51
|
Nerdal PT, Peters C, Oberg HH, Zlatev H, Lettau M, Quabius ES, Sousa S, Gonnermann D, Auriola S, Olive D, Määttä J, Janssen O, Kabelitz D. Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:3059-3068. [PMID: 27619996 DOI: 10.4049/jimmunol.1600913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Patrik Theodor Nerdal
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hristo Zlatev
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, F-13009 Marseille, France.,CNRS, UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille University, UM 105, F-13284 Marseille, France; and
| | - Jorma Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany;
| |
Collapse
|
52
|
Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139:976-85. [PMID: 27012367 DOI: 10.1002/ijc.30109] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Sourav Paul
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| | - Girdhari Lal
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| |
Collapse
|
53
|
Hu Y, Cui Q, Luo C, Luo Y, Shi J, Huang H. A promising sword of tomorrow: Human γδ T cell strategies reconcile allo-HSCT complications. Blood Rev 2015; 30:179-88. [PMID: 26654098 DOI: 10.1016/j.blre.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/06/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially a curative therapeutic option for hematological malignancies. In clinical practice, transplantation associated complications greatly affected the final therapeutical outcomes. Currently, primary disease relapse, graft-versus-host disease (GVHD) and infections remain the three leading causes of a high morbidity and mortality in allo-HSCT patients. Various strategies have been investigated in the past several decades including human γδ T cell-based therapeutical regimens. In different microenvironments, human γδ T cells assume features reminiscent of classical Th1, Th2, Th17, NKT and regulatory T cells, showing diverse biological functions. The cytotoxic γδ T cells could be utilized to target relapsed malignancies, and recently regulatory γδ T cells are defined as a novel implement for GVHD management. In addition, human γδ Τ cells facilitate control of post-transplantation infections and participate in tissue regeneration and wound healing processes. These features potentiate γδ T cells a versatile therapeutical agent to target transplantation associated complications. This review focuses on insights of applicable potentials of human γδ T cells reconciling complications associated with allo-HSCT. We believe an improved understanding of pertinent γδ T cell functions would be further exploited in the design of innovative immunotherapeutic approaches in allo-HSCT, to reduce mortality and morbidity, as well as improve quality of life for patients after transplantation.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| | - Chao Luo
- Department of Hematology, Jinhua Central Hospital, No. 351 Mingyue Road, Jinhua 312000, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
54
|
Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther 2015; 158:24-40. [PMID: 26617219 DOI: 10.1016/j.pharmthera.2015.11.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of evidence points toward an important anti-cancer effect of bisphosphonates, a group of inexpensive, safe, potent, and long-term stable pharmacologicals that are widely used as osteoporosis drugs. To date, they are already used in the prevention of complications of bone metastases. Because the bisphosphonates can also reduce mortality in among other multiple myeloma, breast, and prostate cancer patients, they are now thoroughly studied in oncology. In particular, the more potent nitrogen-containing bisphosphonates have the potential to improve prognosis. The first part of this review will elaborate on the direct and indirect anti-tumoral effects of bisphosphonates, including induction of tumor cell apoptosis, inhibition of tumor cell adhesion and invasion, anti-angiogenesis, synergism with anti-neoplastic drugs, and enhancement of immune surveillance (e.g., through activation of γδ T cells and targeting macrophages). In the second part, we shed light on the current clinical position of bisphosphonates in the treatment of hematological and solid malignancies, as well as on ongoing and completed clinical trials investigating the therapeutic effect of bisphosphonates in cancer. Based on these recent data, the role of bisphosphonates is expected to further expand in the near future outside the field of osteoporosis and to open up new avenues in the treatment of malignancies.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
55
|
Miyashita T, Miki K, Kamigaki T, Makino I, Nakagawara H, Tajima H, Takamura H, Kitagawa H, Fushida S, Ahmed AK, Duncan MD, Harmon JW, Ohta T. Low-dose gemcitabine induces major histocompatibility complex class I-related chain A/B expression and enhances an antitumor innate immune response in pancreatic cancer. Clin Exp Med 2015; 17:19-31. [PMID: 26449615 DOI: 10.1007/s10238-015-0394-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/12/2015] [Indexed: 02/06/2023]
Abstract
We investigated the effect of gemcitabine (GEM), a key drug for pancreatic cancer treatment, on the expression of cell surface MICA/B in pancreatic cancer cells and resulting cytotoxicity of γδ T cells. We assessed the effect of GEM on the upregulation of cell surface MICA/B expression by flow cytometry, utilizing six pancreatic cancer cell lines. MICA and CD16 expressions from resected pancreatic cancer patient specimens, which received neoadjuvant chemotherapy (NAC) with GEM, were analyzed by immunohistochemistry. GEM could increase MICA/B expression on cell surface in pancreatic cancer cell lines (in 2 of 6 cell lines). This effect was most effectively at concentration not affecting cell growth of GEM (0.001 μM), because MICA/B negative population was appeared at concentration at cytostatic and cytotoxic effect to cell growth (0.1 and 10 μM). The cytotoxic activity of γδ T cells against PANC-1 was detected and functions through interactions between NKG2D and MICA/B. However, the enhancement of NKG2D-dependent cytotoxicity with increased MICA/B expression, by GEM treatment, was not observed. In addition, soluble MIC molecules were released from pancreatic cancer cell lines in culture supernatant with GEM treatment. Immunohistochemical staining demonstrated that MICA expression in tumor cells and CD16 positive cells surrounding tumors were significantly higher in the NAC group compared to that of the control group. There was a significant correlation between NAC and MICA expression, as well as NAC and CD16 positive cell expression. The present results indicate that low-dose GEM-induced MICA/B expression enhances innate immune function rather than cytotoxicity in pancreatic cancer. In addition, our result suggests that the inhibition of cleavage and release of MIC molecules from the tumor surface could potentially improve NKG2D-dependent cytotoxicity.
Collapse
Affiliation(s)
- Tomoharu Miyashita
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Kenji Miki
- Medinet Medical Institute, MEDINET Co., Ltd., 2-2-8 Tamagawadai, Setagaya-ku, Tokyo, 158-0096, Japan
| | - Takashi Kamigaki
- Medinet Medical Institute, MEDINET Co., Ltd., 2-2-8 Tamagawadai, Setagaya-ku, Tokyo, 158-0096, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Ali K Ahmed
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Mark D Duncan
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
56
|
Minculescu L, Sengeløv H. The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand J Immunol 2015; 81:459-68. [PMID: 25753378 DOI: 10.1111/sji.12289] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/27/2015] [Indexed: 01/18/2023]
Abstract
Although haematopoietic stem cell transplantation (HSCT) is a potential curative treatment for haematological malignancies, it is still a procedure associated with substantial morbidity and mortality due to toxicity, graft-versus-host disease (GVHD) and relapse. Recent attempts of developing safer transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies investigating the effect of γδ T cells in relation to HSCT are reviewed. In addition to phospho-antigen recognition by the γδ T cell receptor (TCR), γδ T cells express receptors of the natural killer (NK) and natural cytotoxicity (NCR) families enabling them to recognize and kill leukaemia cells. Antigen recognition independent from the major histocompatibility complex (MHC) allows for the theoretical possibility of mediating GVL without an allogeneic response in terms of GVHD. Early studies on the impact of γδ T cells in HSCT have reported conflicting results. Recent studies, however, do suggest an overall favourable effect of high γδ T cell immune reconstitution after HSCT; patients with elevated numbers of γδ T cells had a significantly higher overall survival rate and a decreased rate of acute GVHD compared to patients with low or normal γδ T cell counts. Further research in terms of effector mechanisms, subtypes and tissue distribution during the course of HSCT is needed to assess the potentially beneficial effects of γδ T cells in this setting.
Collapse
Affiliation(s)
- L Minculescu
- Department of Clinical Immunology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H Sengeløv
- Department of Haematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
57
|
Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells 2015; 33:2085-92. [PMID: 25873269 DOI: 10.1002/stem.2039] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.
Collapse
Affiliation(s)
- Qin Pan
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shuang Liu
- Department of Neurosurgery, Navy General Hospital, Beijing, People's Republic of China
| | - Ning Ning
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yingxin Xu
- Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
58
|
Van Acker HH, Anguille S, Van Tendeloo VF, Lion E. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy. Oncoimmunology 2015; 4:e1021538. [PMID: 26405575 PMCID: PMC4570126 DOI: 10.1080/2162402x.2015.1021538] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| |
Collapse
|
59
|
Pauza CD, Poonia B, Li H, Cairo C, Chaudhry S. γδ T Cells in HIV Disease: Past, Present, and Future. Front Immunol 2015; 5:687. [PMID: 25688241 PMCID: PMC4311680 DOI: 10.3389/fimmu.2014.00687] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/22/2014] [Indexed: 12/01/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 dysregulates γδ T cells as part of an immune evasion mechanism. Nearly three decades of research defined the effects of HIV on γδ T cells and how this impacts disease. With highly effective antiretroviral therapy providing virus suppression and longer survival, we expected a return to normal for γδ T cells. This is not the case. Even in patients with CD4 T cell reconstitution, normal γδ T cell levels and function are not recovered. The durable damage to Vδ2 T cells is paralleled by defects in NK, CD8 T cells, and dendritic cells. Whether these consequences of HIV stem from similar or distinct mechanisms are not known and effective means for recovering the full range of cellular immunity have not been discovered. These unanswered questions receive too little attention in the overall program of efforts to cure HIV this disease. Approved drugs capable of increasing Vδ2 T cell function are being tested in clinical trials for cancer and hold promise for restoring normal function in patients with HIV disease. The impetus for conducting clinical trials will come from understanding the significance of γδ T cells in HIV disease and what might be gained from targeted immunotherapy. This review traces the history and current progress of AIDS-related research on γδ T cells. We emphasize the damage to γδ T cells that persists despite effective virus suppression. These chronic immune deficits may be linked to the comorbidities of AIDS (cancer, cardiovascular disease, metabolic disease, and others) and will hinder efforts to eradicate HIV by cytotoxic T or NK cell killing. Here, we focus on one subset of T cells that may be critical in the pathogenesis of HIV and an attractive target for new immune-based therapies.
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Bhawna Poonia
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Haishan Li
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Cristiana Cairo
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Suchita Chaudhry
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
60
|
Wu D, Wu P, Wu X, Ye J, Wang Z, Zhao S, Ni C, Hu G, Xu J, Han Y, Zhang T, Qiu F, Yan J, Huang J. Ex vivo expanded human circulating Vδ1 γδT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology 2015; 4:e992749. [PMID: 25949914 DOI: 10.4161/2162402x.2014.992749] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022] Open
Abstract
Gamma delta T (γδT) cells are innate-like lymphocytes with strong, MHC-unrestricted cytotoxicity against cancer cells and show a promising prospect in adoptive cellular immunotherapy for various malignancies. However, the clinical outcome of commonly used Vγ9Vδ2 γδT (Vδ2 T) cells in adoptive immunotherapy for most solid tumors is limited. Here, we demonstrate that freshly isolated Vδ1 γδT (Vδ1 T) cells from human peripheral blood (PB) exhibit more potent cytotoxicity against adherent and sphere-forming human colon cancer cells than Vδ2 T cells in vitro. We also develop an optimized protocol to preferentially expand Vδ1 T cells isolated from PB of both healthy donors and colon cancer patients by in vitro short-term culture with phytohemagglutinin (PHA) and interleukin-7 (IL-7). Expanded Vδ1 T cells highly expressed cytotoxicity-related molecules, chemokine receptors and cytokines with enhanced cytolytic effect against adherent and sphere-forming colon cancer cells in a cell-to-cell contact dependent manner. In addition, PHA and IL-7 expanded Vδ1 T cells showed proliferation and survival advantage partly through an IL-2 signaling pathway. Furthermore, ex vivo expanded Vδ1 T cells also restrained the tumor growth and prolonged the tumor-burdened survival of human colon carcinoma xenografted mice. Our findings suggest that human PB Vδ1 T cells expanded by PHA and IL-7 are a promising candidate for anticancer adoptive immunotherapy for human solid tumors such as colon cancer.
Collapse
Key Words
- Antigens, Ags; CCSCs, colon cancer stem cells; FACS, fluorescence activated cell sorting; FCM, flow cytometry; γδT cells, gamma delta T cells; IL-7, interleukin-7; MACS, magnetic activated cell sorting; PB, peripheral blood; PHA, phytohemagglutinin; PBMCs, peripheral blood mononuclear cells; Vδ2 T cells, Vγ9Vδ2 γδT cells; Vδ1 T cells, Vδ1 γδT cells; Zol, Zoledronate.
- adoptive cellular immunotherapy
- cytotoxicity
- human PB Vδ1 T cells
- human PB Vδ2 T cells
- human colon cancer
Collapse
Affiliation(s)
- Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China ; Department of Thoracic Surgery; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Xianguo Wu
- Department of Clinical Laboratory; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Jun Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Gastroenterology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Zhen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Shuai Zhao
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Guoming Hu
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Jinghong Xu
- Department of Pathology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University ; Hangzhou, China
| | - Yuehua Han
- Department of Gastroenterology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Ting Zhang
- Department of Radiation Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Fuming Qiu
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology; James Graham Brown Cancer Center; University of Louisville ; Louisville, KY, USA
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention; National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital; Zhejiang University School of Medicine ; Hangzhou, China ; Department of Oncology; Second Affiliated Hospital; Zhejiang University School of Medicine; Zhejiang University , Hangzhou, China
| |
Collapse
|
61
|
γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 2015; 125:2349-58. [PMID: 25612623 DOI: 10.1182/blood-2014-09-599423] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/10/2015] [Indexed: 12/26/2022] Open
Abstract
We prospectively assessed functional and phenotypic characteristics of γδ T lymphocytes up to 7 months after HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) depleted of αβ(+) T cells and CD19(+) B cells in 27 children with either malignant or nonmalignant disorders. We demonstrate that (1) γδ T cells are the predominant T-cell population in patients during the first weeks after transplantation, being mainly, albeit not only, derived from cells infused with the graft and expanding in vivo; (2) central-memory cells predominated very early posttransplantation for both Vδ1 and Vδ2 subsets; (3) Vδ1 cells are specifically expanded in patients experiencing cytomegalovirus reactivation and are more cytotoxic compared with those of children who did not experience reactivation; (4) these subsets display a cytotoxic phenotype and degranulate when challenged with primary acute myeloid and lymphoid leukemia blasts; and (5) Vδ2 cells are expanded in vitro after exposure to zoledronic acid (ZOL) and efficiently lyse primary lymphoid and myeloid blasts. This is the first detailed characterization of γδ T cells emerging in peripheral blood of children after CD19(+) B-cell and αβ(+) T-cell-depleted haplo-HSCT. Our results can be instrumental to the development of clinical trials using ZOL for improving γδ T-cell killing capacity against leukemia cells. This trial was registered at www.clinicaltrials.gov as #NCT01810120.
Collapse
|
62
|
Karunakaran MM, Herrmann T. The Vγ9Vδ2 T Cell Antigen Receptor and Butyrophilin-3 A1: Models of Interaction, the Possibility of Co-Evolution, and the Case of Dendritic Epidermal T Cells. Front Immunol 2014; 5:648. [PMID: 25566259 PMCID: PMC4271611 DOI: 10.3389/fimmu.2014.00648] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominant TCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδ TCR-V genes used by murine dendritic epithelial T cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murine Vγ3, Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species.
Collapse
Affiliation(s)
- Mohindar M Karunakaran
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| | - Thomas Herrmann
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| |
Collapse
|
63
|
Oberg HH, Kellner C, Peipp M, Sebens S, Adam-Klages S, Gramatzki M, Kabelitz D, Wesch D. Monitoring Circulating γδ T Cells in Cancer Patients to Optimize γδ T Cell-Based Immunotherapy. Front Immunol 2014; 5:643. [PMID: 25566256 PMCID: PMC4269191 DOI: 10.3389/fimmu.2014.00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
The success of γδ T cell-based immunotherapy, where the cytotoxic activity of circulating γδ T lymphocytes is activated by nitrogen-containing bisphosphonates (n-BP), or possibly by bispecific antibodies or the combination of both, requires a profound knowledge of patients' γδ T cells. A possible influence of radio- or chemotherapy on γδ T cells as well as their reported exhaustion after repetitive treatment with n-BP or their lack of response to various cancers can be easily determined by the monitoring assays described in this perspective article. Monitoring the absolute cell numbers of circulating γδ T cell subpopulations in small volumes of whole blood from cancer patients and determining γδ T cell cytotoxicity using the Real-Time Cell Analyzer can give a more comprehensive assessment of a personalized tumor treatment. Possible future directions such as the combined usage of n-BP or phosphorylated antigens together with bispecific antibodies that selectively target γδ T cells to tumor-associated antigens, will be discussed. Such strategies induce expansion and enhance γδ T cell cytotoxicity and might possibly avoid their exhaustion and overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Christian Kellner
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Matthias Peipp
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Susanne Sebens
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Sabine Adam-Klages
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Martin Gramatzki
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|
64
|
Lameris R, de Bruin RCG, Schneiders FL, van Bergen en Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol Hematol 2014; 92:153-65. [PMID: 25195094 DOI: 10.1016/j.critrevonc.2014.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/11/2014] [Accepted: 08/08/2014] [Indexed: 01/10/2023] Open
Abstract
Over the past decades advances in bioengineering and expanded insight in tumor immunology have resulted in the emergence of novel bispecific antibody (bsAb) constructs that are capable of redirecting immune effector cells to the tumor microenvironment. (Pre-) clinical studies of various bsAb constructs have shown impressive results in terms of immune effector cell retargeting, target dependent activation and the induction of anti-tumor responses. This review summarizes recent advances in the field of bsAb-therapy and limitations that were encountered. Furthermore, we will discuss potential future developments that can be expected to take the bsAb approach successfully forward.
Collapse
Affiliation(s)
- Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul M P van Bergen en Henegouwen
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
65
|
Poggi A, Zocchi MR. γδ T Lymphocytes as a First Line of Immune Defense: Old and New Ways of Antigen Recognition and Implications for Cancer Immunotherapy. Front Immunol 2014; 5:575. [PMID: 25426121 PMCID: PMC4226920 DOI: 10.3389/fimmu.2014.00575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Among γδT cells, the Vδ1 subset, resident in epithelial tissues, is implied in the defense against viruses, fungi, and certain hematological malignancies, while the circulating Vδ2 subpopulation mainly respond to mycobacteria and solid tumors. Both subsets can be activated by stress-induced molecules (MIC-A, MIC-B, ULBPs) to produce pro-inflammatory cytokines and lytic enzymes and destroy bacteria or damaged cells. γδT lymphocytes can also recognize lipids, as those associated to M. tuberculosis, presented by the CD1 molecule, or phosphoantigens (P-Ag), either autologous, which accumulates in virus-infected cells, or microbial produced by prokaryotes and parasites. In cancer cells, P-Ag accumulate due to alterations in the mevalonate pathway; recently, butyrophilin 3A1 has been shown to be the presenting molecule for P-Ag. Of interest, aminobisphosphonates indirectly activate Vδ2 T cells inducing the accumulation of P-Ag. Based on these data, γδT lymphocytes are attractive effectors for cancer immunotherapy. However, the results obtained in clinical trials so far have been disappointing: this review will focus on the possible reasons of this failure as well as on suggestions for implementation of the therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS-AOU San Martino-IST , Genoa , Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele , Milan , Italy
| |
Collapse
|
66
|
Kabelitz D, Kalyan S, Oberg HH, Wesch D. Human Vδ2 versus non-Vδ2 γδ T cells in antitumor immunity. Oncoimmunology 2014; 2:e23304. [PMID: 23802074 PMCID: PMC3661159 DOI: 10.4161/onci.23304] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023] Open
Abstract
The Vδ2 and non-Vδ2 (mainly Vδ1) subsets of human γδ T cells have distinct homing patterns and recognize different types of ligands, yet both exert potent antitumor effects. While the T-cell receptor of Vδ2 T cells primarily recognizes tumor cell-derived pyrophosphates, non-Vδ2 γδ T cells preferentially recognize stress-associated surface antigens. Here, we discuss the pros and cons of Vδ2 versus non-Vδ2 γδ T cells as tools for future immunotherapeutic interventions against cancer.
Collapse
|
67
|
Marcus A, Eshhar Z. Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer. Expert Opin Biol Ther 2014; 14:947-54. [PMID: 24661086 DOI: 10.1517/14712598.2014.900540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chimeric antigen (or antibody) receptors (CAR) are fusion proteins typically combining an antibody-derived targeting fragment with signaling domains capable of activating immune cells. Recent clinical trials have shown the tremendous potential of adoptive cell transfer (ACT) of autologous T cells engineered to express a CD19-specific CAR targeting B-cell malignancies. Building on this approach, ACT therapies employing allogeneic CAR-expressing cytotoxic cells are now being explored. AREAS COVERED The basic principles of CAR-ACT are introduced. The potential benefits as well as problems of using allogeneic CAR-modified cells against tumor antigens are discussed. Various approaches to allogeneic CAR therapy are presented, including donor leukocyte infusion, CAR-redirected γδ T cells and natural killer cells, strategies to avoid graft-versus-host disease, modulation of lymphocyte migration, and exploitation of graft-versus-host reactivity. EXPERT OPINION CAR-modified allogeneic cells have the potential to act as universal effector cells, which can be administered to any patient regardless of MHC type. Such universal effector cells could be used as an 'off-the-shelf' cell-mediated treatment for cancer.
Collapse
Affiliation(s)
- Assaf Marcus
- University of California, Department of Molecular and Cell Biology, Cancer Research Laboratory Berkeley , Berkeley, CA 94720-3200 , USA
| | | |
Collapse
|
68
|
Oberg HH, Peipp M, Kellner C, Sebens S, Krause S, Petrick D, Adam-Klages S, Röcken C, Becker T, Vogel I, Weisner D, Freitag-Wolf S, Gramatzki M, Kabelitz D, Wesch D. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res 2014; 74:1349-60. [PMID: 24448235 DOI: 10.1158/0008-5472.can-13-0675] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of human γδ T cells from healthy donors to kill pancreatic ductal adenocarcinoma (PDAC) in vitro and in vivo in immunocompromised mice requires the addition of γδ T-cell-stimulating antigens. In this study, we demonstrate that γδ T cells isolated from patients with PDAC tumor infiltrates lyse pancreatic tumor cells after selective stimulation with phosphorylated antigens. We determined the absolute numbers of γδ T-cell subsets in patient whole blood and applied a real-time cell analyzer to measure their cytotoxic effector function over prolonged time periods. Because phosphorylated antigens did not optimally enhance γδ T-cell cytotoxicity, we designed bispecific antibodies that bind CD3 or Vγ9 on γδ T cells and Her2/neu (ERBB2) expressed by pancreatic tumor cells. Both antibodies enhanced γδ T-cell cytotoxicity with the Her2/Vγ9 antibody also selectively enhancing release of granzyme B and perforin. Supporting these observations, adoptive transfer of γδ T cells with the Her2/Vγ9 antibody reduced growth of pancreatic tumors grafted into SCID-Beige immunocompromised mice. Taken together, our results show how bispecific antibodies that selectively recruit γδ T cells to tumor antigens expressed by cancer cells illustrate the tractable use of endogenous γδ T cells for immunotherapy.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Authors' Affiliations: Institute of Immunology; Division of Stem Cell Transplantation and Immunotherapy; Institute for Experimental Medicine; Institute of Pathology; Clinic of General and Thoracic Surgery; Institute for Medical Informatics and Statistic, Christian-Albrechts-University Kiel; Municipal Hospital, Department of Surgery; and Clinic of Gynaecology and Obstetrics, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J. γδ T cells for cancer immunotherapy: A systematic review of clinical trials. Oncoimmunology 2014; 3:e27572. [PMID: 24734216 PMCID: PMC3984269 DOI: 10.4161/onci.27572] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
γδ T cells contribute to the front line of lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. They can be readily expanded to high numbers in vivo and in vitro, starting from the blood of cancer patients, and a number of Phase I trials have demonstrated that these cells can be employed in cancer immunotherapy. Sufficient patients have received γδ T cell-based immunotherapies in the context of clinical trials to evaluate their utility, and to inform the direction of new trials. A systematic approach was used to identify Phase I, Phase II, and feasibility studies testing γδ T cell-based immunotherapy in cancer patients. Studies were excluded from further analysis if they did not provide patient-specific data. Data were compiled to evaluate efficacy, with stratification by treatment approach. When possible, comparisons were made with the efficacy of second-line conventional therapeutic approaches for the same malignancy. Twelve eligible studies were identified, providing information on 157 patients who had received γδ T cell-based immunotherapy. The comparison of objective response data suggests that γδ T cell-based immunotherapy is superior to current second-line therapies for advanced renal cell carcinoma and prostate cancer, but not for non-small cell lung carcinoma. An evaluation of pooled data from 132 published in vitro experiments shows a consistent improvement in the cytotoxicity of γδ T cells in the presence of antitumor antibodies. Immunotherapy using γδ T cells alone shows promising clinical activity, but there is a strong preclinical rationale for combining this treatment modality with cancer-targeting antibodies to augment its efficacy.
Collapse
Affiliation(s)
| | | | | | - Kenth Gustafsson
- UCL Institute of Child Health; Molecular Immunology Unit; London, UK
| | | |
Collapse
|
70
|
Hope CM, Grace BS, Pilkington KR, Coates PT, Bergmann IP, Carroll RP. The immune phenotype may relate to cancer development in kidney transplant recipients. Kidney Int 2014; 86:175-83. [PMID: 24429406 DOI: 10.1038/ki.2013.538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/01/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
High regulatory T-cell (Treg) numbers predict recurrent cutaneous squamous cell carcinoma in kidney transplant recipients, and the Treg immune phenotype may identify kidney transplant recipients at risk of developing squamous cell carcinoma and/or solid-organ cancer. To investigate this, a total of 116 kidney transplant recipients, of whom 65 had current or past cancer, were immune-phenotyped and followed up prospectively for a median of 15 months. Higher Treg (CD3+CD4+FOXP3+CD25(Hi)CD127(Lo)) proportion and numbers significantly increased the odds of developing cancer (odds ratios (95% CI) 1.61 (1.17-2.20) and 1.03 (1.00-1.06), respectively) after adjusting for age, gender, and duration of immunosuppression. Class-switched memory B cells (CD19+CD27+IgD-) had a significant association to cancer, 1.04 (1.00-1.07). Receiver operator characteristic (ROC) curves for squamous cell carcinoma development within 100 days of immune phenotyping were significant for Tregs, memory B cells, and γδ T cells (AUC of 0.78, 0.68, and 0.65, respectively). After cancer resection, Treg, NK cell, and γδ T-cell numbers fell significantly. Immune-phenotype profiles associated with both squamous cell carcinoma and solid-organ cancer in kidney transplant recipients and depended on the presence of cancer tissue. Thus, immune profiling could be used to stratify kidney transplant recipients at risk of developing cancers to identify those who could qualify for prevention therapy.
Collapse
Affiliation(s)
- Christopher M Hope
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Blair S Grace
- 1] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia [2] The Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), Adelaide, South Australia, Australia
| | - Katherine R Pilkington
- 1] Detmold Family Imaging Facility, Hanson Institute, Adelaide, South Australia, Australia [2] Department of Haematology, South Australia Pathology, Adelaide, South Australia, Australia
| | - Patrick T Coates
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ivo P Bergmann
- Department of Nephrology and Hypertension, University Hospital Berne, Berne, Switzerland
| | - Robert P Carroll
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
71
|
Amé-Thomas P, Tarte K. The yin and the yang of follicular lymphoma cell niches: role of microenvironment heterogeneity and plasticity. Semin Cancer Biol 2013; 24:23-32. [PMID: 23978491 DOI: 10.1016/j.semcancer.2013.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 12/20/2022]
Abstract
Follicular lymphoma (FL) results from the malignant transformation of germinal center B cells and is characterized by recurrent genetic alterations providing a direct growth advantage or facilitating interaction with tumor microenvironment. In agreement, accumulating evidences suggest a dynamic bidirectional crosstalk between FL B cells and surrounding non-malignant cells within specialized tumor niches in both invaded lymph nodes and bone marrow. Infiltrating stromal cells, macrophages, and T/NK cell subsets either contribute to anti-tumor immune response, or conversely form a tumor supportive network promoting FL B cell survival, growth, and drug resistance. This review depicts the phenotypic heterogeneity and functional plasticity of the most important FL cell partners and describes their complex interplay. We also unravel how malignant B cells recruit and subvert accessory immune and stromal cells to trigger their polarization toward a supportive phenotype. Based on these observations, innovative therapeutic approaches have been recently proposed, in order to benefit from local anti-tumor immunity and/or to selectively target the protective cell niche.
Collapse
Affiliation(s)
- Patricia Amé-Thomas
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France
| | - Karin Tarte
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France; Etablissement Français du Sang Bretagne, Rennes, France.
| |
Collapse
|
72
|
Du XZ, Li QY, Du FW, He ZG, Wang J. Sodium Valproate Sensitizes Non-Small Lung Cancer A549 Cells to γδ T-Cell-Mediated Killing through Upregulating the Expression of MICA. J Biochem Mol Toxicol 2013; 27:492-8. [PMID: 23918508 DOI: 10.1002/jbt.21513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 06/25/2013] [Accepted: 07/12/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Xian-zhi Du
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| | - Qiong-ya Li
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| | - Fa-wang Du
- Department of Respiratory Medicine; Suining Central Hospital; Suining 629000 People's Republic of China
| | - Zheng-guang He
- Department of Respiratory Medicine; Suining Central Hospital; Suining 629000 People's Republic of China
| | - Juan Wang
- Department of Respiratory Medicine; The Second Affiliated Hospital, Chongqing Medical University; Chongqing 400010 People's Republic of China
| |
Collapse
|
73
|
The effects of age and viral serology on γδ T-cell numbers and exercise responsiveness in humans. Cell Immunol 2013; 284:91-7. [DOI: 10.1016/j.cellimm.2013.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022]
|
74
|
Ramsay AG. Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity. Br J Haematol 2013; 162:313-25. [PMID: 23691926 DOI: 10.1111/bjh.12380] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/03/2013] [Indexed: 01/21/2023]
Abstract
The tumour microenvironment plays a dual role in cancer: it can promote tumour progression by establishing pro-tumour survival conditions but can also suppress tumour progression by killing cancer cells or inhibiting their outgrowth. These dynamically interconnected processes are under intense investigation to better understand cancer pathophysiology and allow identification of new therapeutic approaches. The ability of cancer cells to evade anti-tumour T-cell activity in the microenvironment has recently been accepted as a hallmark of cancer progression. This review will highlight the most promising therapeutic approach aimed at activating anti-tumour T-cell immunity in the cancer microenvironment: blocking inhibitory immune regulatory proteins (immune checkpoint ligands and receptors). There is emerging evidence that haematological tumours co-opt immune checkpoints as a major immune resistance mechanism. Pre-clinical findings indicate that targeted therapies and blockade of immune checkpoints could be combined to promote therapeutic synergy and long-term anti-tumour immunity to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Alan G Ramsay
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|