51
|
Echelmeier A, Cruz Villarreal J, Messerschmidt M, Kim D, Coe JD, Thifault D, Botha S, Egatz-Gomez A, Gandhi S, Brehm G, Conrad CE, Hansen DT, Madsen C, Bajt S, Meza-Aguilar JD, Oberthür D, Wiedorn MO, Fleckenstein H, Mendez D, Knoška J, Martin-Garcia JM, Hu H, Lisova S, Allahgholi A, Gevorkov Y, Ayyer K, Aplin S, Ginn HM, Graafsma H, Morgan AJ, Greiffenberg D, Klujev A, Laurus T, Poehlsen J, Trunk U, Mezza D, Schmidt B, Kuhn M, Fromme R, Sztuk-Dambietz J, Raab N, Hauf S, Silenzi A, Michelat T, Xu C, Danilevski C, Parenti A, Mekinda L, Weinhausen B, Mills G, Vagovic P, Kim Y, Kirkwood H, Bean R, Bielecki J, Stern S, Giewekemeyer K, Round AR, Schulz J, Dörner K, Grant TD, Mariani V, Barty A, Mancuso AP, Weierstall U, Spence JCH, Chapman HN, Zatsepin N, Fromme P, Kirian RA, Ros A. Segmented flow generator for serial crystallography at the European X-ray free electron laser. Nat Commun 2020; 11:4511. [PMID: 32908128 PMCID: PMC7481229 DOI: 10.1038/s41467-020-18156-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jesse D Coe
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Sahir Gandhi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Chelsie E Conrad
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Debra T Hansen
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Caleb Madsen
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Saša Bajt
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Max O Wiedorn
- Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Derek Mendez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Juraj Knoška
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jose M Martin-Garcia
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Hao Hu
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Stella Lisova
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Aschkan Allahgholi
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstraße 20, 21079, Hamburg, Germany
| | - Kartik Ayyer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Helen Mary Ginn
- Division of Structural Biology, University of Oxford, Oxford, OX1 2JD, United Kingdom.,Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Heinz Graafsma
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Andrew J Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Alexander Klujev
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Torsten Laurus
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jennifer Poehlsen
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Ulrich Trunk
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Davide Mezza
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Bernd Schmidt
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Manuela Kuhn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | | | - Natascha Raab
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Steffen Hauf
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | - Chen Xu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | | | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Adam R Round
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5AZ, United Kingdom
| | | | | | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Uwe Weierstall
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - John C H Spence
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Henry N Chapman
- Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA. .,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
| |
Collapse
|
52
|
Rabe P, Beale JH, Butryn A, Aller P, Dirr A, Lang PA, Axford DN, Carr SB, Leissing TM, McDonough MA, Davy B, Ebrahim A, Orlans J, Storm SLS, Orville AM, Schofield CJ, Owen RL. Anaerobic fixed-target serial crystallography. IUCRJ 2020; 7:901-912. [PMID: 32939282 PMCID: PMC7467159 DOI: 10.1107/s2052252520010374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Cryogenic X-ray diffraction is a powerful tool for crystallographic studies on enzymes including oxygenases and oxidases. Amongst the benefits that cryo-conditions (usually employing a nitro-gen cryo-stream at 100 K) enable, is data collection of di-oxy-gen-sensitive samples. Although not strictly anaerobic, at low temperatures the vitreous ice conditions severely restrict O2 diffusion into and/or through the protein crystal. Cryo-conditions limit chemical reactivity, including reactions that require significant conformational changes. By contrast, data collection at room temperature imposes fewer restrictions on diffusion and reactivity; room-temperature serial methods are thus becoming common at synchrotrons and XFELs. However, maintaining an anaerobic environment for di-oxy-gen-dependent enzymes has not been explored for serial room-temperature data collection at synchrotron light sources. This work describes a methodology that employs an adaptation of the 'sheet-on-sheet' sample mount, which is suitable for the low-dose room-temperature data collection of anaerobic samples at synchrotron light sources. The method is characterized by easy sample preparation in an anaerobic glovebox, gentle handling of crystals, low sample consumption and preservation of a localized anaerobic environment over the timescale of the experiment (<5 min). The utility of the method is highlighted by studies with three X-ray-radiation-sensitive Fe(II)-containing model enzymes: the 2-oxoglutarate-dependent l-arginine hy-droxy-lase VioC and the DNA repair enzyme AlkB, as well as the oxidase isopenicillin N synthase (IPNS), which is involved in the biosynthesis of all penicillin and cephalosporin antibiotics.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Anna Dirr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Pauline A. Lang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Danny N. Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot Oxfordshire OX11 0FA, United Kingdom
| | - Thomas M. Leissing
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bradley Davy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, University of Lyon, Villeurbanne F-69621, France
| | - Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
53
|
Shilova A, Lebrette H, Aurelius O, Nan J, Welin M, Kovacic R, Ghosh S, Safari C, Friel RJ, Milas M, Matej Z, Högbom M, Brändén G, Kloos M, Shoeman RL, Doak B, Ursby T, Håkansson M, Logan DT, Mueller U. Current status and future opportunities for serial crystallography at MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1095-1102. [PMID: 32876583 PMCID: PMC7467353 DOI: 10.1107/s1600577520008735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program: an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports - silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.
Collapse
Affiliation(s)
- Anastasya Shilova
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Rebeka Kovacic
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ross J. Friel
- School of Information Technology, Halmstad University, Halmstad 30118, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Maria Håkansson
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Derek T. Logan
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Uwe Mueller
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
- Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
54
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
55
|
Assmann GM, Wang M, Diederichs K. Making a difference in multi-data-set crystallography: simple and deterministic data-scaling/selection methods. Acta Crystallogr D Struct Biol 2020; 76:636-652. [PMID: 32627737 PMCID: PMC7336379 DOI: 10.1107/s2059798320006348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phasing by single-wavelength anomalous diffraction (SAD) from multiple crystallographic data sets can be particularly demanding because of the weak anomalous signal and possible non-isomorphism. The identification and exclusion of non-isomorphous data sets by suitable indicators is therefore indispensable. Here, simple and robust data-selection methods are described. A multi-dimensional scaling procedure is first used to identify data sets with large non-isomorphism relative to clusters of other data sets. Within each cluster that it identifies, further selection is based on the weighted ΔCC1/2, a quantity representing the influence of a set of reflections on the overall CC1/2 of the merged data. The anomalous signal is further improved by optimizing the scaling protocol. The success of iterating the selection and scaling steps was verified by substructure determination and subsequent structure solution. Three serial synchrotron crystallography (SSX) SAD test cases with hundreds of partial data sets and one test case with 62 complete data sets were analyzed. Structure solution was dramatically simplified with this procedure, and enabled solution of the structures after a few selection/scaling iterations. To explore the limits, the procedure was tested with much fewer data than originally required and could still solve the structure in several cases. In addition, an SSX data challenge, minimizing the number of (simulated) data sets necessary to solve the structure, was significantly underbid.
Collapse
Affiliation(s)
- Greta M. Assmann
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| |
Collapse
|
56
|
Huang CY, Meier N, Caffrey M, Wang M, Olieric V. 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography. J Appl Crystallogr 2020; 53:854-859. [PMID: 32684901 PMCID: PMC7312129 DOI: 10.1107/s1600576720002897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/01/2020] [Indexed: 11/10/2022] Open
Abstract
The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Nathalie Meier
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, D02 R590, Ireland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Vincent Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
57
|
Fontecilla-Camps JC, Bricogne G. Jean-Luc Ferrer (1964–2020): structural biologist, beamline instrumentation innovator and entrepreneur. Acta Crystallogr D Struct Biol 2020. [DOI: 10.1107/s2059798320007081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
58
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
59
|
Mehrabi P, Müller-Werkmeister HM, Leimkohl JP, Schikora H, Ninkovic J, Krivokuca S, Andriček L, Epp SW, Sherrell D, Owen RL, Pearson AR, Tellkamp F, Schulz EC, Miller RJD. The HARE chip for efficient time-resolved serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:360-370. [PMID: 32153274 PMCID: PMC7064102 DOI: 10.1107/s1600577520000685] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 05/02/2023]
Abstract
Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henrike M. Müller-Werkmeister
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Chemistry – Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Jan-Philipp Leimkohl
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hendrik Schikora
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jelena Ninkovic
- Halbleiterlabor der Max-Planck-Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich, Germany
| | - Silvia Krivokuca
- Halbleiterlabor der Max-Planck-Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich, Germany
| | - Ladislav Andriček
- Halbleiterlabor der Max-Planck-Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich, Germany
| | - Sascha W. Epp
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Darren Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Arwen R. Pearson
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Friedjof Tellkamp
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Eike C. Schulz
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
60
|
Monteiro DCF, von Stetten D, Stohrer C, Sans M, Pearson AR, Santoni G, van der Linden P, Trebbin M. 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow. IUCRJ 2020; 7:207-219. [PMID: 32148849 PMCID: PMC7055382 DOI: 10.1107/s2052252519016865] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - David von Stetten
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Claudia Stohrer
- The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Marta Sans
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Peter van der Linden
- Partnership for Soft Condensed Matter, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Chemistry, The State University of New York at Buffalo, Natural Sciences Complex 760, Buffalo, NY 14260-3000, USA
| |
Collapse
|
61
|
Bücker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema LA, Gevorkov Y, Brehm W, Yefanov O, Oberthür D, Kassier GH, Dwayne Miller RJ. Serial protein crystallography in an electron microscope. Nat Commun 2020; 11:996. [PMID: 32081905 PMCID: PMC7035385 DOI: 10.1038/s41467-020-14793-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.
Collapse
Affiliation(s)
- Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Pascal Hogan-Lamarre
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Eike C Schulz
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lindsey A Bultema
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Institute of Vision Systems, Hamburg University of Technology, Harburger Schlossstrasse 20, 21079, Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Günther H Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
62
|
Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proc Natl Acad Sci U S A 2020; 117:4142-4151. [PMID: 32047034 PMCID: PMC7049125 DOI: 10.1073/pnas.1821522117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Macromolecular X-ray crystallography (MX) is the most prolific structure determination method in structural biology but is limited by radiation damage. To reduce damage progression, MX is usually carried out at cryogenic temperatures, sometimes blocking functionally important conformational heterogeneity. Lacking this shortcoming, room temperature MX has gained momentum with the recent advent of serial crystallography, whereby distribution of the X-ray dose over thousands of crystals mitigates damage. Here, an approach to serial crystallography is presented allowing visualization of specific damage to amino acids at room temperature and determination of a dose limit above which structural information from electron density maps decreases due to radiation damage. This limit provides important guidance for the growing number of synchrotron room temperature MX experiments. Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.
Collapse
|
63
|
Takemaru L, Guo G, Zhu P, Hendrickson WA, McSweeney S, Liu Q. PyMDA: microcrystal data assembly using Python. J Appl Crystallogr 2020; 53:277-281. [PMID: 32047415 PMCID: PMC6998775 DOI: 10.1107/s160057671901673x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
The recent developments at microdiffraction X-ray beamlines are making microcrystals of macromolecules appealing subjects for routine structural analysis. Microcrystal diffraction data collected at synchrotron microdiffraction beamlines may be radiation damaged with incomplete data per microcrystal and with unit-cell variations. A multi-stage data assembly method has previously been designed for microcrystal synchrotron crystallography. Here the strategy has been implemented as a Python program for microcrystal data assembly (PyMDA). PyMDA optimizes microcrystal data quality including weak anomalous signals through iterative crystal and frame rejections. Beyond microcrystals, PyMDA may be applicable for assembling data sets from larger crystals for improved data quality.
Collapse
Affiliation(s)
- Lina Takemaru
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
64
|
Junius N, Jaho S, Sallaz-Damaz Y, Borel F, Salmon JB, Budayova-Spano M. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. LAB ON A CHIP 2020; 20:296-310. [PMID: 31804643 DOI: 10.1039/c9lc00651f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a versatile microfluidic chip developed for on-chip crystallization of proteins through the dialysis method and in situ X-ray diffraction experiments. A microfabrication process enabling the integration of regenerated cellulose dialysis membranes between two layers of the microchip is thoroughly described. We also describe a rational approach for optimizing on-chip protein crystallization via chemical composition and temperature control, allowing the crystal size, number and quality to be tailored. Combining optically transparent microfluidics and dialysis provides both precise control over the experiment and reversible exploration of the crystallization conditions. In addition, the materials composing the microfluidic chip were tested for their transparency to X-rays in order to assess their compatibility for in situ diffraction data collection. Background scattering was evaluated using a synchrotron X-ray source and the background noise generated by our microfluidic device was compared to that produced by commercial crystallization plates used for diffraction experiments at room temperature. Once crystals of 3 model proteins (lysozyme, IspE, and insulin) were grown on-chip, the microchip was mounted onto the beamline and partial diffraction data sets were collected in situ from several isomorphous crystals and were merged to a complete data set for structure determination. We therefore propose a robust and inexpensive way to fabricate microchips that cover the whole pipeline from crystal growth to the beam and does not require any handling of the protein crystals prior to the diffraction experiment, allowing the collection of crystallographic data at room temperature for solving the three-dimensional structure of the proteins under study. The results presented here allow serial crystallography experiments on synchrotrons and X-ray lasers under dynamically controllable sample conditions to be observed using the developed microchips.
Collapse
Affiliation(s)
- Niels Junius
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sofia Jaho
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Borel
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
65
|
Huang CY, Olieric V, Caffrey M, Wang M. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods Mol Biol 2020; 2127:293-319. [PMID: 32112330 DOI: 10.1007/978-1-0716-0373-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland.
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
66
|
Shelby ML, Gilbile D, Grant TD, Seuring C, Segelke BW, He W, Evans AC, Pakendorf T, Fischer P, Hunter MS, Batyuk A, Barthelmess M, Meents A, Coleman MA, Kuhl TL, Frank M. A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCRJ 2020; 7:30-41. [PMID: 31949902 PMCID: PMC6949605 DOI: 10.1107/s2052252519014003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering.
Collapse
Affiliation(s)
- M. L. Shelby
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - D. Gilbile
- University of California at Davis, California, USA
| | - T. D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, Hauptman-Woodward Institute, SUNY University at Buffalo, Buffalo, New York, USA
| | - C. Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - B. W. Segelke
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - W. He
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - A. C. Evans
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. Pakendorf
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - P. Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - A. Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. A. Coleman
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. L. Kuhl
- University of California at Davis, California, USA
| | - M. Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| |
Collapse
|
67
|
Mehrabi P, Schulz EC, Agthe M, Horrell S, Bourenkov G, von Stetten D, Leimkohl JP, Schikora H, Schneider TR, Pearson AR, Tellkamp F, Miller RJD. Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat Methods 2019; 16:979-982. [DOI: 10.1038/s41592-019-0553-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023]
|
68
|
Mehrabi P, Schulz EC, Dsouza R, Müller-Werkmeister HM, Tellkamp F, Miller RJD, Pai EF. Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 2019; 365:1167-1170. [DOI: 10.1126/science.aaw9904] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework’s dynamics and entropy constitute crucial components of the catalytic machinery.
Collapse
|
69
|
Davy B, Axford D, Beale JH, Butryn A, Docker P, Ebrahim A, Leen G, Orville AM, Owen RL, Aller P. Reducing sample consumption for serial crystallography using acoustic drop ejection. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1820-1825. [PMID: 31490175 PMCID: PMC6730619 DOI: 10.1107/s1600577519009329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 05/18/2023]
Abstract
Efficient sample delivery is an essential aspect of serial crystallography at both synchrotrons and X-ray free-electron lasers. Rastering fixed target chips through the X-ray beam is an efficient method for serial delivery from the perspectives of both sample consumption and beam time usage. Here, an approach for loading fixed targets using acoustic drop ejection is presented that does not compromise crystal quality, can reduce sample consumption by more than an order of magnitude and allows serial diffraction to be collected from a larger proportion of the crystals in the slurry.
Collapse
Affiliation(s)
- Bradley Davy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Peter Docker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Gabriel Leen
- PolyPico Technologies Ltd, Unit 10, Airways Technology Park, Rathmacullig Wes, Ballygarvan, Cork T12 DY95, Ireland
- Department of Electronic and Computer Engineering, University of Limerick, Ireland
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
70
|
Morris RH, Dye ER, Axford D, Newton MI, Beale JH, Docker PT. Non-Contact Universal Sample Presentation for Room Temperature Macromolecular Crystallography Using Acoustic Levitation. Sci Rep 2019; 9:12431. [PMID: 31455801 PMCID: PMC6712007 DOI: 10.1038/s41598-019-48612-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources.
Collapse
Affiliation(s)
- R H Morris
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - E R Dye
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - D Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - M I Newton
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - J H Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - P T Docker
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
71
|
Förster A, Brandstetter S, Schulze-Briese C. Transforming X-ray detection with hybrid photon counting detectors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180241. [PMID: 31030653 PMCID: PMC6501887 DOI: 10.1098/rsta.2018.0241] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 05/22/2023]
Abstract
Hybrid photon counting (HPC) detectors have radically transformed basic research at synchrotron light sources since 2006. They excel at X-ray diffraction applications in the energy range from 2 to 100 keV. The main reasons for their superiority are the direct detection of individual photons and the accurate determination of scattering and diffraction intensities over an extremely high dynamic range. The detectors were first adopted in macromolecular crystallography where they revolutionized data collection. They were soon also used for small-angle scattering, coherent scattering, powder X-ray diffraction, spectroscopy and increasingly high-energy applications. Here, we will briefly survey the history of HPC detectors, explain their technology and then show in detail how improved detection has transformed a wide range of experimental techniques. We will end with an outlook to the future, which will probably see HPC technology find even broader use, for example, in electron microscopy and medical applications. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
Collapse
|
72
|
Basu S, Olieric V, Leonarski F, Matsugaki N, Kawano Y, Takashi T, Huang CY, Yamada Y, Vera L, Olieric N, Basquin J, Wojdyla JA, Bunk O, Diederichs K, Yamamoto M, Wang M. Long-wavelength native-SAD phasing: opportunities and challenges. IUCRJ 2019; 6:373-386. [PMID: 31098019 PMCID: PMC6503925 DOI: 10.1107/s2052252519002756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 05/04/2023]
Abstract
Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Å is demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Å is reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Å are discussed.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tomizaki Takashi
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Jerome Basquin
- Department of Biochemistry, Max Planck Institute of Biochemistry, Munich, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
73
|
Monteiro DCF, Vakili M, Harich J, Sztucki M, Meier SM, Horrell S, Josts I, Trebbin M. A microfluidic flow-focusing device for low sample consumption serial synchrotron crystallography experiments in liquid flow. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:406-412. [PMID: 30855249 DOI: 10.1107/s1600577519000304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Serial synchrotron crystallography allows low X-ray dose, room-temperature crystal structures of proteins to be determined from a population of microcrystals. Protein production and crystallization is a non-trivial procedure and it is essential to have X-ray-compatible sample environments that keep sample consumption low and the crystals in their native environment. This article presents a fast and optimized manufacturing route to metal-polyimide microfluidic flow-focusing devices which allow for the collection of X-ray diffraction data in flow. The flow-focusing conditions allow for sample consumption to be significantly decreased, while also opening up the possibility of more complex experiments such as rapid mixing for time-resolved serial crystallography. This high-repetition-rate experiment allows for full datasets to be obtained quickly (∼1 h) from crystal slurries in liquid flow. The X-ray compatible microfluidic chips are easily manufacturable, reliable and durable and require sample-flow rates on the order of only 30 µl h-1.
Collapse
Affiliation(s)
- Diana C F Monteiro
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Mohammad Vakili
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Jessica Harich
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Michael Sztucki
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble CS 40220, France
| | - Susanne M Meier
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sam Horrell
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Martin Trebbin
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
74
|
Wierman JL, Paré-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCRJ 2019; 6:305-316. [PMID: 30867928 PMCID: PMC6400179 DOI: 10.1107/s2052252519001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10° s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Collapse
Affiliation(s)
| | - Olivier Paré-Labrosse
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Jessica E. Besaw
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | | | - Saeed Oghbaey
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Hazem Daoud
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | | - Anling Kuo
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Smith
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
| | - Oliver P. Ernst
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sol M. Gruner
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
75
|
Martiel I, Müller-Werkmeister HM, Cohen AE. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol 2019; 75:160-177. [PMID: 30821705 PMCID: PMC6400256 DOI: 10.1107/s2059798318017953] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 11/11/2022] Open
Abstract
Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches.
Collapse
Affiliation(s)
- Isabelle Martiel
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Henrike M. Müller-Werkmeister
- Institute of Chemistry – Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
76
|
Ebrahim A, Appleby MV, Axford D, Beale J, Moreno-Chicano T, Sherrell DA, Strange RW, Hough MA, Owen RL. Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2019; 75:151-159. [PMID: 30821704 PMCID: PMC6400251 DOI: 10.1107/s2059798318010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/16/2018] [Indexed: 11/11/2022] Open
Abstract
The ability to determine high-quality, artefact-free structures is a challenge in micro-crystallography, and the rapid onset of radiation damage and requirement for a high-brilliance X-ray beam mean that a multi-crystal approach is essential. However, the combination of crystal-to-crystal variation and X-ray-induced changes can make the formation of a final complete data set challenging; this is particularly true in the case of metalloproteins, where X-ray-induced changes occur rapidly and at the active site. An approach is described that allows the resolution, separation and structure determination of crystal polymorphs, and the tracking of radiation damage in microcrystals. Within the microcrystal population of copper nitrite reductase, two polymorphs with different unit-cell sizes were successfully separated to determine two independent structures, and an X-ray-driven change between these polymorphs was followed. This was achieved through the determination of multiple serial structures from microcrystals using a high-throughput high-speed fixed-target approach coupled with robust data processing.
Collapse
Affiliation(s)
- Ali Ebrahim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - John Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
77
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
78
|
Basu S, Kaminski JW, Panepucci E, Huang CY, Warshamanage R, Wang M, Wojdyla JA. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:244-252. [PMID: 30655492 PMCID: PMC6337882 DOI: 10.1107/s1600577518016570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/21/2018] [Indexed: 05/03/2023]
Abstract
At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
79
|
Sanchez-Weatherby J, Sandy J, Mikolajek H, Lobley CMC, Mazzorana M, Kelly J, Preece G, Littlewood R, Sørensen TLM. VMXi: a fully automated, fully remote, high-flux in situ macromolecular crystallography beamline. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:291-301. [PMID: 30655497 PMCID: PMC6337891 DOI: 10.1107/s1600577518015114] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
VMXi is a new high-flux microfocus macromolecular crystallography beamline at Diamond Light Source. The beamline, dedicated to fully automated and fully remote data collection of macromolecular crystals in situ, allows rapid screening of hundreds of crystallization plates from multiple user groups. Its main purpose is to give fast feedback at the complex stages of crystallization and crystal optimization, but it also enables data collection of small and delicate samples that are particularly difficult to harvest using conventional cryo-methods, crystals grown in the lipidic cubic phase, and allows for multi-crystal data collections in drug discovery programs. The beamline is equipped with two monochromators: one with a narrow band-pass and fine energy resolution (optimal for regular oscillation experiments), and one with a wide band-pass and a high photon flux (optimal for fast screening). The beamline has a state-of-the-art detector and custom goniometry that allows fast data collection. This paper describes the beamline design, current status and future plans.
Collapse
Affiliation(s)
- Juan Sanchez-Weatherby
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - James Sandy
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Carina M. C. Lobley
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Jon Kelly
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Geoff Preece
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Rich Littlewood
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas L.-M. Sørensen
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
80
|
Schulz EC, Mehrabi P, Müller-Werkmeister HM, Tellkamp F, Jha A, Stuart W, Persch E, De Gasparo R, Diederich F, Pai EF, Miller RJD. The hit-and-return system enables efficient time-resolved serial synchrotron crystallography. Nat Methods 2018; 15:901-904. [DOI: 10.1038/s41592-018-0180-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/10/2018] [Indexed: 11/10/2022]
|
81
|
Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Using sound pulses to solve the crystal-harvesting bottleneck. Acta Crystallogr D Struct Biol 2018; 74:986-999. [PMID: 30289409 PMCID: PMC6173054 DOI: 10.1107/s2059798318011506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
Crystal harvesting has proven to be difficult to automate and remains the rate-limiting step for many structure-determination and high-throughput screening projects. This has resulted in crystals being prepared more rapidly than they can be harvested for X-ray data collection. Fourth-generation synchrotrons will support extraordinarily rapid rates of data acquisition, putting further pressure on the crystal-harvesting bottleneck. Here, a simple solution is reported in which crystals can be acoustically harvested from slightly modified MiTeGen In Situ-1 crystallization plates. This technique uses an acoustic pulse to eject each crystal out of its crystallization well, through a short air column and onto a micro-mesh (improving on previous work, which required separately grown crystals to be transferred before harvesting). Crystals can be individually harvested or can be serially combined with a chemical library such as a fragment library.
Collapse
Affiliation(s)
- Yasmin N. Samara
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Haley M. Brennan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Liam McCarthy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Mary T. Bollard
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, York College of Pennsylvania, York, PA 17403, USA
| | - Denise Laspina
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Jakub M. Wlodek
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Computer Science, Stony Brook University, New York, NY 11794-5215, USA
| | - Stefanie L. Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Clinical Nutrition, Stony Brook University, New York, NY 11794-5215, USA
| | - Ramya Natarajan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kazimierz Gofron
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Sean McSweeney
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ludmila Leroy
- Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
82
|
Doak RB, Nass Kovacs G, Gorel A, Foucar L, Barends TRM, Grünbein ML, Hilpert M, Kloos M, Roome CM, Shoeman RL, Stricker M, Tono K, You D, Ueda K, Sherrell DA, Owen RL, Schlichting I. Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Acta Crystallogr D Struct Biol 2018; 74:1000-1007. [PMID: 30289410 PMCID: PMC6173051 DOI: 10.1107/s2059798318011634] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Crystallography chips are fixed-target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor-microfabrication techniques to yield an array of wells or through-holes in which single microcrystals can be lodged for raster-scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high-throughput sample presentation for serial diffraction data collection at synchrotron or X-ray free-electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip-less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet-on-sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre-sized crystals at an XFEL. The approach is also well suited to time-resolved pump-probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X-ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
Collapse
Affiliation(s)
- R. Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Lutz Foucar
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Mario Hilpert
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marco Kloos
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Christopher M. Roome
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Miriam Stricker
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, England
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
83
|
Lan TY, Wierman JL, Tate MW, Philipp HT, Martin-Garcia JM, Zhu L, Kissick D, Fromme P, Fischetti RF, Liu W, Elser V, Gruner SM. Solving protein structure from sparse serial microcrystal diffraction data at a storage-ring synchrotron source. IUCRJ 2018; 5:548-558. [PMID: 30224958 PMCID: PMC6126656 DOI: 10.1107/s205225251800903x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 05/29/2023]
Abstract
In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.
Collapse
Affiliation(s)
- Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer L. Wierman
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Hugh T. Philipp
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
84
|
Gao Y, Xu W, Shi W, Soares A, Jakoncic J, Myers S, Martins B, Skinner J, Liu Q, Bernstein H, McSweeney S, Nazaretski E, Fuchs MR. High-speed raster-scanning synchrotron serial microcrystallography with a high-precision piezo-scanner. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1362-1370. [PMID: 30179174 PMCID: PMC6140394 DOI: 10.1107/s1600577518010354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 05/06/2023]
Abstract
The Frontier Microfocus Macromolecular Crystallography (FMX) beamline at the National Synchrotron Light Source II with its 1 µm beam size and photon flux of 3 × 1012 photons s-1 at a photon energy of 12.66 keV has reached unprecedented dose rates for a structural biology beamline. The high dose rate presents a great advantage for serial microcrystallography in cutting measurement time from hours to minutes. To provide the instrumentation basis for such measurements at the full flux of the FMX beamline, a high-speed, high-precision goniometer based on a unique XYZ piezo positioner has been designed and constructed. The piezo-based goniometer is able to achieve sub-100 nm raster-scanning precision at over 10 grid-linepairs s-1 frequency for fly scans of a 200 µm-wide raster. The performance of the scanner in both laboratory and serial crystallography measurements up to the maximum frame rate of 750 Hz of the Eiger 16M's 4M region-of-interest mode has been verified in this work. This unprecedented experimental speed significantly reduces serial-crystallography data collection time at synchrotrons, allowing utilization of the full brightness of the emerging synchrotron radiation facilities.
Collapse
Affiliation(s)
- Yuan Gao
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Weihe Xu
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
- Case Center for Synchrotron Biosciences, Case Western Reserve University, OH 44106, USA
| | - Alexei Soares
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stuart Myers
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Martins
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert Bernstein
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
- School of Chemistry and Materials Science, Rochester Institute of Technology, NY 14623, USA
| | - Sean McSweeney
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Evgeny Nazaretski
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
85
|
Birch J, Axford D, Foadi J, Meyer A, Eckhardt A, Thielmann Y, Moraes I. The fine art of integral membrane protein crystallisation. Methods 2018; 147:150-162. [PMID: 29778646 DOI: 10.1016/j.ymeth.2018.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Arne Meyer
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Annette Eckhardt
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Yvonne Thielmann
- Max Planck Institute of Biophysics, Molecular Membrane Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK; National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
86
|
Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Where is crystallography going? Acta Crystallogr D Struct Biol 2018; 74:152-166. [PMID: 29533241 PMCID: PMC5947779 DOI: 10.1107/s2059798317016709] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022] Open
Abstract
Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide.
Collapse
Affiliation(s)
- Jonathan M. Grimes
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David R. Hall
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Alun W. Ashton
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Gwyndaf Evans
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Robin L. Owen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Katherine E. McAuley
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Frank von Delft
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Allen M. Orville
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Thomas Sorensen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Martin A. Walsh
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Helen M. Ginn
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David I. Stuart
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
87
|
Santoni G, Zander U, Mueller-Dieckmann C, Leonard G, Popov A. Hierarchical clustering for multiple-crystal macromolecular crystallography experiments: the ccCluster program. J Appl Crystallogr 2017; 50:1844-1851. [PMID: 29217993 PMCID: PMC5713145 DOI: 10.1107/s1600576717015229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 03/30/2023] Open
Abstract
This article describes ccCluster, a software providing an intuitive graphical user interface (GUI) and multiple functions to perform hierarchical cluster analysis on multiple crystallographic datasets. The program makes it easier for users to choose, in the case of multi-crystal data collection, those datasets that will be merged together to give good final statistics. It provides a simple GUI to analyse the dendrogram and various options for automated clustering and data merging.
Collapse
Affiliation(s)
- Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Ulrich Zander
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
- EMBL Grenoble, 71 Avenue des Martyrs, 38000 Grenoble, CEDEX 9, France
| | - Christoph Mueller-Dieckmann
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gordon Leonard
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alexander Popov
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
88
|
Schulz EC, Kaub J, Busse F, Mehrabi P, Müller-Werkmeister HM, Pai EF, Robertson WD, Miller RJD. Protein crystals IR laser ablated from aqueous solution at high speed retain their diffractive properties: applications in high-speed serial crystallography. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717014479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to utilize the high repetition rates now available at X-ray free-electron laser sources for serial crystallography, methods must be developed to softly deliver large numbers of individual microcrystals at high repetition rates and high speeds. Picosecond infrared laser (PIRL) pulses, operating under desorption by impulsive vibrational excitation (DIVE) conditions, selectively excite the OH vibrational stretch of water to directly propel the excited volume at high speed with minimized heating effects, nucleation formation or cavitation-induced shock waves, leaving the analytes intact and undamaged. The soft nature and laser-based sampling flexibility provided by the technique make the PIRL system an interesting crystal delivery approach for serial crystallography. This paper demonstrates that protein crystals extracted directly from aqueous buffer solutionviaPIRL-DIVE ablation retain their diffractive properties and can be usefully exploited for structure determination at synchrotron sources. The remaining steps to implement the technology for high-speed serial femtosecond crystallography, such as single-crystal localization, high-speed sampling and synchronization, are described. This proof-of-principle experiment demonstrates the viability of a new laser-based high-speed crystal delivery system without the need for liquid-jet injectors or fixed-target mounting solutions.
Collapse
|
89
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
90
|
Gorel A, Motomura K, Fukuzawa H, Doak RB, Grünbein ML, Hilpert M, Inoue I, Kloos M, Kovácsová G, Nango E, Nass K, Roome CM, Shoeman RL, Tanaka R, Tono K, Joti Y, Yabashi M, Iwata S, Foucar L, Ueda K, Barends TRM, Schlichting I. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat Commun 2017; 8:1170. [PMID: 29079797 PMCID: PMC5660077 DOI: 10.1038/s41467-017-00754-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers. X-ray free-electron lasers produce bright femtosecond X-ray pulses. Here, the authors use a two-colour X-ray free-electron laser beam for simultaneous two-wavelength data collection and show that protein structures can be determined with multiple wavelength anomalous dispersion phasing, which is important for difficult-to-phase projects.
Collapse
Affiliation(s)
- Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Gabriela Kovácsová
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Eriko Nango
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Rie Tanaka
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany.
| |
Collapse
|
91
|
Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K, Walter TS, Meyer J, Fischer P, Duman R, Vartiainen I, Reime B, Warmer M, Brewster AS, Young ID, Michels-Clark T, Sauter NK, Kotecha A, Kelly J, Rowlands DJ, Sikorsky M, Nelson S, Damiani DS, Alonso-Mori R, Ren J, Fry EE, David C, Stuart DI, Wagner A, Meents A. High-speed fixed-target serial virus crystallography. Nat Methods 2017; 14:805-810. [PMID: 28628129 PMCID: PMC5588887 DOI: 10.1038/nmeth.4335] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
Abstract
We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.
Collapse
Affiliation(s)
- Philip Roedig
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Helen M. Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Tim Pakendorf
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Geoff Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas S. Walter
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan Meyer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Ramona Duman
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Ismo Vartiainen
- Institute of Photonics, University of Eastern Finland, Joensuu, Finland
| | - Bernd Reime
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Martin Warmer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tara Michels-Clark
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - James Kelly
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- The Pirbright Institute, Pirbright, United Kingdom
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marcin Sikorsky
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Daniel S. Damiani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Armin Wagner
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Alke Meents
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| |
Collapse
|