; Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
91
|
Artola M, Ruíz-Avila LB, Ramírez-Aportela E, Martínez RF, Araujo-Bazán L, Vázquez-Villa H, Martín-Fontecha M, Oliva MA, Martín-Galiano AJ, Chacón P, López-Rodríguez ML, Andreu JM, Huecas S. The structural assembly switch of cell division protein FtsZ probed with fluorescent allosteric inhibitors. Chem Sci 2017; 8:1525-1534. [PMID: 28616148 PMCID: PMC5460597 DOI: 10.1039/c6sc03792e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022] Open
Abstract
FtsZ is a widely conserved tubulin-like GTPase that directs bacterial cell division and a new target for antibiotic discovery. This protein assembly machine cooperatively polymerizes forming single-stranded filaments, by means of self-switching between inactive and actively associating monomer conformations. The structural switch mechanism was proposed to involve a movement of the C-terminal and N-terminal FtsZ domains, opening a cleft between them, allosterically coupled to the formation of a tight association interface between consecutive subunits along the filament. The effective antibacterial benzamide PC190723 binds into the open interdomain cleft and stabilizes FtsZ filaments, thus impairing correct formation of the FtsZ ring for cell division. We have designed fluorescent analogs of PC190723 to probe the FtsZ structural assembly switch. Among them, nitrobenzoxadiazole probes specifically bind to assembled FtsZ rather than to monomers. Probes with several spacer lengths between the fluorophore and benzamide moieties suggest a binding site extension along the interdomain cleft. These probes label FtsZ rings of live Bacillus subtilis and Staphylococcus aureus, without apparently modifying normal cell morphology and growth, but at high concentrations they induce impaired bacterial division phenotypes typical of benzamide antibacterials. During the FtsZ assembly-disassembly process, the fluorescence anisotropy of the probes changes upon binding and dissociating from FtsZ, thus reporting open and closed FtsZ interdomain clefts. Our results demonstrate the structural mechanism of the FtsZ assembly switch, and suggest that the probes bind into the open clefts in cellular FtsZ polymers preferably to unassembled FtsZ in the bacterial cytosol.
Collapse
Affiliation(s)
- Marta Artola
- Dept. Química Orgánica I , Facultad de Ciencias Químicas , UCM , 28040 Madrid , Spain
| | - Laura B Ruíz-Avila
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
| | - Erney Ramírez-Aportela
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
- Instituto de Química-Física Rocasolano , CSIC , Serrano 119 , 20006 Madrid , Spain
| | - R Fernando Martínez
- Dept. Química Orgánica I , Facultad de Ciencias Químicas , UCM , 28040 Madrid , Spain
| | - Lidia Araujo-Bazán
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
| | - Henar Vázquez-Villa
- Dept. Química Orgánica I , Facultad de Ciencias Químicas , UCM , 28040 Madrid , Spain
| | - Mar Martín-Fontecha
- Dept. Química Orgánica I , Facultad de Ciencias Químicas , UCM , 28040 Madrid , Spain
| | - María A Oliva
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
| | | | - Pablo Chacón
- Instituto de Química-Física Rocasolano , CSIC , Serrano 119 , 20006 Madrid , Spain
| | | | - José M Andreu
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
| | - Sonia Huecas
- Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain . ;
| |
Collapse
|
92
|
Design, synthesis and biological activity evaluation of novel 2,6-difluorobenzamide derivatives through FtsZ inhibition. Bioorg Med Chem Lett 2017; 27:958-962. [DOI: 10.1016/j.bmcl.2016.12.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
|
93
|
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of mechanisms of antibiotic action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow appropriately reacting to the presence of antimicrobial agents, ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, we need to explore new, resistance-breaking strategies to counteract bacterial infections. This chapter intends to give an overview of common antibiotics and their target pathways. It will also discuss recent advances in finding new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
94
|
Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins. J Bacteriol 2016; 199:JB.00553-16. [PMID: 27795325 DOI: 10.1128/jb.00553-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a "Z ring" at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ by inserting either small peptides or whole fluorescent proteins (FPs). Among the four lateral surfaces on FtsZ protofilaments, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174, located on the left and right surfaces, completely blocked function, and these sites were identified as possible sites for essential lateral interactions. However, the insert at R174 did not interfere with association of protofilaments into sheets and bundles in vitro Another goal was to find a location within FtsZ that supported insertion of FP reporter proteins while allowing the FtsZ-FPs to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by superresolution techniques. IMPORTANCE One model for the Z-ring structure proposes that protofilaments are assembled into ribbons by lateral bonds between FtsZ subunits. Our study excluded the involvement of the front and back faces of the protofilament in essential interactions in vivo but pointed to two potential lateral bond sites, on the right and left sides. We also identified an FtsZ loop where various fluorescent proteins could be inserted without blocking function; these FtsZ-FPs functioned as the sole source of FtsZ. This advance provides improved tools for all fluorescence imaging of the Z ring and may be especially important for superresolution imaging.
Collapse
|
95
|
Antibacterial Action of Curcumin against Staphylococcus aureus: A Brief Review. J Trop Med 2016; 2016:2853045. [PMID: 27956904 PMCID: PMC5124450 DOI: 10.1155/2016/2853045] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Curcumin, the major constituent of Curcuma longa L. (Zingiberaceae family) or turmeric, commonly used for cooking in Asian cuisine, is known to possess a broad range of pharmacological properties at relatively nontoxic doses. Curcumin is found to be effective against Staphylococcus aureus (S. aureus). As demonstrated by in vitro experiment, curcumin exerts even more potent effects when used in combination with various other antibacterial agents. Hence, curcumin which is a natural product derived from plant is believed to have profound medicinal benefits and could be potentially developed into a naturally derived antibiotic in the future. However, there are several noteworthy challenges in the development of curcumin as a medicine. S. aureus infections, particularly those caused by the multidrug-resistant strains, have emerged as a global health issue and urgent action is needed. This review focuses on the antibacterial activities of curcumin against both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We also attempt to highlight the potential challenges in the effort of developing curcumin into a therapeutic antibacterial agent.
Collapse
|
96
|
Exploring the possible binding mode of trisubstituted benzimidazoles analogues in silico for novel drug designtargeting Mtb FtsZ. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1734-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Araújo-Bazán L, Ruiz-Avila LB, Andreu D, Huecas S, Andreu JM. Cytological Profile of Antibacterial FtsZ Inhibitors and Synthetic Peptide MciZ. Front Microbiol 2016; 7:1558. [PMID: 27752253 PMCID: PMC5045927 DOI: 10.3389/fmicb.2016.01558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division.
Collapse
Affiliation(s)
- Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Laura B Ruiz-Avila
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Sonia Huecas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Andreu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
98
|
Dhaked HPS, Bhattacharya A, Yadav S, Dantu SC, Kumar A, Panda D. Mutation of Arg191 in FtsZ Impairs Cytokinetic Abscission of Bacillus subtilis Cells. Biochemistry 2016; 55:5754-5763. [DOI: 10.1021/acs.biochem.6b00493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hemendra Pal Singh Dhaked
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anusri Bhattacharya
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saroj Yadav
- IITB-Monash
Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sarath Chandra Dantu
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ashutosh Kumar
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
99
|
Abstract
A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.
Collapse
|
100
|
Duggirala S, Napoleon JV, Nankar RP, Senu Adeeba V, Manheri MK, Doble M. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. Eur J Med Chem 2016; 123:557-567. [PMID: 27517804 DOI: 10.1016/j.ejmech.2016.07.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
The dual effect of FtsZ inhibition and oxidative stress by a group of 1,2-dihydroquinolines that culminate in bactericidal effect on mycobacterium strains is demonstrated. They inhibited the non-pathogenic Mycobacterium smegmatis mc(2) 155 with MIC as low as 0.9 μg/mL and induced filamentation. Detailed studies revealed their ability to inhibit polymerization and GTPase activity of MtbFtsZ (Mycobacterial filamentous temperature sensitive Z) with an IC50 value of ∼40 μM. In addition to such target specific effects, these compounds exerted a global cellular effect by causing redox-imbalance that was evident from overproduction of ROS in treated cells. Such multi-targeting effect with one chemical scaffold has considerable significance in this era of emerging drug resistance and could offer promise in the development of new therapeutic agents against tuberculosis.
Collapse
Affiliation(s)
- Sridevi Duggirala
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - John Victor Napoleon
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Rakesh P Nankar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - V Senu Adeeba
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|