51
|
The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacol Rep 2022; 74:1149-1165. [PMID: 35997950 PMCID: PMC9395814 DOI: 10.1007/s43440-022-00394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
The unprecedented pandemic of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to COVID-19, is threatening global health. Over the last 2 years, we have witnessed rapid progress in research focusing on developing new antiviral vaccines and drugs, as well as in academic and clinical efforts to understand the biology and pathology of COVID-19. The roles of proteases among master regulators of SARS-CoV-2 invasion and replication and their pivotal roles in host defence against this pathogen, including programmed cell death, have not been well established. Our understanding of protease function in health and disease has increased considerably over the last two decades, with caspases, matrix metalloproteases, and transmembrane serine proteases representing the most prominent examples. Therefore, during the COVID-19 pandemic, these enzymes have been investigated as potential molecular targets for therapeutic interventions. Proteases that are responsible for SARS-CoV-2 cell entry and replication, such as TMPRSS2, ACE2 or cathepsins, are screened with inhibitor libraries to discover lead structures for further drug design that would prevent virus multiplication. On the other hand, proteases that orchestrate programmed cell death can also be harnessed to enhance the desired demise of infected cells through apoptosis or to attenuate highly inflammatory lytic cell death that leads to undesired cytokine storms, a major hallmark of severe COVID-19. Given the prominent role of proteases in SARS-CoV-2-induced cell death, we discuss the individual roles of these enzymes and their catalytic interactions in the pathology of COVID-19 in this article. We provide a rationale for targeting proteases participating in cell death as potential COVID-19 treatments and identify knowledge gaps that might be investigated to better understand the mechanism underlying SARS-CoV-2-induced cell death.
Collapse
|
52
|
Blanch-Ruiz MA, Ortega-Luna R, Gómez-García G, Martínez-Cuesta MÁ, Álvarez Á. Role of Neutrophil Extracellular Traps in COVID-19 Progression: An Insight for Effective Treatment. Biomedicines 2021; 10:31. [PMID: 35052711 PMCID: PMC8772933 DOI: 10.3390/biomedicines10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has resulted in a pandemic with over 270 million confirmed cases and 5.3 million deaths worldwide. In some cases, the infection leads to acute respiratory distress syndrome (ARDS), which is triggered by a cytokine storm and multiple organ failure. Clinical hematological, biochemical, coagulation, and inflammatory markers, such as interleukins, are associated with COVID-19 disease progression. In this regard, neutrophilia, neutrophil-to-lymphocyte ratio (NLR), and neutrophil-to-albumin ratio (NAR), have emerged as promising biomarkers of disease severity and progression. In the pathophysiology of ARDS, the inflammatory environment induces neutrophil influx and activation in the lungs, promoting the release of cytokines, proteases, reactive oxygen species (ROS), and, eventually, neutrophil extracellular traps (NETs). NETs components, such as DNA, histones, myeloperoxidase, and elastase, may exert cytotoxic activity and alveolar damage. Thus, NETs have also been described as potential biomarkers of COVID-19 prognosis. Several studies have demonstrated that NETs are induced in COVID-19 patients, and that the highest levels of NETs are found in critical ones, therefore highlighting a correlation between NETs and severity of the disease. Knowledge of NETs signaling pathways, and the targeting of points of NETs release, could help to develop an effective treatment for COVID-19, and specifically for severe cases, which would help to manage the pandemic.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Guillermo Gómez-García
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
| | - Maria Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (G.G.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
53
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2. Over the past year, COVID-19 has posed a significant threat to global health. Although the infection is associated with mild symptoms in many patients, a significant proportion of patients develop a prothrombotic state due to a combination of alterations in coagulation and immune cell function. The purpose of this review is to discuss the pathophysiological characteristics of COVID-19 that contribute to the immunothrombosis. RECENT FINDINGS Endotheliopathy during COVID-19 results in increased multimeric von Willebrand factor release and the potential for increased platelet adhesion to the endothelium. In addition, decreased anticoagulant proteins on the surface of endothelial cells further alters the hemostatic balance. Soluble coagulation markers are also markedly dysregulated, including plasminogen activator inhibitor-1 and tissue factor, leading to COVID-19 induced coagulopathy. Platelet hyperreactivity results in increased platelet-neutrophil and -monocyte aggregates further exacerbating the coagulopathy observed during COVID-19. Finally, the COVID-19-induced cytokine storm primes neutrophils to release neutrophil extracellular traps, which trap platelets and prothrombotic proteins contributing to pulmonary thrombotic complications. SUMMARY Immunothrombosis significantly contributes to the pathophysiology of COVID-19. Understanding the mechanisms behind COVID-19-induced coagulopathy will lead to future therapies for patients.
Collapse
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| |
Collapse
|
55
|
Bonnet B, Cosme J, Dupuis C, Coupez E, Adda M, Calvet L, Fabre L, Saint-Sardos P, Bereiziat M, Vidal M, Laurichesse H, Souweine B, Evrard B. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine 2021; 73:103622. [PMID: 34678611 PMCID: PMC8526358 DOI: 10.1016/j.ebiom.2021.103622] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background SARS-CoV-2 has been responsible for considerable mortality worldwide, owing in particular to pulmonary failures such as ARDS, but also to other visceral failures and secondary infections. Recent progress in the characterization of the immunological mechanisms that result in severe organ injury led to the emergence of two successive hypotheses simultaneously tested here: hyperinflammation with cytokine storm syndrome or dysregulation of protective immunity resulting in immunosuppression and unrestrained viral dissemination. Methods In a prospective observational monocentric study of 134 patients, we analysed a panel of plasma inflammatory and anti-inflammatory cytokines and measured monocyte dysregulation via their membrane expression of HLA-DR. We first compared the results of patients with moderate forms hospitalized in an infectious disease unit with those of patients with severe forms hospitalized in an intensive care unit. In the latter group of patients, we then analysed the differences between the surviving and non-surviving groups and between the groups with or without secondary infections. Findings Higher blood IL-6 levels, lower quantitative expression of HLA-DR on blood monocytes and higher IL-6/mHLA-DR ratios were statistically associated with the risk of severe forms of the disease and among the latter with death and the early onset of secondary infections. Interpretation The unique immunological profile in patients with severe COVID-19 corresponds to a moderate cytokine inflammation associated with severe monocyte dysregulation. Individuals with major CSS were rare in our cohort of hospitalized patients, especially since the use of corticosteroids, but formed a very severe subgroup of the disease. Funding None.
Collapse
Affiliation(s)
- Benjamin Bonnet
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Justine Cosme
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Claire Dupuis
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Elisabeth Coupez
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mireille Adda
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laure Calvet
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Laurie Fabre
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Saint-Sardos
- Laboratoire de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Marine Bereiziat
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Magali Vidal
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Henri Laurichesse
- Service de Maladies Infectieuses et Tropicales, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Souweine
- Service de Médecine Intensive et Réanimation, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bertrand Evrard
- Service d'Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France; Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
56
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|
57
|
Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021; 12:680134. [PMID: 34149717 PMCID: PMC8206563 DOI: 10.3389/fimmu.2021.680134] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|