51
|
Won HY, Lee JY, Ryu D, Kim HT, Chang SY. The Role of Plasmacytoid Dendritic Cells in Gut Health. Immune Netw 2019; 19:e6. [PMID: 30838161 PMCID: PMC6399095 DOI: 10.4110/in.2019.19.e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.
Collapse
Affiliation(s)
- Hye-Yeon Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Ju-Young Lee
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Dahye Ryu
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Hyung-Taek Kim
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Sun-Young Chang
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| |
Collapse
|
52
|
Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Front Immunol 2019; 10:1741. [PMID: 31417548 PMCID: PMC6682668 DOI: 10.3389/fimmu.2019.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background: The leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is considered a cancer stem cell marker, and is often overexpressed in tumors. The interaction between Lgr5 and the immune-related tumor microenvironment is not completely understood. The aim of this study was to examine the role of Lgr5 in the microenvironment of gastric cancer (GC), and to explore possible immunological mechanisms influencing Lgr5 expression that are governed by regulatory T cells. Methods: Lgr5 expression was examined in 180 GC tumors by immunohistochemistry, and in 80 pairs of GC tumors for analysis of Th1/Th2 cytokines by ELISA. In addition, SGC7901 cells were co-cultured with patient-derived Tregs, varying concentrations of TGF-β1, TGF-β1 neutralizing antibody, or TGF-β receptor inhibitor SB431542, and Lgr5 and β-catenin expression were examined by qRT-PCR and western blot. Results: In this study, an immunosuppressive microenvironment was associated with high Lgr5 expression in GC. Furthermore, Lgr5 expression was up-regulated in GC cells co-cultured with Tregs or treated with exogenous TGF-β1. This up-regulation was partially inhibited by the TGF-β1 neutralizing antibody, or TGF-β1 receptor antagonist SB431542. β-catenin was up-regulated with high Lgr5 expression induced by exogenous TGF-β1, and this up-regulation was inhibited by SB431542. An increased number of Tregs and high Lgr5 expression in GC tissues were significantly associated with low overall survival. Conclusion: Tregs promoted increased Lgr5 expression in GC cells via TGF-β1 and TGF-β1 signaling pathway, which may involve activation of the Wnt signaling pathway. High Lgr5 expression via TGF-β confer poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Xiao-Sun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xian-Ke Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sabir Ahmad
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong-Xian Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Long Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cai-Zhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Ren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ji-Ren Yu
| |
Collapse
|
53
|
Ouchi R, Kawano T, Yoshida H, Ishii M, Miyasaka T, Ohkawara Y, Takayanagi M, Takahashi T, Ohno I. Maternal Separation as Early-Life Stress Causes Enhanced Allergic Airway Responses by Inhibiting Respiratory Tolerance in Mice. TOHOKU J EXP MED 2018; 246:155-165. [PMID: 30405003 DOI: 10.1620/tjem.246.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epidemiologic studies indicate that exposure to psychosocial stress in early childhood is a risk factor of adult-onset asthma, but the mechanisms of this relationship are poorly understood. Therefore, we examined whether early-life stress increases susceptibility to adult-onset asthma by inhibiting the development of respiratory tolerance. Neonatal BALB/c female mice were aerosolized with ovalbumin (OVA) to induce immune tolerance prior to immune sensitization with an intraperitoneal injection of OVA and the adjuvant aluminum hydroxide. Maternal separation (MS) was applied as an early-life stressor during the induction phase of immune tolerance. The mice were challenged with OVA aerosol in adulthood, and allergic airway responses were evaluated, including airway hyper-responsiveness to inhaled methacholine, inflammatory cell infiltration, bronchoalveolar lavage fluid levels of interleukin (IL)-4, IL-5, and IL-13, and serum OVA-specific IgE. We then evaluated the effects of MS on the development of regulatory T (Treg) cells in bronchial lymph nodes (BLN) and on splenocyte proliferation and cytokine expression. In mice that underwent MS and OVA tolerization, the allergic airway responses and OVA-induced proliferation and IL-4 expression of splenocytes were significantly enhanced. Furthermore, exposure to MS was associated with a lower number of Treg cells in the BLN. These findings suggest that exposure to early-life stress prevents the acquisition of respiratory tolerance to inhaled antigen due to insufficient Treg cell development, resulting in Th2-biased sensitization and asthma onset. We provide the evidence for inhibitory effects of early-life stress on immune tolerance. The present findings may help to clarify the pathogenesis of adult-onset asthma.
Collapse
Affiliation(s)
- Ryusuke Ouchi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Hitomi Yoshida
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Masato Ishii
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Yuichi Ohkawara
- Division of Experimental Allergy and Immunology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
54
|
Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine 2018; 40:336-348. [PMID: 30584008 PMCID: PMC6412016 DOI: 10.1016/j.ebiom.2018.12.034] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As part of the tumor microenvironment, the gastric microbiota play vital roles in tumor initiation, progression and metastasis, but stomach microhabitats are not always uniform. We aimed to characterize differences of gastric microbiota in stomach microhabitats associated with gastric cancer (GC) development. METHODS A cohort of 276 GC patients without preoperative chemotherapy was enrolled retrospectively, and 230 normal, 247 peritumoral and 229 tumoral tissues were obtained for gastric microbiota analysis targeting the 16S rRNA gene by MiSeq sequencing. The microbial diversity and composition, bacterial co-occurrence correlations and predictive functional profiles were compared across different microhabitats. FINDINGS GC-specific stomach microhabitats, not GC stages or types, determine the composition and diversity of the gastric microbiota. Most notably, bacterial richness was decreased in peritumoral and tumoral microhabitats, and the correlation network of abundant gastric bacteria was simplified in tumoral microhabitat. Helicobacter pylori (HP), Prevotella copri and Bacteroides uniformis were significantly decreased, whereas Prevotella melaninogenica, Streptococcus anginosus and Propionibacterium acnes were increased in tumoral microhabitat. Higher HP colonisation influenced the overall structure of the gastric microbiota in normal and peritumoral microhabitats. PiCRUSt analysis revealed that genes associated with nucleotide transport and metabolism and amino acid transport and metabolism were significantly enriched in tumoral microbiota, while gastric acid secretion was significantly higher in HP positive group of the tumoral microbiota. INTERPRETATION Our present study provided new insights into the roles of gastric microbiota in different stomach microhabitats in gastric carcinogenesis, especially the pathogenesis of HP. FUND: National Natural Science Foundation of China.
Collapse
|
55
|
Shi L, Yang L, Wu Z, Xu W, Song J, Guan W. Adenosine signaling: Next checkpoint for gastric cancer immunotherapy? Int Immunopharmacol 2018; 63:58-65. [PMID: 30075429 DOI: 10.1016/j.intimp.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
Abstract
Adenosine (ADO), generated by the ectonucleotidase CD39 and CD73 from ATP, interacts with its specific G protein-coupled receptors, which can impair anti-tumor immune responses inhibiting the infiltration and function of CD8+ T cell and natural killer cell. Recent studies have also identified that ADO pathway plays a critical role in tumor immune surveillance, especially for some non-solid cancers. In addition, although immune checkpoint therapy targeting ADO pathway in gastric cancer is still in an early phase, encouraging results have come out from some drugs targeting ADO pathway. Therefore, target ADO signaling may be a new promising strategy to treat gastric cancer. In this review, we summarized recent works on the role of ADO in cancer immunotherapy and also discussed relative mechanisms underlying the function of ADO signaling in cancer immune responses.
Collapse
Affiliation(s)
- Linsen Shi
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China; The Affiliated Drum Tower Clinical College of NanJing Medical University, Nanjing, PR China
| | - Lin Yang
- XuZhou Medical University, Xuzhou, PR China
| | - Zhaoyin Wu
- XuZhou Medical University, Xuzhou, PR China
| | - Wei Xu
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Jun Song
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China.
| | - Wenxian Guan
- Departments of Gastrointestinal surgery, the Affiliated Drum Tower hospital of NanJing Medical University, Nanjing, PR China.
| |
Collapse
|
56
|
Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol 2018; 322:63-73. [PMID: 30049538 DOI: 10.1016/j.jneuroim.2018.06.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) comprise a subset of dendritic cells characterized by their ability to produce large amount of type I interferon (IFN-I/α). Originally recognized for their role in modulating immune responses to viral stimulation, growing interest has been directed toward their contribution to tumorigenesis. Under normal conditions, Toll-like receptor (TLR)-activated pDCs exhibit robust IFN-α production and promote both innate and adaptive immune responses. In cancer, however, pDCs demonstrate an impaired response to TLR7/9 activation, decreased or absent IFN-α production and contribute to the establishment of an immunosuppressive tumor microenvironment. In addition to IFN-α production, pDCs can also act as antigen presenting cells (APCs) and regulate immune responses to various antigens. The significant role played by pDCs in regulating both the innate and adaptive components of the immune system makes them a critical player in cancer immunology. In this review, we discuss the development and function of pDCs as well as their role in innate and adaptive immunity. Finally, we summarize pDC contribution to cancer pathogenesis, with a special focus on primary malignant brain tumor, their significance in the era of immunotherapy and suggest potential strategies for pDC-targeted therapy.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Sreenivasulu Chintala
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, IU Simon Cancer Center, Indiana University, Indiana, USA.
| |
Collapse
|
57
|
Amatore F, Gorvel L, Olive D. Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opin Ther Targets 2018; 22:343-351. [PMID: 29468927 DOI: 10.1080/14728222.2018.1444753] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The recent success of checkpoint-inhibitors in cancer treatment paved the way for the development of new strategies of agonist and antagonist agents against B7 superfamily members. Inducible Co-Stimulator (ICOS), a co-stimulatory receptor for T-cell enhancement, arouses interest. Areas covered: We performed an extensive literature search with PUBMED using the keywords 'ICOS' and 'cancer' to discuss its involvement in oncogenesis, its expression in different malignancies, and its targeting in relevant preclinical studies. We also searched the Clinicaltrials.gov database for recent updates on early phase clinical trials. Expert opinion: ICOS/ICOSL axis has a dual effect and might participate in anti-tumour T cell response as well as a pro-tumour response due to its connection with regulatory T-cells (Tregs) suppressive activity. Therefore, both antagonist and agonist antibodies might be of interest in the targeting ICOS/ICOSL pathway for cancer treatment. In preclinical studies, ICOS agonist monoclonal antibodies (mAbs) have shown to potentiate the effect of inhibitory checkpoint blockade. In contrast, antagonistic anti-ICOS mAbs could not only inhibit lymphoid tumour cells expressing ICOS, but also dampen immunosuppressive Tregs. Two agonist and one antagonist mAbs are evaluated in phase I/II trials. Efficacy, safety, and combination strategies with anti-ICOS agonist or antagonist have yet to be specified.
Collapse
Affiliation(s)
- Florent Amatore
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| | - Laurent Gorvel
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| | - Daniel Olive
- a Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258 , Aix Marseille Université, Institut Paoli - Calmettes , Marseille , France
| |
Collapse
|
58
|
Liu W, Zhao J, Li Q, Wang Q, Zhou Y, Tong Z. Gastric cancer patients have elevated plasmacytoid and CD1c + dendritic cells in the peripheral blood. Oncol Lett 2018; 15:5087-5092. [PMID: 29552142 DOI: 10.3892/ol.2018.7990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are important in tumor immunology. Identifying DC subset markers in the peripheral blood, which are informative for gastric cancer stages, is not only useful for prognosis but may also provide mechanistic insights into processes facilitating therapy. The present study investigated plasmacytoid dendritic cells (pDCs) and myeloid CD1c+ dendritic cells (mDC1s) in the peripheral blood of patients with gastric cancer and healthy controls using flow cytometry. Using peripheral DC staining and subset analysis, patients with gastric cancer were identified to have substantially higher numbers of peripheral pDCs and mDC1s. In addition, there was a trend of elevated circulating pDCs with advanced stages and lymph node metastasis in gastric cancer, whereas no differences in circulating mDC1s were observed among the various groups. The results suggested that circulating pDCs are a positive prognostic indicator in patients with gastric cancer of different stages and highlighted the critical role of pDCs immunity in the development of gastric cancer.
Collapse
Affiliation(s)
- Weihuang Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Zhao
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiaoqi Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiaona Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ying Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zan Tong
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
59
|
Wu M, Chen X, Lou J, Zhang S, Zhang X, Huang L, Sun R, Huang P, Wang F, Pan S. TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget 2018; 7:44534-44544. [PMID: 27322208 PMCID: PMC5190116 DOI: 10.18632/oncotarget.10003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/29/2016] [Indexed: 01/09/2023] Open
Abstract
CD8+ regulatory T cells (Tregs) contribute to cancer progression and immune evasion. We previously reported that CD8+ Tregs could be induced in vitro by co-culture of CD8+ T cells with the OC cell lines SKOV3/A2780. Here, we described the role of TGF-β1 in CD8+ Treg induction by the OC microenvironment. OC patients expressed high levels of TGF-β1, as did the co-culture supernatant from CD8+ T cells and SKOV3. Additionally, TGF-β1 levels were positively correlated with CD8+ Treg percentages in OC. Neutralization experiments, cytokine studies and proliferation assays revealed that the in vitro-induced CD8+Tregs depended at least partially on up-regulated expression of TGF-β1 to exert their suppressive function. CD8+ T cells cultured with SKOV3 exhibited marked activation of p38 MAPK than CD8+ T cells cultured alone, which could be inhibited by TGF-β1-neutralizing antibody. Moreover, the p38 specific inhibitor SB203580 dose-dependently blocked the TGF-β1 activated conversion of CD8+ T cells into CD8+ Tregs. These data suggested that in vitro-induction of CD8+ Tregs depended in part on TGF-β1 activation of p38 MAPK signaling. Therefore, p38 MAPK could be a therapeutic target in OC anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Meng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Xian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Jianfang Lou
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shuping Zhang
- Department of Laboratory Medicine, The Affiliated Children Hospital, Nanjing Medical University, 210029, Nanjing, China
| | - Xiaojie Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| |
Collapse
|
60
|
Chen Q, Mo L, Cai X, Wei L, Xie Z, Li H, Li J, Hu Z. ICOS signal facilitates Foxp3 transcription to favor suppressive function of regulatory T cells. Int J Med Sci 2018; 15:666-673. [PMID: 29910670 PMCID: PMC6001412 DOI: 10.7150/ijms.23940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/04/2018] [Indexed: 12/16/2022] Open
Abstract
Inducible costimulator (ICOS) plays an important role in the suppressive immunity mediated by regulatory T cells (Tregs), but the molecular regulation mechanism is not well known. Here we performed a study to explore the possible mechanism by which ICOS regulates the suppressive functions and survival of Tregs. This study showed that both the ICOS and CD28 signal could promote the survival of Tregs. However, ICOS but not CD28 improved the suppressive function of Tregs. Mechanistic studies demonstrated that ICOS could induce the transcription activity of Foxp3, by facilitating the nuclear factor of activated T cells (NFAT): Foxp3 over NFAT: activator protein 1 (AP-1). The results of Q-PCR showed that AP1 downstream regulatory genes (IL-2 and IL-6) were down-regulated, and Foxp3 downstream regulatory genes (IL-4, IL-10 and TGF-β) were up-regulated. Further, ICOS promoted anti-apoptosis may be by activating protein kinase B (Akt) signal. These findings demonstrated that ICOS signal could facilitate Foxp3 transcription in favor of survival and suppressive function of Tregs.
Collapse
Affiliation(s)
- Qianmei Chen
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangsheng Cai
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lili Wei
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengneng Xie
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
61
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
62
|
Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer. Vaccine 2017; 35:5932-5938. [DOI: 10.1016/j.vaccine.2017.08.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 11/22/2022]
|
63
|
Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 2017; 66:819-832. [PMID: 28361232 PMCID: PMC5489643 DOI: 10.1007/s00262-017-1993-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
The cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also "edits" the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1-2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.
Collapse
Affiliation(s)
- Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Marta Wincenciak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
64
|
Nagase H, Takeoka T, Urakawa S, Morimoto-Okazawa A, Kawashima A, Iwahori K, Takiguchi S, Nishikawa H, Sato E, Sakaguchi S, Mori M, Doki Y, Wada H. ICOS+Foxp3+TILs in gastric cancer are prognostic markers and effector regulatory T cells associated withHelicobacter pylori. Int J Cancer 2016; 140:686-695. [DOI: 10.1002/ijc.30475] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hirotsugu Nagase
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Tomohira Takeoka
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Shinya Urakawa
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Akiko Morimoto-Okazawa
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Atsunari Kawashima
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Kota Iwahori
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology; Exploratory Oncology Research and Clinical Trial Center, National Cancer Center; Chiba Japan
| | - Eiichi Sato
- Department of Pathology; Institute of Medical Science (Medical Research Center), Tokyo Medical University; Tokyo Japan
| | - Shimon Sakaguchi
- Experimental Immunology; WPI Immunology Frontier Research Center, Osaka University; Osaka Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| |
Collapse
|
65
|
Tu JF, Ding YH, Ying XH, Wu FZ, Zhou XM, Zhang DK, Zou H, Ji JS. Regulatory T cells, especially ICOS + FOXP3 + regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016; 6:35056. [PMID: 27725696 PMCID: PMC5057140 DOI: 10.1038/srep35056] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumour, especially in Asia. Its prognosis is poor, and there are limited methods for predicting patient survival. This study was carried out to analyse the prognostic value of tumour-infiltrating lymphocytes (TILs), especially regulatory T cells (Tregs), in HCC patients. TILs were analysed in 57 randomly selected HCC patients. The prognostic effects of groups with high and low numbers were evaluated by the Kaplan-Meier and Cox model analyses. Although higher densities of CD3+, CD4+, and CD8+ cytotoxic lymphocytes (CTLs) as well as CD56+ NK cells and CD68+ macrophages were observed in peritumoural tissue, increased numbers of forkhead/winged helix transcription factor P3+ (FOXP3+) Tregs were found in intratumoural tissue. Additionally, regarding ICOS+ FOXP3+ Tregs, an increased prevalence in carcinoma was not only associated with the absolute number but also with the percentage of FOXP3+ cells. Higher Treg levels in tumour tissues indicated a worse prognosis, and the FOXP3+ Tregs/CD4+ T cells ratio was an independent prognostic factor for OS. Therefore, FOXP3+ Tregs, especially ICOS+ FOXP3+ Tregs, contribute to the immunosuppressive HCC microenvironment. High tumour-infiltrating Tregs are thought to be an unfavourable prognostic indicator of HCC.
Collapse
Affiliation(s)
- Jian-Fei Tu
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Xi-Hui Ying
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Fa-Zong Wu
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Xin-Mu Zhou
- Department of Pathology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Deng-Ke Zhang
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Jian-Song Ji
- Department of Radiology and Interventional Radiology, Lishui Central Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
66
|
Kanda M, Tanaka C, Kobayashi D, Tanaka H, Shimizu D, Shibata M, Takami H, Hayashi M, Iwata N, Niwa Y, Yamada S, Fujii T, Nakayama G, Fujiwara M, Kodera Y. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int J Cancer 2016; 139:2290-8. [PMID: 27459504 DOI: 10.1002/ijc.30286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
Prediction of tumor recurrence after curative resection is critical for determining the prognosis of patients with gastric cancer (GC). The initiation and progression of GC are associated with inappropriate immune responses caused by chronic inflammation of the gastric mucosa. To identify immunoregulatory molecules involved in GC progression, GC cell lines and 200 pairs of tumor and normal tissues from patients with GC were analyzed for gene expression, amplification and methylation as well as function of a differentially expressed gene. The transcriptome analysis revealed that marginal zone B and B1 cell specific protein (MZB1) was expressed at significantly decreased levels in primary GC tissues when compared with the corresponding normal gastric mucosa. PCR array analysis exploring genes expressed cooperatively with MZB1 revealed that differential expression of MZB1 mRNA in GC cell lines correlated positively with the levels of the mRNAs encoding estrogen receptor 1 and desumoylating isopeptidase 1. Hypermethylation of the MZB1 promoter was frequent in cell lines with decreased levels of MZB1 mRNA. siRNA-mediated knockdown of MZB1 significantly increased proliferation, invasion and migration of GC cell lines. Low MZB1 expression was an independent prognostic factor for recurrence after curative gastrectomy and was associated significantly with increased hematogenous recurrence. MZB1 acts as a suppressor of GC. Low MZB1 expression in the primary GC tissue is predictive of recurrence after curative resection.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Shibata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Niwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
67
|
Lombardi VC, Khaiboullina SF, Rizvanov AA. Plasmacytoid dendritic cells, a role in neoplastic prevention and progression. Eur J Clin Invest 2015; 45 Suppl 1:1-8. [PMID: 25524580 DOI: 10.1111/eci.12363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) are multifunctional bone-marrow-derived immune cells that are key players in bridging the innate and adaptive immune systems. Activation of pDCs through toll-like receptor agonists has proven to be an effective treatment for some neoplastic disorders. MATERIALS AND METHODS In this mini-review, we will explore the fascinating contribution of pDCs to neoplastic pathology and discuss their potential utilization in cancer immunotherapy. RESULTS Current research suggests that pDCs have cytotoxic potential and can effectively induce apoptosis of tumour-derived cells lines. They are also reported to display tolerogenic function with the ability to suppress T-cell proliferation, analogous to regulatory T cells. In this capacity, they are critical in the suppression of autoimmunity but can be exploited by tumour cells to circumvent the expansion of tumour-specific T cells, thereby allowing tumours to persist. CONCLUSION Several forms of skin cancer are successfully treated with the topical drug Imiquimod, which activates pDCs through toll-like receptor 7 engagement. Additionally, pDC-based anticancer vaccines have shown encouraging results for the treatment of melanoma in early trials. Future studies regarding the contributions of pDCs to malignancy will likely afford many opportunities for immunotherapy strategies.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, University of Nevada, Reno, NV, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | | | | |
Collapse
|