51
|
Chapple SJ, Puszyk WM, Mann GE. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring. Free Radic Biol Med 2015; 88:212-220. [PMID: 26279476 DOI: 10.1016/j.freeradbiomed.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life.
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - William M Puszyk
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
52
|
Kim DH, Sung B, Kang YJ, Hwang SY, Kim MJ, Yoon JH, Im E, Kim ND. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int J Oncol 2015; 47:2226-32. [PMID: 26498863 DOI: 10.3892/ijo.2015.3200] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Seong Yeon Hwang
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jeong Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Eunok Im
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
53
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
54
|
Chen X, Liu J, Feng WK, Wu X, Chen SY. MiR-125b protects against ethanol-induced apoptosis in neural crest cells and mouse embryos by targeting Bak 1 and PUMA. Exp Neurol 2015; 271:104-11. [PMID: 26024858 DOI: 10.1016/j.expneurol.2015.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 04/16/2015] [Indexed: 01/23/2023]
Abstract
MicroRNAs are a class of small noncoding RNAs that have been implicated in regulation of a broad range of cellular and physiologic processes, including apoptosis. The objective of this study is to elucidate the roles of miR-125b in modulating ethanol-induced apoptosis in neural crest cells (NCCs) and mouse embryos. We found that treatment with ethanol resulted in a significant decrease in miR-125b expression in NCCs and in mouse embryos. We also validated that Bcl-2 antagonist killer 1 (Bak1) and p53-upregulated modulator of apoptosis (PUMA) are the direct targets of miR-125b in NCCs. In addition, over-expression of miR-125b significantly reduced ethanol-induced increase in Bak1 and PUMA protein expression, caspase-3 activation, and apoptosis in NCCs, indicating that miR-125b can modulate ethanol-induced apoptosis by the regulation of Bcl-2 and p53 pathways. Furthermore, microinjection of miR-125b mimic resulted in a significant increase in miR-125b expression and a decrease in the protein expression of Bak1 and PUMA in ethanol-exposed mouse embryos. Up-regulation of miR-125b also significantly reduced ethanol-induced caspase-3 activation and diminished ethanol-induced growth retardation in mouse embryos. This is the first demonstration that miR-125b can prevent ethanol-induced apoptosis and that microinjection of miRNA mimic can prevent ethanol-induced embryotoxicity.
Collapse
Affiliation(s)
- Xiaopan Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Wen-ke Feng
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, KY 40292, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shao-yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
55
|
Sulforaphane protects human umbilical vein cells against lipotoxicity by stimulating autophagy via an AMPK-mediated pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
56
|
Glade MJ, Meguid MM. A Glance at… Broccoli, glucoraphanin, and sulforaphane. Nutrition 2015; 31:1175-8. [PMID: 26004191 DOI: 10.1016/j.nut.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 02/07/2023]
Affiliation(s)
| | - Michael M Meguid
- Professor Emeritus, Surgery, Neuroscience and Nutrition, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, New York
| |
Collapse
|
57
|
Dang YM, Huang G, Chen YR, Dang ZF, Chen C, Liu FL, Guo YF, Xie XD. Sulforaphane inhibits the proliferation of the BIU87 bladder cancer cell line via IGFBP-3 elevation. Asian Pac J Cancer Prev 2014; 15:1517-20. [PMID: 24641360 DOI: 10.7314/apjcp.2014.15.4.1517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM To investigate effects of sulforaphane on the BIU87 cell line and underlying mechanisms involving IGFBP-3. METHODS Both BIU87 and IGFBP-3-silenced BIU87 cells were treated with sulforaphane. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis were determined via flow cytometry. Quantitative polymerase chain reaction and Western blotting were applied to analyze the expression of IGFBP-3 and NF-κB at both mRNA and protein levels. RESULTS Sulforaphane (80 μM) treatment could inhibit cell proliferation, inducing apoptosis and cell cycle arrest at G2/M phase. All these effects could be antagonized by IGFBP-3 silencing. Furthermore, sulforaphane (80 μM) could down-regulate NF-κB expression while elevating that of IGFBP-3. CONCLUSIONS Sulforaphane could suppress the proliferation of BIU87 cells via enhancing IGFBP-3 expression, which negatively regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ya-Mei Dang
- First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR. Modulatory effect of Decalepis hamiltonii on ethanol-induced toxicity in transgenic Drosophila model of Parkinson's disease. Neurochem Int 2014; 80:1-6. [PMID: 25451756 DOI: 10.1016/j.neuint.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/04/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Overexpression of human α-synuclein gene in Drosophila can reduce lifespan, and we have performed lifespan assay for A30P and A53Tα-synuclein transgenic and control (elav-GAL4, UAS-A30P, UAS-A53T) flies. Our results showed reduced lifespan of transgenic flies compared to controls. We have also investigated behavioral responses, levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) and activities of catalase (CAT) and superoxide dismutase (SOD) in a combined genetic-toxin model (Ethanol-A30P or A53Tα-synuclein models) and controls. Our results showed that sedation time (ST50) of A30P or A53Tα-synuclein PD model flies was significantly lower while recovery time (RC50) of them was remarkably higher compared to control flies. The levels of oxidative markers (ROS and LPO) were significantly higher and the activities of CAT and SOD were lower in transgenic flies that underwent ethanol exposure compared to control. Based on our earlier studies on antioxidant properties of isolated and characterized molecules from Decalepis hamiltonii (Dh) root extract, its protective effect in this combined toxicity model has been investigated. Surprisingly, Dh treatment increased ST50 and decreased RC50 values of transgenic flies. Moreover, we showed that Dh pre-treatment could decrease the levels of ROS and LPO and increase the activities of CAT and SOD in the ethanol-α-synuclein model. This is the first report on protective effects of natural antioxidants in A30P or A53Tα-synuclein PD model flies against oxidative stress induced by ethanol.
Collapse
Affiliation(s)
- Samaneh Reiszadeh Jahromi
- DST Unit on Evolution and Genetics, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Mohammad Haddadi
- DST Unit on Evolution and Genetics, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - T Shivanandappa
- DST Unit on Evolution and Genetics, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - S R Ramesh
- DST Unit on Evolution and Genetics, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India.
| |
Collapse
|
59
|
Sun H, Chen X, Yuan F, Liu J, Zhao Y, Chen SY. Involvement of seven in absentia homolog-1 in ethanol-induced apoptosis in neural crest cells. Neurotoxicol Teratol 2014; 46:26-31. [PMID: 25193017 PMCID: PMC4250320 DOI: 10.1016/j.ntt.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023]
Abstract
Ethanol-induced apoptosis in selected cell populations is a major component of pathogenesis underlying ethanol-induced teratogenesis. However, there is a fundamental gap in understanding how ethanol leads to apoptosis in embryos. In this study, we investigate the role of seven in absentia homolog-1 (Siah1) protein, an E3 ubiquitin ligase, in ethanol-induced apoptosis. Using an in vitro model of neural crest cell (NCC), JoMa1.3 cells, we found that exposure to 100mM ethanol resulted in a significant increase in Siah1 mRNA expression in NCCs, an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Treatment with 100mM ethanol for 24h also significantly increased the protein expression of Siah1 in JoMa1.3 cells. The nuclear translocation and accumulation of Siah1 was evidenced in the cells exposed to ethanol. In addition, we have found that the inhibition of Siah1 function with siRNA prevents ethanol-induced increase in Siah1 protein expression and nuclear translocation in NCCs. Down-regulation of Siah1 by siRNA also greatly diminished ethanol-induced cell death and caspase-3 activation, indicating that inhibition of Siah1 can attenuate ethanol-induced apoptosis. These results strongly suggest that Siah1 plays an important role in ethanol-induced apoptosis in NCCs.
Collapse
Affiliation(s)
- Haijing Sun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Xiaopan Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Fuqiang Yuan
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Jie Liu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, United States
| | - Shao-Yu Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States.
| |
Collapse
|
60
|
Folkard DL, Melchini A, Traka MH, Al‐Bakheit A, Saha S, Mulholland F, Watson A, Mithen RF. Suppression of
LPS
‐induced transcription and cytokine secretion by the dietary isothiocyanate sulforaphane. Mol Nutr Food Res 2014; 58:2286-96. [DOI: 10.1002/mnfr.201400550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/27/2014] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Maria H. Traka
- Food and Health Programme Institute of Food Research Norwich UK
| | | | - Shikha Saha
- Food and Health Programme Institute of Food Research Norwich UK
| | | | - Andrew Watson
- Analytical Science Unit Institute of Food Research Norwich UK
| | | |
Collapse
|
61
|
Smith SM, Garic A, Flentke GR, Berres ME. Neural crest development in fetal alcohol syndrome. ACTA ACUST UNITED AC 2014; 102:210-20. [PMID: 25219761 DOI: 10.1002/bdrc.21078] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/22/2014] [Indexed: 01/24/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the "classic" fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology and include genes important for neural crest development, including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol's effects on neural crest also informs our understanding of ethanol's CNS pathologies.
Collapse
Affiliation(s)
- Susan M Smith
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | | | | |
Collapse
|
62
|
Joya X, Garcia-Algar O, Salat-Batlle J, Pujades C, Vall O. Advances in the development of novel antioxidant therapies as an approach for fetal alcohol syndrome prevention. ACTA ACUST UNITED AC 2014; 103:163-77. [PMID: 25131946 DOI: 10.1002/bdra.23290] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/08/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
Abstract
Ethanol is the most common human teratogen, and its consumption during pregnancy can produce a wide range of abnormalities in infants known as fetal alcohol spectrum disorder (FASD). The major characteristics of FASD can be divided into: (i) growth retardation, (ii) craniofacial abnormalities, and (iii) central nervous system (CNS) dysfunction. FASD is the most common cause of nongenetic mental retardation in Western countries. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, the induction of oxidative stress is believed to be one central process linked to the development of the disease. Currently, there is no known effective strategy for prevention (other than alcohol avoidance) or treatment. In the present review we will provide the state of art in the evidence for the use of antioxidants as a potential therapeutic strategy for the treatment using whole-embryo and culture cells models of FASD. We conclude that the imbalance of the intracellular redox state contributes to the pathogenesis observed in FASD models, and we suggest that antioxidant therapy can be considered a new efficient strategy to mitigate the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Xavier Joya
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
63
|
Vastenhout KJ, Tornberg RH, Johnson AL, Amolins MW, Mays JR. High-performance liquid chromatography-based method to evaluate kinetics of glucosinolate hydrolysis by Sinapis alba myrosinase. Anal Biochem 2014; 465:105-13. [PMID: 25068719 DOI: 10.1016/j.ab.2014.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
Isothiocyanates (ITCs) are one of several hydrolysis products of glucosinolates, plant secondary metabolites that are substrates for the thioglucohydrolase myrosinase. Recent pursuits toward the development of synthetic non-natural ITCs have consequently led to an exploration of generating these compounds from non-natural glucosinolate precursors. Evaluation of the myrosinase-dependent conversion of select non-natural glucosinolates to non-natural ITCs cannot be accomplished using established ultraviolet-visible (UV-Vis) spectroscopic methods. To overcome this limitation, an alternative high-performance liquid chromatography (HPLC)-based analytical approach was developed where initial reaction velocities were generated from nonlinear reaction progress curves. Validation of this HPLC method was accomplished through parallel evaluation of three glucosinolates with UV-Vis methodology. The results of this study demonstrate that kinetic data are consistent between both analytical methods and that the tested glucosinolates respond similarly to both Michaelis-Menten and specific activity analyses. Consequently, this work resulted in the complete kinetic characterization of three glucosinolates with Sinapis alba myrosinase, with results that were consistent with previous reports.
Collapse
Affiliation(s)
| | | | - Amanda L Johnson
- Department of Chemistry, Augustana College, Sioux Falls, SD 57197, USA
| | - Michael W Amolins
- Department of Chemistry, Augustana College, Sioux Falls, SD 57197, USA
| | - Jared R Mays
- Department of Chemistry, Augustana College, Sioux Falls, SD 57197, USA.
| |
Collapse
|
64
|
Czarnobaj J, Bagnall KM, Bamforth JS, Milos NC. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro. Arch Oral Biol 2014; 59:500-12. [PMID: 24631632 DOI: 10.1016/j.archoralbio.2014.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected.
Collapse
Affiliation(s)
- Joanna Czarnobaj
- Department of Dentistry, Faculty of Medicine and Dentistry, 7020 Katz Building University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| | - Keith M Bagnall
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Box 17666 Al Ain, United Arab Emirates.
| | - J Steven Bamforth
- Department of Medical Genetics, Faculty of Medicine and Dentistry, 8-53 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | - Nadine C Milos
- Department of Dentistry, Faculty of Medicine and Dentistry, 7020 Katz Building University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
65
|
Chen X, Liu J, Chen SY. Over-expression of Nrf2 diminishes ethanol-induced oxidative stress and apoptosis in neural crest cells by inducing an antioxidant response. Reprod Toxicol 2013; 42:102-9. [PMID: 23994065 DOI: 10.1016/j.reprotox.2013.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 02/05/2023]
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a key transcription factor that regulates antioxidant defense in cells. In this study, we investigated whether over-expression of Nrf2 can prevent ethanol-induced oxidative stress and apoptosis in neural crest cells (NCCs). We found that transfection of NCCs with pcDNA3.1-Nrf2 resulted in statistically significant increases in the Nrf2 protein levels in control and ethanol-exposed NCCs as compared to the cells transfected with control vector. Luciferase reporter gene assay revealed that over-expression of Nrf2 significantly increased the antioxidant response element (ARE) promoter activity in NCCs. Nrf2 over-expression also increased the protein expression and activities of Nrf2 target antioxidants in NCCs. In addition, over-expression of Nrf2 significantly decreased ROS generation and diminished apoptosis in ethanol-exposed NCCs. These results demonstrate that over-expression of Nrf2 can confer protection against ethanol-induced oxidative stress and apoptosis in NCCs by the induction of an antioxidant response.
Collapse
Affiliation(s)
- Xiaopan Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | | | | |
Collapse
|
66
|
Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest. Vascul Pharmacol 2013; 59:44-51. [PMID: 23810908 DOI: 10.1016/j.vph.2013.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis.
Collapse
|