51
|
Abstract
Next-generation synchrotron radiation sources, such as X-ray free-electron lasers, energy recovery linacs, and ultra-low-emittance storage rings, are catalyzing novel methods of biomolecular microcrystallography and solution scattering. These methods are described and future trends are predicted. Importantly, there is a growing realization that serial microcrystallography and certain cutting-edge solution scattering experiments can be performed at existing storage ring sources by utilizing new technology. In this sense, next-generation sources are serving two distinct functions, namely, provision of new capabilities that require the newer sources and inspiration of new methods that can be performed at existing sources.
Collapse
|
52
|
Abstract
Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.
Collapse
|
53
|
Garman EF. Developments in x-ray crystallographic structure determination of biological macromolecules. Science 2014; 343:1102-8. [PMID: 24604194 DOI: 10.1126/science.1247829] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The three-dimensional structures of large biomolecules important in the function and mechanistic pathways of all living systems and viruses can be determined by x-ray diffraction from crystals of these molecules and their complexes. This area of crystallography is continually expanding and evolving, and the introduction of new methods that use the latest technology is allowing the elucidation of ever larger and more complex biological systems, which are now becoming tractable to structure solution. This review looks back at what has been achieved and forward at how current and future developments may allow technical challenges to be overcome.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
54
|
Murphy BM, Greve M, Runge B, Koops CT, Elsen A, Stettner J, Seeck OH, Magnussen OM. A novel X-ray diffractometer for studies of liquid-liquid interfaces. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:45-56. [PMID: 24365915 DOI: 10.1107/s1600577513026192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/22/2013] [Indexed: 06/03/2023]
Abstract
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Collapse
Affiliation(s)
- Bridget M Murphy
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Matthais Greve
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Christian T Koops
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Annika Elsen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Jochim Stettner
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Oliver H Seeck
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| |
Collapse
|
55
|
|
56
|
Allan EG, Kander MC, Carmichael I, Garman EF. To scavenge or not to scavenge, that is STILL the question. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:23-36. [PMID: 23254653 PMCID: PMC3526919 DOI: 10.1107/s0909049512046237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/08/2012] [Indexed: 05/23/2023]
Abstract
An extensive radiation chemistry literature would suggest that the addition of certain radical scavengers might mitigate the effects of radiation damage during protein crystallography diffraction data collection. However, attempts to demonstrate and quantify such an amelioration and its dose dependence have not yielded consistent results, either at room temperature (RT) or 100 K. Here the information thus far available is summarized and reasons for this lack of quantitative success are identified. Firstly, several different metrics have been used to monitor and quantify the rate of damage, and, as shown here, these can give results which are in conflict regarding scavenger efficacy. In addition, significant variation in results from data collected from crystals treated in nominally the same way has been observed. Secondly, typical crystallization conditions contain substantial concentrations of chemical species which already interact strongly with some of the X-ray-induced radicals that the added scavengers are intended to intercept. These interactions are probed here by the complementary technique of on-line microspectrophotometry carried out on solutions and crystals held both at 100 K and RT, the latter enabled by the use of a beamline-mounted humidifying device. With the help of computational chemistry, attempts are made to assign some of the characteristic spectral features observed experimentally. A further source of uncertainty undoubtedly lies in the challenge of reliably measuring the parameters necessary for the accurate calculation of the absorbed dose (e.g. crystal size and shape, beam profile) and its distribution within the volume of the crystal (an issue addressed in detail in another article in this issue). While microspectrophotometry reveals that the production of various species can be quenched by the addition of scavengers, it is less clear that this observation can be translated into a significant gain in crystal dose tolerance for macromolecular crystallographers.
Collapse
Affiliation(s)
- Elizabeth G. Allan
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Melissa C. Kander
- Notre Dame Radiation Laboratory, and Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | - Ian Carmichael
- Notre Dame Radiation Laboratory, and Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
57
|
Leal RMF, Bourenkov G, Russi S, Popov AN. A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:14-22. [PMID: 23254652 PMCID: PMC3943537 DOI: 10.1107/s0909049512049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/29/2012] [Indexed: 05/11/2023]
Abstract
The radiation damage rates to crystals of 15 model macromolecular structures were studied using an automated radiation sensitivity characterization procedure. The diffracted intensity variation with dose is described by a two-parameter model. This model includes a strong resolution-independent decay specific to room-temperature measurements along with a linear increase in overall Debye-Waller factors. An equivalent representation of sensitivity via a single parameter, normalized half-dose, is introduced. This parameter varies by an order of magnitude between the different structures studied. The data show a correlation of crystal radiation sensitivity with crystal solvent content but no dose-rate dependency was detected in the range 0.05-300 kGy s(-1). The results of the crystal characterization are suitable for either optimal planning of room-temperature data collection or in situ crystallization plate screening experiments.
Collapse
Affiliation(s)
| | - Gleb Bourenkov
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85b, Hamburg 22607, Germany
| | | | | |
Collapse
|
58
|
Warkentin M, Hopkins JB, Badeau R, Mulichak AM, Keefe LJ, Thorne RE. Global radiation damage: temperature dependence, time dependence and how to outrun it. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:7-13. [PMID: 23254651 PMCID: PMC3526918 DOI: 10.1107/s0909049512048303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/25/2012] [Indexed: 05/22/2023]
Abstract
A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.
Collapse
Affiliation(s)
| | | | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - Lisa J. Keefe
- IMCA-CAT, Argonne National Laboratory, Argonne, IL 60439, USA
| | | |
Collapse
|
59
|
Glaeser RM. Electron microscopy of biological specimens in liquid water. Biophys J 2012; 103:163-4; author reply 165-6. [PMID: 22828343 DOI: 10.1016/j.bpj.2012.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/13/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022] Open
|
60
|
Imamura T, Ishizuka O, Lei Z, Hida S, Sudha GS, Kato H, Nishizawa O. Bone Marrow-Derived Cells Implanted into Radiation-Injured Urinary Bladders Reconstruct Functional Bladder Tissues in Rats. Tissue Eng Part A 2012; 18:1698-709. [DOI: 10.1089/ten.tea.2012.0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tetsuya Imamura
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Ishizuka
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Zhang Lei
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Shigeaki Hida
- Department of Molecular Oncology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Nagano, Japan
| | | | - Haruaki Kato
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Nishizawa
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
61
|
Richards GD, Jabbour RS, Horton CF, Ibarra CL, MacDowell AA. Color changes in modern and fossil teeth induced by synchrotron microtomography. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:172-80. [DOI: 10.1002/ajpa.22103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/07/2012] [Indexed: 11/11/2022]
|
62
|
De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:564-77. [PMID: 22525754 PMCID: PMC3335286 DOI: 10.1107/s0907444912005343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 02/20/2023]
Abstract
X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O(2). In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV-Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O(2) reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.
Collapse
Affiliation(s)
- Eugenio De la Mora
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Janet E. Lovett
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
- EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland
| | - Christopher F. Blanford
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England
- School of Materials, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, England
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Brenda Valderrama
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Enrique Rudino-Pinera
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
63
|
Warkentin M, Badeau R, Hopkins JB, Mulichak AM, Keefe LJ, Thorne RE. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:124-33. [PMID: 22281741 DOI: 10.1107/s0907444911052085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022]
Abstract
Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s⁻¹. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s⁻¹ can be outrun by collecting data at 680 kGy s⁻¹. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.
Collapse
|
64
|
|
65
|
Kmetko J, Warkentin M, Englich U, Thorne RE. Can radiation damage to protein crystals be reduced using small-molecule compounds? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:881-93. [PMID: 21931220 PMCID: PMC3176623 DOI: 10.1107/s0907444911032835] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/12/2011] [Indexed: 11/10/2022]
Abstract
Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T=100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.
Collapse
Affiliation(s)
- Jan Kmetko
- Physics Department, Kenyon College, Gambier, OH 43022, USA
| | | | - Ulrich Englich
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
66
|
Koch C, Heine A, Klebe G. Radiation damage reveals promising interaction position. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:782-789. [PMID: 21862860 DOI: 10.1107/s0909049511027920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
High-resolution structural data of protein inhibitor complexes are the key to rational drug design. Synchrotron radiation allows for atomic resolutions but is frequently accompanied by radiation damage to protein complexes. In this study a human aldose reductase mutant complexed with a bromine-substituted inhibitor was determined to atomic resolution [Protein Data Bank (PDB) code 3onc]. Though the radiation dose was moderate, a selective disruption of a bromine-inhibitor bond during the experiment was observed while the protein appears unaffected. A covalent bond to bromine is cleaved and the displaced atom is not scattered throughout the crystal but can most likely be assigned as a bromide to an additional difference electron density peak observed in the structure. The bromide relocates to an adjacent unoccupied site where promising interactions to protein residues stabilize its position. These findings were verified by a second similar structure determined with considerably higher radiation dose (PDB code 3onb).
Collapse
|
67
|
Warkentin M, Badeau R, Hopkins J, Thorne RE. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:792-803. [PMID: 21904032 PMCID: PMC3169314 DOI: 10.1107/s0907444911027600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/09/2011] [Indexed: 11/11/2022]
Abstract
Can radiation damage to protein crystals be `outrun' by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, `dark progression' (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol(-1). This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range.
Collapse
Affiliation(s)
| | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Hopkins
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
68
|
Paithankar KS, Sørensen HO, Wright JP, Schmidt S, Poulsen HF, Garman EF. Simultaneous X-ray diffraction from multiple single crystals of macromolecules. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:608-18. [DOI: 10.1107/s0907444911015617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
|
69
|
De la Mora E, Carmichael I, Garman EF. Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:346-57. [PMID: 21525642 DOI: 10.1107/s0909049511007163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/24/2011] [Indexed: 05/21/2023]
Abstract
The rate of radiation damage to macromolecular crystals at both room temperature and 100 K has previously been shown to be reduced by the use of certain radical scavengers. Here the effects of sodium nitrate, an electron scavenger, are investigated at 100 K. For sodium nitrate at a concentration of 0.5 M in chicken egg-white lysozyme crystals, the dose tolerance is increased by a factor of two as judged from the global damage parameters, and no specific structural damage to the disulfide bonds is seen until the dose is greatly in excess (more than a factor of five) of the value at which damage appears in electron density maps derived from a scavenger-free crystal. In the electron density maps, ordered nitrate ions adjacent to the disulfide bonds are seen to lose an O atom, and appear to protect the disulfide bonds. In addition, results reinforcing previous reports on the effectiveness of ascorbate are presented. The mechanisms of action of both scavengers in the crystalline environment are elucidated.
Collapse
Affiliation(s)
- Eugenio De la Mora
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
70
|
Rajendran C, Dworkowski FSN, Wang M, Schulze-Briese C. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:318-28. [PMID: 21525639 PMCID: PMC3133521 DOI: 10.1107/s090904951100968x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/14/2011] [Indexed: 05/20/2023]
Abstract
The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.
Collapse
Affiliation(s)
- Chitra Rajendran
- Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
| | | | | | | |
Collapse
|
71
|
Liu Q, Zhang Z, Hendrickson WA. Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:45-59. [PMID: 21206061 PMCID: PMC3016016 DOI: 10.1107/s0907444910046573] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/10/2010] [Indexed: 11/10/2022]
Abstract
Multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) are the two most commonly used methods for de novo determination of macromolecular structures. Both methods rely on the accurate extraction of anomalous signals; however, because of factors such as poor intrinsic order, radiation damage, inadequate anomalous scatterers, poor diffraction quality and other noise-causing factors, the anomalous signal from a single crystal is not always good enough for structure solution. In this study, procedures for extracting more accurate anomalous signals by merging data from multiple crystals are devised and tested. SAD phasing tests were made with a relatively large (1456 ordered residues) poorly diffracting (d(min) = 3.5 Å) selenomethionyl protein (20 Se). It is quantified that the anomalous signal, success in substructure determination and accuracy of phases and electron-density maps all improve with an increase in the number of crystals used in merging. Structure solutions are possible when no single crystal can support structural analysis. It is proposed that such multi-crystal strategies may be broadly useful when only weak anomalous signals are available.
Collapse
Affiliation(s)
- Qun Liu
- New York Structural Biology Center, NSLS X4, Building 725, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A. Hendrickson
- New York Structural Biology Center, NSLS X4, Building 725, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
72
|
Duke EMH, Johnson LN. Macromolecular crystallography at synchrotron radiation sources: current status and future developments. Proc Math Phys Eng Sci 2010. [DOI: 10.1098/rspa.2010.0448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X-ray diffraction with synchrotron radiation (SR) has revealed the atomic structures of numerous biological macromolecules including proteins and protein complexes, nucleic acids and their protein complexes, viruses, membrane proteins and drug targets. The bright SR X-ray beam with its small divergence has made the study of weakly diffracting crystals of large biological molecules possible. The ability to tune the wavelength of the SR beam to the absorption edge of certain elements has allowed anomalous scattering to be exploited for phase determination. We review the developments at synchrotron sources and beamlines from the early days to the present time, and discuss the significance of the results in providing a deeper understanding of the biological function, the design of new therapeutic molecules and time-resolved studies of dynamic events using pump–probe techniques. Radiation damage, a problem with bright X-ray sources, has been partially alleviated by collecting data at low temperature (100 K) but work is ongoing. In the most recent development, free electron laser sources can offer a peak brightness of hard X-rays approximately 10
8
times brighter than that achieved at SR sources. We describe briefly how early experiments at FLASH and Linear Coherent Light Source have shown exciting possibilities for the future.
Collapse
Affiliation(s)
- E. M. H. Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - L. N. Johnson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
73
|
Warkentin M, Thorne RE. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1092-100. [PMID: 20944242 PMCID: PMC2954455 DOI: 10.1107/s0907444910035523] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/03/2010] [Indexed: 11/10/2022]
Abstract
The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.
Collapse
|
74
|
Petrova T, Ginell S, Mitschler A, Kim Y, Lunin VY, Joachimiak G, Cousido-Siah A, Hazemann I, Podjarny A, Lazarski K, Joachimiak A. X-ray-induced deterioration of disulfide bridges at atomic resolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1075-91. [PMID: 20944241 DOI: 10.1107/s0907444910033986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/23/2010] [Indexed: 11/10/2022]
Abstract
Overall and site-specific X-ray-induced damage to porcine pancreatic elastase was studied at atomic resolution at temperatures of 100 and 15 K. The experiments confirmed that irradiation causes small movements of protein domains and bound water molecules in protein crystals. These structural changes occur not only at 100 K but also at temperatures as low as 15 K. An investigation of the deterioration of disulfide bridges demonstrated the following. (i) A decrease in the occupancy of S(γ) atoms and the appearance of new cysteine rotamers occur simultaneously. (ii) The occupancy decrease is observed for all S(γ) atoms, while new rotamers arise for some of the cysteine residues; the appearance of new conformations correlates with the accessibility to solvent. (iii) The sum of the occupancies of the initial and new conformations of a cysteine residue is approximately equal to the occupancy of the second cysteine residue in the bridge. (iv) The most pronounced changes occur at doses below 1.4 × 10(7) Gy, with only small changes occurring at higher doses. Comparison of the radiation-induced changes in an elastase crystal at 100 and 15 K suggested that the dose needed to induce a similar level of deterioration of the disulfide bonds and atomic displacements at 15 K to those seen at 100 K is more than two times higher.
Collapse
Affiliation(s)
- Tatiana Petrova
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Paithankar KS, Garman EF. Know your dose: RADDOSE. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:381-8. [PMID: 20382991 PMCID: PMC2852302 DOI: 10.1107/s0907444910006724] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/22/2010] [Indexed: 11/10/2022]
Abstract
The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter 'diffraction-dose efficiency', which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals.
Collapse
Affiliation(s)
- Karthik S Paithankar
- Department of Biochemistry, Laboratory of Molecular Biophysics, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | | |
Collapse
|
76
|
Garman EF. Radiation damage in macromolecular crystallography: what is it and why should we care? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:339-51. [PMID: 20382986 PMCID: PMC2852297 DOI: 10.1107/s0907444910008656] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/06/2010] [Indexed: 11/10/2022]
Abstract
Radiation damage inflicted during diffraction data collection in macromolecular crystallography has re-emerged in the last decade as a major experimental and computational challenge, as even for crystals held at 100 K it can result in severe data-quality degradation and the appearance in solved structures of artefacts which affect biological interpretations. Here, the observable symptoms and basic physical processes involved in radiation damage are described and the concept of absorbed dose as the basic metric against which to monitor the experimentally observed changes is outlined. Investigations into radiation damage in macromolecular crystallography are ongoing and the number of studies is rapidly increasing. The current literature on the subject is compiled as a resource for the interested researcher.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.
| |
Collapse
|
77
|
Weik M, Colletier JP. Temperature-dependent macromolecular X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:437-46. [PMID: 20382997 PMCID: PMC2852308 DOI: 10.1107/s0907444910002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.
Collapse
Affiliation(s)
- Martin Weik
- CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble, France.
| | | |
Collapse
|
78
|
Takeda K, Kusumoto K, Hirano Y, Miki K. Detailed assessment of X-ray induced structural perturbation in a crystalline state protein. J Struct Biol 2010; 169:135-44. [DOI: 10.1016/j.jsb.2009.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/14/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
79
|
Cornaby S, Szebenyi DME, Smilgies DM, Schuller DJ, Gillilan R, Hao Q, Bilderback DH. Feasibility of one-shot-per-crystal structure determination using Laue diffraction. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:2-11. [PMID: 20057043 PMCID: PMC2803125 DOI: 10.1107/s0907444909037731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/17/2009] [Indexed: 11/10/2022]
Abstract
Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a 'pink' beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20-30 microm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.
Collapse
Affiliation(s)
- Sterling Cornaby
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| | - Doletha M. E. Szebenyi
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Detlef-M. Smilgies
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| | - David J. Schuller
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Richard Gillilan
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Quan Hao
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Donald H. Bilderback
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| |
Collapse
|
80
|
Howells MR, Beetz T, Chapman HN, Cui C, Holton JM, Jacobsen CJ, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro DA, Spence JCH, Starodub D. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA 2009; 170:4-12. [PMID: 20463854 PMCID: PMC2867487 DOI: 10.1016/j.elspec.2008.10.008] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.
Collapse
Affiliation(s)
- M. R. Howells
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
| | - T. Beetz
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - H. N. Chapman
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA
| | - C. Cui
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
| | - J. M. Holton
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
| | - C. J. Jacobsen
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - J. Kirz
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - E. Lima
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - S. Marchesini
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
| | - H. Miao
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - D. Sayre
- Department of Physics, State University of New York, Stony Brook, NY 11794, USA
| | - D. A. Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
| | - J. C. H. Spence
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 USA
- Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA
| | - D. Starodub
- Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
81
|
Mancuso AP, Schropp A, Reime B, Stadler LM, Singer A, Gulden J, Streit-Nierobisch S, Gutt C, Grübel G, Feldhaus J, Staier F, Barth R, Rosenhahn A, Grunze M, Nisius T, Wilhein T, Stickler D, Stillrich H, Frömter R, Oepen HP, Martins M, Pfau B, Günther CM, Könnecke R, Eisebitt S, Faatz B, Guerassimova N, Honkavaara K, Kocharyan V, Treusch R, Saldin E, Schreiber S, Schneidmiller EA, Yurkov MV, Weckert E, Vartanyants IA. Coherent-pulse 2D crystallography using a free-electron laser x-ray source. PHYSICAL REVIEW LETTERS 2009; 102:035502. [PMID: 19257367 DOI: 10.1103/physrevlett.102.035502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 05/27/2023]
Abstract
Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.
Collapse
Affiliation(s)
- A P Mancuso
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Southworth-Davies RJ, Medina MA, Carmichael I, Garman EF. Observation of Decreased Radiation Damage at Higher Dose Rates in Room Temperature Protein Crystallography. Structure 2007; 15:1531-41. [DOI: 10.1016/j.str.2007.10.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/04/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
83
|
Besnard C, Camus F, Fleurant M, Dahlström A, Wright JP, Margiolaki I, Pattison P, Schiltz M. Exploiting X-ray induced anisotropic lattice changes to improve intensity extraction in protein powder diffraction: Application to heavy atom detection. ACTA ACUST UNITED AC 2007. [DOI: 10.1524/zksu.2007.2007.suppl_26.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Viola R, Carman P, Walsh J, Frankel D, Rupp B. Automated robotic harvesting of protein crystals-addressing a critical bottleneck or instrumentation overkill? ACTA ACUST UNITED AC 2007; 8:145-52. [PMID: 17965947 DOI: 10.1007/s10969-007-9031-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/09/2007] [Indexed: 11/30/2022]
Abstract
One of the critical steps in high throughput crystallography that so far has evaded automation is the actual harvesting of the delicate crystals from the mother liquor in which they are growing. The late-stage operation of harvesting is presently a most risky and loss-intensive procedure, compounded by its tight integration with the critical steps of cryo-protection and cryo-quenching. Recent advances in micromanipulation robotics and micro-fabrication have made it possible to seriously consider automation of protein crystal harvesting. Based on the experience gained during the development of an operator-assisted (and now operator-assisting) universal micromanipulation robot (UMR) prototype, we discuss the challenges ahead for the design of a fully autonomous, integrated system capable of the reliable harvesting of protein microcrystals. Experience from participation in NIH structural genomics projects and feedback from bottleneck workshops indicates that genuine demand exists in the high throughput community as well as in pharmaceutical production pipelines, justifying the effort and resources to develop autonomous harvesting robotics.
Collapse
Affiliation(s)
- Robert Viola
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | | | | | | | | |
Collapse
|
85
|
Beukes JA, Mo F, van Beek W. X-Ray induced radiation damage in taurine: a combined X-ray diffraction and Raman study. Phys Chem Chem Phys 2007; 9:4709-20. [PMID: 17700872 DOI: 10.1039/b703000b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of X-radiation on crystalline taurine has been investigated by time resolved synchrotron X-ray powder and single crystal diffraction and Raman spectroscopy. Multiple data sets have been collected at 120 and 296 K. All the observed effects of radiation, i.e. broadening and shifts of Raman and diffraction lines, a dose dependent irreversible increase in the atomic displacement parameters (ADPs) as well as in one of the unit-cell axes, and an apparent enhancement of electron density in the SO(3) group can be tentatively attributed to primary radical formation predominantly involving the SO(3) group. In secondary reactions molecular species that are distinct from taurine are created in minute quantities, thereby introducing local departure from crystalline order, i.e. enhanced static disorder and a build-up of local strain. Our study provides evidence for ascribing the linear increase in ADPs as well as the expansion of the c axis to the accumulation of foreign species in the crystal, and not to a thermal effect. Once initiated, this process appears to continue also without radiation, however, then at a much reduced rate.
Collapse
Affiliation(s)
- J A Beukes
- Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
| | | | | |
Collapse
|
86
|
Viola R, Carman P, Walsh J, Miller E, Benning M, Frankel D, McPherson A, Cudney B, Rupp B. Operator-assisted harvesting of protein crystals using a universal micromanipulation robot. J Appl Crystallogr 2007; 40:539-545. [PMID: 19461845 PMCID: PMC2483483 DOI: 10.1107/s0021889807012149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 03/14/2007] [Indexed: 11/10/2022] Open
Abstract
High-throughput crystallography has reached a level of automation where complete computer-assisted robotic crystallization pipelines are capable of cocktail preparation, crystallization plate setup, and inspection and interpretation of results. While mounting of crystal pins, data collection and structure solution are highly automated, crystal harvesting and cryocooling remain formidable challenges towards full automation. To address the final frontier in achieving fully automated high-throughput crystallography, the prototype of an anthropomorphic six-axis universal micromanipulation robot (UMR) has been designed and tested; this UMR is capable of operator-assisted harvesting and cryoquenching of protein crystals as small as 10 microm from a variety of 96-well plates. The UMR is equipped with a versatile tool exchanger providing full operational flexibility. Trypsin crystals harvested and cryoquenched using the UMR have yielded a 1.5 A structure demonstrating the feasibility of robotic protein crystal harvesting.
Collapse
Affiliation(s)
- Robert Viola
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | - Peter Carman
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | - Jace Walsh
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | - Echo Miller
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | | | | | - Alexander McPherson
- Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Bob Cudney
- Hampton Research, Aliso Viejo, CA 92656, USA
| | - Bernhard Rupp
- Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- q.e.d. life science discoveries, Livermore, CA 94551, USA
| |
Collapse
|
87
|
Denisov IG, Victoria DC, Sligar SG. Cryoradiolytic reduction of heme proteins: Maximizing dose dependent yield. Radiat Phys Chem Oxf Engl 1993 2007; 76:714-721. [PMID: 18379640 DOI: 10.1016/j.radphyschem.2006.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron reduced myoglobin at 77 K using (60)Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ∼160 kGy total dose, and does not depend on the protein concentration in the range 0.01 - 5 mM.
Collapse
Affiliation(s)
- Ilia G Denisov
- University of Illinois Urbana-Champaign, Department of Biochemistry, Urbana IL, 61801
| | | | | |
Collapse
|
88
|
Klink BU, Goody RS, Scheidig AJ. A newly designed microspectrofluorometer for kinetic studies on protein crystals in combination with x-ray diffraction. Biophys J 2006; 91:981-92. [PMID: 16698776 PMCID: PMC1563776 DOI: 10.1529/biophysj.105.078931] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a new design for a fluorescence microspectrophotometer for use in kinetic crystallography in combination with x-ray diffraction experiments. The FLUMIX device (Fluorescence spectroscopy to monitor intermediates in x-ray crystallography) is built for 0 degrees fluorescence detection, which has several advantages in comparison to a conventional fluorometer with 90 degrees design. Due to the reduced spatial requirements and the need for only one objective, the system is highly versatile, easy to handle, and can be used for many different applications. In combination with a conventional stereomicroscope, fluorescence measurements or reaction initiation can be performed directly in a hanging drop crystallization setup. The FLUMIX device can be combined with most x-ray sources, normally without the need of a specialized mechanical support. As a biological model system, we have used H-Ras p21 with an artificially introduced photo-labile GTP precursor (caged GTP) and a covalently attached fluorophore (IANBD amide). Using the FLUMIX system, detailed information about the state of photolyzed crystals of the modified H-Ras p21 (p21(mod)) could be obtained. Measurements in combination with a synchrotron beamline showed significant fluorescence changes in p21(mod) crystals even within a few seconds of x-ray exposure at 100 K.
Collapse
Affiliation(s)
- Björn U Klink
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, D-44225 Dortmund, Germany
| | | | | |
Collapse
|