51
|
Quesada-Béjar V, Contreras-Garduño J, Calvillo LKA, García EC. Survival, Body Condition, and Immune System of Apis mellifera liguistica Fed Avocado, Maize, and Polyfloral Pollen Diet. NEOTROPICAL ENTOMOLOGY 2022; 51:583-592. [PMID: 35708899 DOI: 10.1007/s13744-022-00974-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Nutritional stress is the major factor contributing to decline in the honey bee (Apis mellifera L.) populations given the high degree of dependence on floral resources, and due to the habitat loss. In this sense, monocultures of maize and avocado have great extensions in Mexico, but their impact on the physiology and morphology of A. mellifera is unknown. This research evaluated the effect of total protein content in monofloral (maize or avocado pollen diets) and polyfloral (using five types of pollen: Persea americana Mill., Zea mays L., Melampodium perfoliatum Cav., Drymaria villosa Cham Schltdl., and Lopezia racemosa Cav.) on their survival, body condition (controlled density, head mass, and development of hypopharyngeal glands; protein content in hemolymph), and immune response [lytic activity and activity of prophenoloxidase in the hemolymph (proPO)]. Corbicular pollen of P. americana had the highest protein content, followed by the corbicular pollen of Z. mays, M. perfoliatum, D. villosa, and L. racemosa. Polyfloral diet seems to be better for A. mellifera than the monofloral maize and avocado. Bees fed polyfloral pollen diet showed a high content of protein in the hemolymph in comparison with that fed maize or avocado pollen diets. Bees fed polyfloral and avocado pollen diet had the highest lytic activity but showed a decrease in proPO activity. In conclusion, polyfloral diets seem to be better for A. mellifera than the monofloral maize and avocado.
Collapse
Affiliation(s)
- Venecia Quesada-Béjar
- Facultad de Agrobiología, Univ Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, México.
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Univ Autónoma de México, Morelia, Michoacán, México
| | - L Karina Adame Calvillo
- Facultad de Agrobiología, Univ Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, México
| | - Eduardo Cuevas García
- Facultad de Biología, Univ Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
52
|
Zhao M, Lin X, Guo X. The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. INSECTS 2022; 13:insects13070583. [PMID: 35886759 PMCID: PMC9319143 DOI: 10.3390/insects13070583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary To counter plant chemical defenses and exposure to agrochemicals, herbivorous insects have developed several adaptive strategies to guard against the ingested detrimental substances, including enhancing detoxifying enzyme activities, avoidance behavior, amino acid mutation of target sites, and lower penetration through a thicker cuticle. Insect microbiota play important roles in many aspects of insect biology and physiology. To better understand the role of insect symbiotic bacteria in metabolizing these detrimental substances, we summarize the research progress on the function of insect bacteria in metabolizing phytochemicals and agrochemicals, and describe their future potential application in pest management and protection of beneficial insects. Abstract The diversity and high adaptability of insects are heavily associated with their symbiotic microbes, which include bacteria, fungi, viruses, protozoa, and archaea. These microbes play important roles in many aspects of the biology and physiology of insects, such as helping the host insects with food digestion, nutrition absorption, strengthening immunity and confronting plant defenses. To maintain normal development and population reproduction, herbivorous insects have developed strategies to detoxify the substances to which they may be exposed in the living habitat, such as the detoxifying enzymes carboxylesterase, glutathione-S-transferases (GSTs), and cytochrome P450 monooxygenases (CYP450s). Additionally, insect symbiotic bacteria can act as an important factor to modulate the adaptability of insects to the exposed detrimental substances. This review summarizes the current research progress on the role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals (insecticides and herbicides). Given the importance of insect microbiota, more functional symbiotic bacteria that modulate the adaptability of insects to the detrimental substances to which they are exposed should be identified, and the underlying mechanisms should also be further studied, facilitating the development of microbial-resource-based pest control approaches or protective methods for beneficial insects.
Collapse
Affiliation(s)
| | | | - Xianru Guo
- Correspondence: ; Tel.: +86-0371-63558170
| |
Collapse
|
53
|
Motta EVS, Powell JE, Leonard SP, Moran NA. Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210156. [PMID: 35491599 PMCID: PMC9058534 DOI: 10.1098/rstb.2021.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social corbiculate bees are major pollinators. They have characteristic bacterial microbiomes associated with their hives and their guts. In honeybees and bumblebees, worker guts contain a microbiome composed of distinctive bacterial taxa shown to benefit hosts. These benefits include stimulating immune and metabolic pathways, digesting or detoxifying food, and defending against pathogens and parasites. Stressors including toxins and poor nutrition disrupt the microbiome and increase susceptibility to opportunistic pathogens. Administering probiotic bacterial strains may improve the health of individual bees and of hives, and several commercial probiotics are available for bees. However, evidence for probiotic benefits is lacking or mixed. Most bacterial species used in commercial probiotics are not native to bee guts. We present new experimental results showing that cultured strains of native bee gut bacteria colonize robustly while bacteria in a commercial probiotic do not establish in bee guts. A defined community of native bee gut bacteria resembles unperturbed native gut communities in its activation of genes for immunity and metabolism in worker bees. Although many questions remain unanswered, the development of natural probiotics for honeybees, or for commercially managed bumblebees, is a promising direction for protecting the health of managed bee colonies. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
54
|
Lee J, Lee DW. Insecticidal Serralysin of Serratia marcescens Is Detoxified in M3 Midgut Region of Riptortus pedestris. Front Microbiol 2022; 13:913113. [PMID: 35711769 PMCID: PMC9197470 DOI: 10.3389/fmicb.2022.913113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Riptortus pedestris insect indiscriminately acquires not only the symbiotic bacterium Burkholderia insecticola, but also entomopathogens that are abundant in the soil via feeding. However, it is unclear how the host insect survives oral infections of entomopathogens. A previous study suggested that serralysin, a potent virulence factor produced by Serratia marcescens, suppresses cellular immunity by degrading adhesion molecules, thereby contributing to bacterial pathogenesis. Here, we observed that S. marcescens orally administered to R. pedestris stably colonized the insect midgut, while not exhibiting insecticidal activity. Additionally, oral infection with S. marcescens did not affect the host growth or fitness. When co-incubated with the midgut lysates of R. pedestris, serralysin was remarkably degraded. The detoxification activity against serralysin was enhanced in the midgut extract of gut symbiont-colonizing insects. The mRNA expression levels of serralysin genes were negligible in M3-colonizing S. marcescens. M3-colonizing S. marcescens did not produce serralysin toxin. Immunoblot analyses revealed that serralysin was not detected in the M3 midgut region. The findings of our study suggest that orally infected S. marcescens lose entomopathogenicity through host-derived degrading factors and suppression of serralysin.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea.,Department of SmartBio, Kyungsung University, Busan, South Korea
| |
Collapse
|
55
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
56
|
Wang S, Shi W, Huang Z, Zhou N, Xie Y, Tang Y, Hu F, Liu G, Zheng H. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127213. [PMID: 34844347 DOI: 10.1016/j.jhazmat.2021.127213] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/26/2023]
Abstract
Biodegradation of plastic polymers by plastic-eating insects such as the greater wax moth (Galleria mellonella) might be promising for reducing plastic pollution, but direct in vivo evidence along with the related metabolic pathways and role of gut microbiota require further investigation. In this study, we investigated the in vivo degradation process, underlying potential metabolic pathways, and involvement of the gut microbiota in polystyrene (PS) biodegradation via enforcing injection of G. mellonella larvae (Tianjin, China) with PS microbeads (0.5 mg/larva; Mn: 540 and Mw: 550) and general-purpose PS powders (2.5 mg/larva; Mn: 95,600 and Mw: 217,000). The results indicated that the PS microplastics were depolymerized and completely digested independent of gut microbiota in G. mellonella although the metabolism could be enhanced by gut microbiota. Based on comparative metabolomic and liquid chromatography analyses, we proposed two potential metabolic pathways of PS in the intestine of G. mellonella larvae: the styrene oxide-phenylacetaldehyde and 4-methylphenol-4-hydroxybenzaldehyde-4-hydroxybenzoate pathways. These results suggest that the enzymes of G. mellonella are responsible for the efficient biodegradation of PS. Further study is needed to identify these enzymes and investigate the underlying catalytic mechanisms.
Collapse
Affiliation(s)
- Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
57
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev 2022; 46:6517452. [PMID: 35107129 DOI: 10.1093/femsre/fuab056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.
Collapse
|
58
|
Castelli L, Branchiccela B, Romero H, Zunino P, Antúnez K. Seasonal Dynamics of the Honey Bee Gut Microbiota in Colonies Under Subtropical Climate : Seasonal Dynamics of Honey Bee Gut Microbiota. MICROBIAL ECOLOGY 2022; 83:492-500. [PMID: 33973059 DOI: 10.1007/s00248-021-01756-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Belén Branchiccela
- Sección Apicultura, Programa Nacional de Producción Familiar, INIA La Estanzuela, Ruta 50, Km 11, Colonia, Uruguay
| | - Héctor Romero
- Departamento de Ecología Y Evolución, Facultad de Ciencias, Laboratorio de Organización Y Evolución del Genoma, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
59
|
Jia S, Wu Y, Chen G, Wang S, Hu F, Zheng H. The Pass-on Effect of Tetracycline-Induced Honey Bee ( Apis mellifera) Gut Community Dysbiosis. Front Microbiol 2022; 12:781746. [PMID: 35116011 PMCID: PMC8804527 DOI: 10.3389/fmicb.2021.781746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
Gut microbial community plays an important role in the regulation of insect health. Antibiotic treatment is powerful to fight bacterial infections, while it also causes collateral damage to gut microbiome, which may have long-lasting consequences for host health. However, current studies on honey bees mainly focus on the impact of direct exposure to antibiotics on individual bees, and little is known about the impact of social transmission of antibiotic-induced gut community disorder in honey bee colonies. In order to provide insight into the potential pass-on effect of antibiotic-induced dysbiosis, we colonized newly emerged germ-free workers with either normal or tetracycline-treated gut community and analyzed the gut bacteria composition. We also treated workers with low dosage of tetracycline to evaluate its impact on honey bee gut microbiota. Our results showed that the tetracycline-treated gut community caused disruption of gut community in their receivers, while the direct exposure to the low dosage of tetracycline had no significant effect. In addition, no significant difference was observed on the mortality rate of A. mellifera workers with different treatments. These results suggest that though the residue of antibiotic treatment may not have direct effect on honey bee gut community, the gut microbiota dysbiosis caused by high dosage of antibiotic treatment has a cascade effect on the gut community of the nestmates in honeybee colonies.
Collapse
Affiliation(s)
| | | | | | | | | | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Hu L, Sun Z, Xu C, Wang J, Mallik AU, Gu C, Chen D, Lu L, Zeng R, Song Y. High nitrogen in maize enriches gut microbiota conferring insecticide tolerance in lepidopteran pest Spodoptera litura. iScience 2022; 25:103726. [PMID: 35072013 PMCID: PMC8762471 DOI: 10.1016/j.isci.2021.103726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
Abuse of chemical fertilizers and insecticides has created many environmental and human health hazards. We hypothesized that high nitrogen (N) in crops changes insect gut microbiota leading to enhanced insecticide tolerance. We investigated the effect of high N in maize on gut microbiota and insecticide tolerance of the polyphagous pest Spodoptera litura. Bioassays showed that high N applied in both maize plants and artificial diets significantly enhanced larval growth but reduced larval sensitivity to the insecticide methomyl. High N promoted the gut bacterial abundance in the genus Enterococcus. Inoculation with two strains (E. mundtii and E. casseliflavus) isolated from the larval guts increased larval tolerance to methomyl. Incorporation of antibiotics in a high-N diet increased the larval sensitivity to methomyl. These findings suggest that excessive application of N fertilizer to crops can increase insecticide tolerance of insect pests via changing gut microbiota, leading to increased use of insecticides worldwide. High N applied in maize plants enhances insect tolerance to the insecticide methomyl High N promotes the gut bacterial proliferation in the genus Enterococcus Two gut bacterial strains (E. mundtii and E. casseliflavus) degrade methomyl Depleting the gut microbiota in S. litura increased larval sensitivity to methomyl
Collapse
Affiliation(s)
- Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Azim U. Mallik
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Chengzhen Gu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Corresponding author
| |
Collapse
|
61
|
Yang J, Zhong Y, Xu L, Zeng B, Lai K, Yang M, Li D, Zhao Y, Zhang M, Li D. The Dominating Role of Genetic Background in Shaping Gut Microbiota of Honeybee Queen Over Environmental Factors. Front Microbiol 2021; 12:722901. [PMID: 34803942 PMCID: PMC8603915 DOI: 10.3389/fmicb.2021.722901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
A balanced, diverse gut microbiota is vital for animal health. The microbial population is shaped by multiple factors including genetic background and environment, but other determinants remain controversial. Numerous studies suggest that the dominant factor is genetic background while others emphasize the environmental factors. Here, we bred asexual hybridization queens (AHQs) of honeybees through nutritional crossbreeding (laid in Apis mellifera colony but bred in Apis cerana colony), sequenced their gut microbiome, and compared it with normally bred sister queens to determine the primary factor shaping the gut microbiota. Our results showed that the dominant genera in the gut microbiota of AHQs were Brevundimonas, Bombella, and Lactobacillus, and its microbial community was more related to A. mellifera queens. The AHQs had a moderate number of different bacterial species and diversity, but total bacterial numbers were low. There were more significant taxa identified in the comparison between AHQ and A. cerana queen according to LEfSe analysis results. The only genetic-specific taxon we figured out was Brevundimonas. The growth of core bacterial abundance showed different characteristics among different queen groups in the first week after emerging. Collectively, this study suggested that the genetic background played a more dominant role than environmental factors in shaping the gut microbiota of honeybee queen and the microbiota of midgut was more sensitive than that of rectum to this impact.
Collapse
Affiliation(s)
- Jiandong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yun Zhong
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liqun Xu
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kang Lai
- Sichuan Province Apiculture Management Station, Chengdu, China
| | - Mingxian Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| | - Debing Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
62
|
Kang WN, Jin L, Ma HY, Li GQ. Integrated Microbiome-Metabolome Analysis Reveals Stage-Dependent Alterations in Bacterial Degradation of Aromatics in Leptinotarsa decemlineata. Front Physiol 2021; 12:739800. [PMID: 34658924 PMCID: PMC8515180 DOI: 10.3389/fphys.2021.739800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
To avoid potential harm during pupation, the Colorado potato beetle Leptinotarsa decemlineata lives in two different habitats throughout its developmental excursion, with the larva and adult settling on potato plants and the pupa in soil. Potato plants and agricultural soil contain a specific subset of aromatics. In the present study, we intended to determine whether the stage-specific bacterial flora plays a role in the catabolism of aromatics in L. decemlineata. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the operational taxonomic units (OTUs) obtained by sequencing of culture-independent 16S rRNA region enriched a group of bacterial genes involved in the elimination of mono- and polycyclic aromatics at the pupal stage compared with those at the larval and adult periods. Consistently, metabolome analysis revealed that dozens of monoaromatics such as styrene, benzoates, and phenols, polycyclic aromatics, for instance, naphthalene and steroids, were more abundant in the pupal sample. Moreover, a total of seven active pathways were uncovered in the pupal specimen. These ways were associated with the biodegradation of benzoate, 4-methoxybenzoate, fluorobenzoates, styrene, vanillin, benzamide, and naphthalene. In addition, the metabolomic profiles and the catabolism abilities were significantly different in the pupae where their bacteria were removed by a mixture of three antibiotics. Therefore, our data suggested the stage-dependent alterations in bacterial breakdown of aromatics in L. decemlineata.
Collapse
Affiliation(s)
- Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hong-Yu Ma
- Public Laboratory Platform, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
63
|
Soares KO, Oliveira CJBD, Rodrigues AE, Vasconcelos PC, Silva NMVD, Cunha Filho OGD, Madden C, Hale VL. Tetracycline Exposure Alters Key Gut Microbiota in Africanized Honey Bees (Apis mellifera scutellata x spp.). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.716660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Honey bees play a critical role in ecosystem health, biodiversity maintenance, and crop yield. Antimicrobials, such as tetracyclines, are used widely in agriculture, medicine, and in bee keeping, and bees can be directly or indirectly exposed to tetracycline residues in the environment. In European honey bees, tetracycline exposure has been linked with shifts in the gut microbiota that negatively impact bee health. However, the effects of antimicrobials on Africanized honey bee gut microbiota have not been examined. The aim of this study was to investigate the effects of tetracycline exposure on the gut microbial community of Africanized honey bees (Apis mellifera scutellata x spp.), which are important pollinators in South, Central, and North America. Bees (n = 1,000) were collected from hives in Areia-PB, Northeastern Brazil, placed into plastic chambers and kept under controlled temperature and humidity conditions. The control group (CON) was fed daily with syrup (10 g) consisting of a 1:1 solution of demerara sugar and water, plus a solid protein diet (10 g) composed of 60% soy extract and 40% sugar syrup. The tetracycline group (TET) was fed identically but with the addition of tetracycline hydrochloride (450 μg/g) to the sugar syrup. Bees were sampled from each group before (day 0), and after tetracycline exposure (days 3, 6, and 9). Abdominal contents dissected out of each bee underwent DNA extraction and 16S rRNA sequencing (V3-V4) on an Illumina MiSeq. Sequences were filtered and processed through QIIME2 and DADA2. Microbial community composition and diversity and differentially abundant taxa were evaluated by treatment and time. Bee gut microbial composition (Jaccard) and diversity (Shannon) differed significantly and increasingly over time and between CON and TET groups. Tetracycline exposure was associated with decreased relative abundances of Bombella and Fructobacillus, along with decreases in key core microbiota such as Snodgrassella, Gilliamella, Rhizobiaceae, and Apibacter. These microbes are critical for nutrient metabolism and pathogen defense, and it is possible that decreased abundances of these microbes could negatively affect bee health. Considering the global ecological and economic importance of honey bees as pollinators, it is critical to understand the effects of agrochemicals including antimicrobials on honey bees.
Collapse
|
64
|
Powell JE, Carver Z, Leonard SP, Moran NA. Field-Realistic Tylosin Exposure Impacts Honey Bee Microbiota and Pathogen Susceptibility, Which Is Ameliorated by Native Gut Probiotics. Microbiol Spectr 2021; 9:e0010321. [PMID: 34160267 PMCID: PMC8552731 DOI: 10.1128/spectrum.00103-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotics have been applied to honey bee (Apis mellifera) hives for decades to treat Paenibacillus larvae, which causes American foulbrood disease and kills honey bee larvae. One of the few antibiotics approved in apiculture is tylosin tartrate. This study examined how a realistic hive treatment regimen of tylosin affected the gut microbiota of bees and susceptibility to a bacterial pathogen. Tylosin treatment reduced bacterial species richness and phylogenetic diversity and reduced the absolute abundances and strain diversity of the beneficial core gut bacteria Snodgrassella alvi and Bifidobacterium spp. Bees from hives treated with tylosin died more quickly after being fed a bacterial pathogen (Serratia marcescens) in the laboratory. We then tested whether a probiotic cocktail of core bee gut species could bolster pathogen resistance. Probiotic exposure increased survival of bees from both control and tylosin-treated hives. Finally, we measured tylosin tolerance of core bee gut bacteria by plating cultured isolates on media with different tylosin concentrations. We observed highly variable responses, including large differences among strains of both S. alvi and Gilliamella spp. Thus, probiotic treatments using cultured bee gut bacteria may ameliorate harmful perturbations of the gut microbiota caused by antibiotics or other factors. IMPORTANCE The antibiotic tylosin tartrate is used to treat honey bee hives to control Paenibacillus larvae, the bacterium that causes American foulbrood. We found that bees from tylosin-treated hives had gut microbiomes with depleted overall diversity as well as reduced absolute abundances and strain diversity of the beneficial bee gut bacteria Snodgrassella alvi and Bifidobacterium spp. Furthermore, bees from treated hives suffered higher mortality when challenged with an opportunistic pathogen. Bees receiving a probiotic treatment, consisting of a cocktail of cultured isolates of native bee gut bacteria, had increased survival following pathogen challenge. Thus, probiotic treatment with native gut bacteria may ameliorate negative effects of antibiotic exposure.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Zac Carver
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sean P. Leonard
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
65
|
Wu Y, Zheng Y, Wang S, Chen Y, Tao J, Chen Y, Chen G, Zhao H, Wang K, Dong K, Hu F, Feng Y, Zheng H. Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. J Adv Res 2021; 37:19-31. [PMID: 35499050 PMCID: PMC9039653 DOI: 10.1016/j.jare.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
The inter-species diversity of A. cerana and A. mellifera core gut bacteria was revealed. Core bacterial species of A. cerana and A. mellifera are distinctive in function. Functional profile of overall gut community of A. cerana and A. mellifera are similar. Metabolome showed that A. cerana and A. mellifera gut bacteria have similar metabolic capability. A. cerana and A. mellifera core gut bacteria have no strict host specificity.
Introduction The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees’ gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Junyi Tao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yanan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Corresponding authors.
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| |
Collapse
|
66
|
Liu L, Li Z, Luo X, Zhang X, Chou SH, Wang J, He J. Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Front Microbiol 2021; 12:665101. [PMID: 34140940 PMCID: PMC8203666 DOI: 10.3389/fmicb.2021.665101] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
In this article, we review the latest works on the insecticidal mechanisms of Bacillus thuringiensis Cry toxins and the resistance mechanisms of insects against Cry toxins. Currently, there are two models of insecticidal mechanisms for Cry toxins, namely, the sequential binding model and the signaling pathway model. In the sequential binding model, Cry toxins are activated to bind to their cognate receptors in the mid-intestinal epithelial cell membrane, such as the glycophosphatidylinositol (GPI)-anchored aminopeptidases-N (APNs), alkaline phosphatases (ALPs), cadherins, and ABC transporters, to form pores that elicit cell lysis, while in the signaling pathway model, the activated Cry toxins first bind to the cadherin receptor, triggering an extensive cell signaling cascade to induce cell apoptosis. However, these two models cannot seem to fully describe the complexity of the insecticidal process of Cry toxins, and new models are required. Regarding the resistance mechanism against Cry toxins, the main method insects employed is to reduce the effective binding of Cry toxins to their cognate cell membrane receptors by gene mutations, or to reduce the expression levels of the corresponding receptors by trans-regulation. Moreover, the epigenetic mechanisms, host intestinal microbiota, and detoxification enzymes also play significant roles in the insects' resistance against Cry toxins. Today, high-throughput sequencing technologies like transcriptomics, proteomics, and metagenomics are powerful weapons for studying the insecticidal mechanisms of Cry toxins and the resistance mechanisms of insects. We believe that this review shall shed some light on the interactions between Cry toxins and insects, which can further facilitate the development and utilization of Cry toxins.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
67
|
Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, Grünewald B, Giesy JP. Are Honey Bees at Risk from Microplastics? TOXICS 2021; 9:toxics9050109. [PMID: 34063384 PMCID: PMC8156821 DOI: 10.3390/toxics9050109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022]
Abstract
Microplastics (MPs) are ubiquitous and persistent pollutants, and have been detected in a wide variety of media, from soils to aquatic systems. MPs, consisting primarily of polyethylene, polypropylene, and polyacrylamide polymers, have recently been found in 12% of samples of honey collected in Ecuador. Recently, MPs have also been identified in honey bees collected from apiaries in Copenhagen, Denmark, as well as nearby semiurban and rural areas. Given these documented exposures, assessment of their effects is critical for understanding the risks of MP exposure to honey bees. Exposure to polystyrene (PS)-MPs decreased diversity of the honey bee gut microbiota, followed by changes in gene expression related to oxidative damage, detoxification, and immunity. As a result, the aim of this perspective was to investigate whether wide-spread prevalence of MPs might have unintended negative effects on health and fitness of honey bees, as well as to draw the scientific community’s attention to the possible risks of MPs to the fitness of honey bees. Several research questions must be answered before MPs can be considered a potential threat to bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Correspondence: ; Tel.: +49-152-2676-3431
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada;
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
| | - Christie M. Sayes
- Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA;
| | - Saad N. AL-Kahtani
- Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Showket A. Dar
- Division of Agricultural Entomology, KVK-Kargil II, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 191111, India;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft Frankfurt am Main, Goethe-Universität, 61440 Oberursel, Germany;
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
- Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA;
- Center for Integrative Toxicology, Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
68
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Chhilar JS, Yu W, Moon A, Xu J. Trained Immunity in Anopheles gambiae: Antibacterial Immunity Is Enhanced by Priming via Sugar Meal Supplemented With a Single Gut Symbiotic Bacterial Strain. Front Microbiol 2021; 12:649213. [PMID: 33995307 PMCID: PMC8121176 DOI: 10.3389/fmicb.2021.649213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Mosquitoes have evolved an effective innate immune system. The mosquito gut accommodates various microbes, which play a crucial role in shaping the mosquito immune system during evolution. The resident bacteria in the gut microbiota play an essential role in priming basal immunity. In this study, we show that antibacterial immunity in Anopheles gambiae can be enhanced by priming via a sugar meal supplemented with bacteria. Serratia fonticola S1 and Enterobacter sp. Ag1 are gut bacteria in mosquitoes. The intrathoracic injection of the two bacteria can result in an acute hemocoelic infection in the naïve mosquitoes with mortality of ∼40% at 24 h post-infection. However, the Enterobacter orSerratia primed mosquitoes showed a better 24 h survival upon the bacterial challenge. The priming confers the protection with a certain degree of specificity, the Enterobacter primed mosquitoes had a better survival upon the Enterobacter but not Serratia challenge, and the Serratia primed mosquitoes had a better survival upon the Serratia but not Enterobacter challenge. To understand the priming-mediated immune enhancement, the transcriptomes were characterized in the mosquitoes of priming as well as priming plus challenges. The RNA-seq was conducted to profile 10 transcriptomes including three samples of priming conditions (native microbiota, Serratia priming, and Enterobacter priming), six samples of priming plus challenges with the two bacteria, and one sample of injury control. The three priming regimes resulted in distinctive transcriptomic profiles with about 60% of genes affected by both bacteria. Upon challenges, different primed mosquitoes displayed different transcriptomic patterns in response to different bacteria. When a primed cohort was challenged with a heterogenous bacterium, more responsive genes were observed than when challenged with a homogenous bacterium. As expected, many canonical immune genes were responsive to the priming and challenge, but much more non-immune genes with various functions were also responsive in the contexts, which implies that the prior priming triggers a delicately coordinated systemic regulation that results in an enhanced immunity against the subsequent challenge. Besides the participation of typical immune pathways, the transcriptome data suggest the involvement of lysosome and metabolism in the context. Overall, this study demonstrated a trained immunity via priming with bacteria in diet.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Ashmita Pandey
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Patrick Trainor
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Jainder S. Chhilar
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Alex Moon
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
69
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
70
|
Kapheim KM, Johnson MM, Jolley M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 2021; 11:2993. [PMID: 33542351 PMCID: PMC7862682 DOI: 10.1038/s41598-021-82573-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.
Collapse
Affiliation(s)
- Karen M. Kapheim
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Makenna M. Johnson
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Maggi Jolley
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
71
|
Xu X, Li X, Liu Z, Wang F, Fan L, Wu C, Yao Y. Knockdown of CYP301B1 and CYP6AX1v2 increases the susceptibility of the brown planthopper to beta-asarone, a potential plant-derived insecticide. Int J Biol Macromol 2021; 171:150-157. [PMID: 33418039 DOI: 10.1016/j.ijbiomac.2020.12.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
The cytochrome P450 monooxygenases of insects play crucial roles in the metabolic detoxification of insecticides. Our previous finding showed that two cytochrome P450 genes, both CYP301B1 and CYP6AX1v2, in the BPH underwent overexpression due to β-asarone. In this study, we investigated the molecular characteristics, expression patterns and functions of these two cytochrome P450 genes. The results showed that CYP301B1 had the highest expression level in the eggs, while CYP6AX1v2 was expressed in macropterous female adults. Moreover, the expression level of CYP301B1 in the head was higher than that in the integument, fat body and gut. The expression level of CYP6AX1v2 in the fat body and gut was higher than that in head and integument. Importantly, silencing CYP301B1 and CYP6AX1v2 separately could increase the sensitivity, resulting in significant higher mortality of BPH following treatment with β-asarone. Our findings indicated that CYP301B1 and CYP6AX1v2 could contribute to the resistance of BPH to β-asarone, and these two genes may be involved in the detoxification metabolism of β-asarone in BPH.
Collapse
Affiliation(s)
- Xueliang Xu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Zirong Liu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fenshan Wang
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Linjuan Fan
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Caiyun Wu
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yingjuan Yao
- Applied Agricultural Micro-organism Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
72
|
Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol 2020; 28:1010-1021. [PMID: 32680791 DOI: 10.1016/j.tim.2020.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada; Department of Surgery, Schulich School of Medicine, London, ON, N6A 5C1, Canada.
| |
Collapse
|