51
|
Arora D, Sharma PK, Siddiqui MH, Shukla Y. Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie 2017; 137:35-45. [PMID: 28263777 DOI: 10.1016/j.biochi.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
52
|
Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses. Am J Transplant 2017; 17:320-327. [PMID: 27232285 PMCID: PMC5124552 DOI: 10.1111/ajt.13887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 01/25/2023]
Abstract
Cell damage and death releases alarmins, self-derived immunomodulatory molecules that recruit and activate the immune system. Unfortunately, numerous processes critical to the transplantation of allogeneic materials result in the destruction of donor and recipient cells and may trigger alarmin release. Alarmins, often described as damage-associated molecular patterns, together with exogenous pathogen-associated molecular patterns, are potent orchestrators of immune responses; however, the precise role that alarmins play in alloimmune responses remains relatively undefined. We examined evolving concepts regarding how alarmins affect solid organ and allogeneic hematopoietic cell transplantation outcomes and the mechanisms by which self molecules are released. We describe how, once released, alarmins may act alone or in conjunction with nonself materials to contribute to cytokine networks controlling alloimmune responses and their intensity. It is becoming recognized that this class of molecules has pleotropic functions, and certain alarmins can promote both inflammatory and regulatory responses in transplant models. Emerging evidence indicates that alarmins and their receptors may be promising transplantation biomarkers. Developing the therapeutic ability to support alarmin regulatory mechanisms and the predictive value of alarmin pathway biomarkers for early intervention may provide opportunities to benefit graft recipients.
Collapse
Affiliation(s)
- Benjamin M. Matta
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dawn K. Reichenbach
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hēth R. Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Hēth R. Turnquist, PhD,
| |
Collapse
|
53
|
Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 2017; 89:46-57. [PMID: 26759047 DOI: 10.1016/j.kint.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension and Georges-Köhler-Haus for Biomedical Research and Transplantation, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
54
|
Galluzzi L, Kepp O, Chan FKM, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:103-130. [PMID: 27959630 DOI: 10.1146/annurev-pathol-052016-100247] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065; .,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France;
| | | | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; .,INSERM, U1138, 75006 Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; .,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden.,Pôle de Biologie, Hôpital Européen George Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
55
|
Simvastatin pretreatment reduces caspase-9 and RIPK1 protein activity in rat cardiac allograft ischemia-reperfusion. Transpl Immunol 2016; 37:40-45. [DOI: 10.1016/j.trim.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022]
|
56
|
Liu Q, Turnquist HR. Controlling the burn and fueling the fire: defining the role for the alarmin interleukin-33 in alloimmunity. Curr Opin Organ Transplant 2016; 21:45-52. [PMID: 26709577 DOI: 10.1097/mot.0000000000000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a general update on recent developments in the immunobiology of IL-33 and IL-33-targeted immune cells. We also discuss emerging concepts regarding the potential role IL-33 appears to play in altering alloimmune responses mediating host-versus-graft and graft-versus-host alloresponses. RECENT FINDINGS Stromal cells and leukocytes display regulated expression of IL-33 and may actively or passively secrete this pleotropic cytokine. Type 2 innate lymphoid cells and a large proportion of tissue resident regulatory T cells (Treg) express membrane-bound suppressor of tumorigenicity 2 (ST2), the IL-33 receptor. Although Treg are appreciated suppressors of the inflammatory function of immune cells, both type 2 innate lymphoid cells and tissue resident Treg could play key roles in tissue repair and homeostasis. The functions of IL-33 in transplantation are poorly understood. However, like other disease models, the functions of IL-33 in alloimmunity appear to be quite pleiotropic. IL-33 is associated with immune regulation and graft protection in cardiac transplant settings. Yet, it is highly proinflammatory and stimulates lethal graft-versus-host disease through its capacity to stimulate type 1 immunity. SUMMARY Intensive studies on IL-33/ST2 signaling pathways and ST2 cell populations in solid organ and cell transplantation are warranted. A better understanding of this important pathway will provide promising therapeutic targets controlling pathogenic alloimmune responses, as well as potentially facilitating the function of regulatory and reparative immune cells posttransplantation.
Collapse
Affiliation(s)
- Quan Liu
- aThomas E. Starzl Transplantation Institute and Department of Surgery, Pittsburgh, Pennsylvania, USA bDepartment of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China cDepartment of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania , USA
| | | |
Collapse
|
57
|
Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D. Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis 2015; 6:e1975. [PMID: 26583318 PMCID: PMC4670925 DOI: 10.1038/cddis.2015.316] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Necroptosis is a type of regulated cell death dependent on the activity of receptor-interacting serine/threonine-protein (RIP) kinases. However, unlike apoptosis, it is caspase independent. Increasing evidence has implicated necroptosis in the pathogenesis of disease, including ischemic injury, neurodegeneration, viral infection and many others. Key players of the necroptosis signalling pathway are now widely recognized as therapeutic targets. Necrostatins may be developed as potent inhibitors of necroptosis, targeting the activity of RIPK1. Necrostatin-1, the first generation of necrostatins, has been shown to confer potent protective effects in different animal models. This review will summarize novel insights into the involvement of necroptosis in specific injury of different organs, and the therapeutic platform that it provides for treatment.
Collapse
Affiliation(s)
- H Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - T Jaffer
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - S Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Z Wang
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - A Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - D Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
58
|
Kang JW, Kim SJ, Cho HI, Lee SM. DAMPs activating innate immune responses in sepsis. Ageing Res Rev 2015; 24:54-65. [PMID: 25816752 DOI: 10.1016/j.arr.2015.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Sepsis refers to the deleterious and non-resolving systemic inflammatory response of the host to microbial infection and is the leading cause of death in intensive care units. The pathogenesis of sepsis is highly complex. It is principally attributable to dysregulation of the innate immune system. Damage-associated molecular patterns (DAMPs) are actively secreted by innate immune cells and/or released passively by injured or damaged cells in response to infection or injury. In the present review, we highlight emerging evidence that supports the notion that extracellular DAMPs act as crucial proinflammatory danger signals. Furthermore, we discuss the potential of a wide array of DAMPs as therapeutic targets in sepsis.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea.
| |
Collapse
|
59
|
Choi HS, Kang JW, Lee SM. Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res 2015; 166:292-303. [PMID: 25936762 DOI: 10.1016/j.trsl.2015.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
We investigated the protective mechanisms of melatonin (MLT) associated with necroptosis signaling and damage-associated molecular patterns, which are mediated by the activation of pattern recognition receptors in liver fibrosis. Rats were given an intraperitoneal injection of carbon tetrachloride (CCl4) dissolved in olive oil (1:3, vol/vol) twice a week (0.5 mL/kg) for 8 weeks. During this period, MLT was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 administration increased hepatic hydroxyproline content and hepatocellular damage. MLT attenuated these increases. The expression levels of transforming growth factor β1 and α-smooth muscle actin that were increased by chronic CCl4 exposure were attenuated by MLT. CCl4 significantly increased receptor-interacting protein 1 (RIP1) expression, the formation of the RIP1 and RIP3 necrosome complex, and the level of mixed lineage kinase domain-like protein in liver tissue, which were attenuated by MLT. MLT also attenuated CCl4-induced increases in serum high-mobility group box 1 (HMGB1) and interleukin 1α, as well as the interaction between HMGB1 receptors for advanced glycation end products (RAGE). The increases in toll-like receptor 4 expression, p38, c-Jun N-terminal kinases phosphorylation, and nuclear factor κB translocation were suppressed by MLT. MLT attenuated the overexpression of RAGE, increased level of early growth response protein 1, and increased messenger RNA level of macrophage inflammatory protein 2. Our findings suggest MLT may prevent liver fibrosis by inhibiting necroptosis-associated inflammatory signaling.
Collapse
Affiliation(s)
- Hyo-Sun Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea.
| |
Collapse
|
60
|
|
61
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517:311-20. [PMID: 25592536 DOI: 10.1038/nature14191] [Citation(s) in RCA: 1580] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
Regulated cell death has essential functions in development and in adult tissue homeostasis. Necroptosis is a newly discovered pathway of regulated necrosis that requires the proteins RIPK3 and MLKL and is induced by death receptors, interferons, toll-like receptors, intracellular RNA and DNA sensors, and probably other mediators. RIPK1 has important kinase-dependent and scaffolding functions that inhibit or trigger necroptosis and apoptosis. Mouse-model studies have revealed important functions for necroptosis in inflammation and suggested that it could be implicated in the pathogenesis of many human inflammatory diseases. We discuss the mechanisms regulating necroptosis and its potential role in inflammation and disease.
Collapse
Affiliation(s)
- Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Peter Vandenabeele
- 1] VIB Inflammation Research Center, Ghent University, UGhent-VIB Research Building FSVM, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium. [3] Methusalem program, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
62
|
|
63
|
|
64
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 1479=1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
|
66
|
|
67
|
|
68
|
|
69
|
|
70
|
|
71
|
|
72
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 order by 1-- ocnp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
|
74
|
|
75
|
|
76
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 2810=2810-- wbae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and make_set(6705=6705,9963)-- tutl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
|
79
|
|
80
|
|
81
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 6610=1325-- ftul] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 order by 1-- qnpz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
83
|
|
84
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and 9718=9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
|
86
|
|
87
|
|
88
|
|
89
|
|
90
|
|
91
|
|
92
|
|
93
|
|
94
|
|
95
|
|
96
|
|
97
|
|
98
|
|
99
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 having 5375=9999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Necroptosis and its role in inflammation. Nature 2015. [DOI: 10.1038/nature14191 and make_set(6705=6705,9963)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|