51
|
Yang FJ, Tan N, Zhang TY, Cheng T. Role of glutathione in ferroptosis of tumor cells. Shijie Huaren Xiaohua Zazhi 2021; 29:901-907. [DOI: 10.11569/wcjd.v29.i15.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a type of iron-dependent lipid peroxidation and reactive oxygen species (ROS)-induced regulatory cell death discovered in recent years, which is accompanied by the increase of ROS level and the decrease of antioxidant system components, such as glutathione peroxidase in enzyme antioxidants and glutathione in non-enzyme antioxidants. Glutathione (GSH) is the predominant low-molecular-weight antioxidant with a ubiquitous distribution inside the cell, and its steady-state level depends on the absorption rate of amino acid precursors, enzyme activity, recovery of glutathione disulfide, and the balance between oxidation and reduction. At present, targeted glutathione metabolism has been used in cancer treatment widely. Compared with combination therapy, GSH depletion as a single treatment strategy has a significant effect. Therefore, further understanding of the role of GSH in ferroptosis will provide new ideas and directions for cancer treatment.
Collapse
Affiliation(s)
- Feng-Juan Yang
- Department of Human Anatomy, Basic Medical College, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Ning Tan
- Scientific Experiment Center, Department of Human Anatomy, Basic Medical College Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Yu Zhang
- Department of Urology, the Affiliated Hospital, Guilin Medical University, Guilin 541004, Guangxi Zhuang Autonomous Region, China
| | - Tan Cheng
- Department of Human Anatomy, Basic Medical College, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
52
|
Wang R, Xing R, Su Q, Yin H, Wu D, Lv C, Yan Z. Knockdown of SFRS9 Inhibits Progression of Colorectal Cancer Through Triggering Ferroptosis Mediated by GPX4 Reduction. Front Oncol 2021; 11:683589. [PMID: 34336668 PMCID: PMC8322952 DOI: 10.3389/fonc.2021.683589] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Ferroptosis, a newly discovered form of programmed cell death characterized by lipid peroxidation, crafts a new perspective on cancer treatment. Serine and arginine rich splicing factor 9 (SFRS9) is frequently described as a proto-oncogene in cervical and bladder cancer. However, the role of SFRS9 in colorectal cancer (CRC) and whether SFRS9 exerts its function associated with ferroptosis is largely unknown. Herein, we found that the expression of SFRS9 mRNA and protein in the CRC tissues was obviously higher than that in the paracancerous tissues. Function assays revealed that SFRS9 overexpression (SFRS9-OE) significantly promoted cell viability, cell cycle progression and colony formation of CRC cells. While SFRS9 knockdown by shRNAs transfection inhibited these progressions. Furthermore, cell death and lipid peroxidation induced by ferroptosis inducers erastin and sorafenib were suppressed by SFRS9-OE. Bioinformatics analysis indicated that SFRS9 can bind to peroxidase 4 (GPX4) mRNA which is a central regulator of ferroptosis. Western blot showed that GPX4 protein expression was clearly elevated upon SFRS9-OE, while it was decreased in SFRS9-inhibited CRC cells. RNA immunoprecipitation experiment was carried out in HCT116 cells to confirm the binding of SFRS9 and GPX4 mRNA specifically. SiGPX4 transfection reversed the inhibitory effects of SFRS9-OE on the erastin and sorafenib-induced ferroptosis. Consistent with our in vitro observations, SFRS9 promoted the growth of tumors while SFRS9 knockdown significantly inhibited tumor growth in nude mice. In conclusion, SFRS9 represents an obstructive factor to ferroptosis by upregulating GPX4 protein expression, and knocking down SFRS9 might be an effective treatment for CRC.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chi Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
53
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
54
|
Chen Q, Ma X, Xie L, Chen W, Xu Z, Song E, Zhu X, Song Y. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. NANOSCALE 2021; 13:4855-4870. [PMID: 33624647 DOI: 10.1039/d0nr08757b] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferroptosis therapy, which applies ferroptotic inducers to produce lethal lipid peroxidation and induce the death of tumor cells, is regarded as a promising therapeutic strategy for cancer treatment. However, there is still a challenge regarding how to increase reactive oxygen species (ROS) accumulation in the tumor microenvironment (TME) to enhance antitumor efficacy. Herein, we designed a nanosystem coated with the FDA approved poly(lactic-co-glycolic acid) (PLGA) containing ferrous ferric oxide (Fe3O4) and chlorin E6 (Ce6) for synergistic ferroptosis-photodynamic anticancer therapy. The Fe3O4-PLGA-Ce6 nanosystem can dissociate in the acidic TME to release ferrous/ferric ions and Ce6. Then, the Fenton reaction between the released ferrous/ferric ions and intracellular excess hydrogen peroxide can occur to produce hydroxyl radicals (˙OH) and induce tumor cell ferroptosis. The released Ce6 can increase the generation and accumulation of ROS under laser irradiation to offer photodynamic therapy, which can boost ferroptosis in 4T1 cells. Moreover, magnetic monodisperse Fe3O4 loading provides excellent T2-weighted magnetic resonance imaging (MRI) properties. The Fe3O4-PLGA-Ce6 nanosystem possesses MRI ability and highly efficient tumor suppression with high biocompatibility in vivo due to the synergism of photodynamic and ferroptosis antitumor therapies.
Collapse
Affiliation(s)
- Qifang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xianbin Ma
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenjie Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
55
|
mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun 2021; 12:1589. [PMID: 33707434 PMCID: PMC7952727 DOI: 10.1038/s41467-021-21841-w] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) utilizes glutathione (GSH) to detoxify lipid peroxidation and plays an essential role in inhibiting ferroptosis. As a selenoprotein, GPX4 protein synthesis is highly inefficient and energetically costly. How cells coordinate GPX4 synthesis with nutrient availability remains unclear. In this study, we perform integrated proteomic and functional analyses to reveal that SLC7A11-mediated cystine uptake promotes not only GSH synthesis, but also GPX4 protein synthesis. Mechanistically, we find that cyst(e)ine activates mechanistic/mammalian target of rapamycin complex 1 (mTORC1) and promotes GPX4 protein synthesis at least partly through the Rag-mTORC1-4EBP signaling axis. We show that pharmacologic inhibition of mTORC1 decreases GPX4 protein levels, sensitizes cancer cells to ferroptosis, and synergizes with ferroptosis inducers to suppress patient-derived xenograft tumor growth in vivo. Together, our results reveal a regulatory mechanism to coordinate GPX4 protein synthesis with cyst(e)ine availability and suggest using combinatorial therapy of mTORC1 inhibitors and ferroptosis inducers in cancer treatment.
Collapse
|
56
|
Akimov Y, Aittokallio T. Re-defining synthetic lethality by phenotypic profiling for precision oncology. Cell Chem Biol 2021; 28:246-256. [PMID: 33631125 DOI: 10.1016/j.chembiol.2021.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
High-throughput functional and genomic screening techniques provide systematic means for phenotypic discovery. Using synthetic lethality (SL) as a paradigm for anticancer drug and target discovery, we describe how these screening technologies may offer new possibilities to identify therapeutically relevant and selective SL interactions by addressing some of the challenges that have made robust discovery of SL candidates difficult. We further introduce an extended concept of SL interaction, in which a simultaneous perturbation of two or more cellular components reduces cell viability more than expected by their individual effects, which we feel is highly befitting for anticancer applications. We also highlight the potential benefits and challenges related to computational quantification of synergistic interactions and cancer selectivity. Finally, we explore how tumoral heterogeneity can be exploited to find phenotype-specific SL interactions for precision oncology using high-throughput functional screening and the exciting opportunities these methods provide for the identification of subclonal SL interactions.
Collapse
Affiliation(s)
- Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway; Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
57
|
Feng D, Wang M, Zhang X, Wang J. Clinical characteristics and treatments of hereditary leiomyomatosis renal cell carcinoma: two case reports and literature review. Aktuelle Urol 2021; 52:58-63. [PMID: 32932527 DOI: 10.1055/a-1139-0697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The objective of this study is to discuss clinical characteristics and treatments of hereditary leiomyomatosis renal cell carcinoma on the basis of 2 cases and to review recent literature, in order to present medical advances. METHODS A 29-year old male patient came to our hospital because of a huge tumour on the right kidney. Enhanced CT showed that the tumour was about 15.5*10.5 cm, and was considered to be malignant. Another case was a 38-year old female patient. She complained was found to have a right kidney tumour in a routine physical examination. Enhanced CT showed an early-stage tumour of about 4.3*3.7 cm on the lower pole of the right kidney. The male patient underwent open radical nephrectomy and the female patient underwent laparoscopic radical nephrectomy and extensive retroperitoneal lymph node dissection. The two patients underwent genetic testing and were diagnosed as having hereditary leiomyomatosis with renal cell carcinoma. RESULTS The postoperative pathology in both patients revealed type 2 papillary renal cell carcinoma but with different prognosis. The male patient suffered multiple metastasis 10 months post-operation. The metastatic tumour of the abdominal wall was resected to confirm recurrence and hereditary leiomyomatosis renal cell carcinoma was diagnosed by the genetic test. While the female patient had a specific family history and uterine leiomyomas, the genetic test helped us to identify hereditary leiomyomatosis renal cell carcinoma pre-operation. Because of the early diagnosis and timely treatment, the female patient was considered to have a good prognosis. CONCLUSION Hereditary leiomyomatosis renal cell carcinoma is a rare hereditary disease resulting from FH gene mutation. There are currently no effective treatments.Our cases demonstrate that hereditary leiomyomatosis renal cell carcinoma is a very aggressive disease. Early screening and surveillance are recommended for patients with a family history or who are at risk of hereditary leiomyomatosis renal cell carcinoma. Surgical and palliative therapy still play an important role in clinical treatment.
Collapse
Affiliation(s)
- Dalin Feng
- Beijing Chao-Yang Hospital, urology surgery, Beijing
| | | | | | - Jianwen Wang
- Beijing Chao-Yang Hospital, urology surgery, Beijing
| |
Collapse
|
58
|
WITHDRAWN: Hereditary leiomyomatosis renal cell carcinoma: A rare case report. Urol Case Rep 2020. [DOI: 10.1016/j.eucr.2019.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
59
|
Zuo S, Yu J, Pan H, Lu L. Novel insights on targeting ferroptosis in cancer therapy. Biomark Res 2020; 8:50. [PMID: 33024562 PMCID: PMC7532638 DOI: 10.1186/s40364-020-00229-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis belongs to a novel form of regulated cell death. It is characterized by iron dependence, destruction of intracellular redox balance and non-apoptosis. And cellular structure and molecules level changes also occur abnormally during ferroptosis. It has been proved that ferroptosis exist widespreadly in many diseases, such as heart disease, brain damage or alzheimer disease. At the same time, the role of ferroptosis in cancer cannot be underestimated. More and more indications have told that ferroptosis is becoming a powerful weapon against cancer. In addition, therapies rely on ferroptosis have been applied to the clinic. Therefore, it is necessary to understand this newly discovered form of cell death and its connection with cancer. This review summarizes the mechanism of ferroptosis, ferroptosis inducers based on different targets and inspection methods. At last, we analyzed the relationship between ferroptosis and malignancies, in order to provide a novel theory basis for cancer treatment.
Collapse
Affiliation(s)
- Sipeng Zuo
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Jie Yu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Hui Pan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| | - Linna Lu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001 P. R. China
| |
Collapse
|
60
|
Xu Y, Qin Z, Ma J, Cao W, Zhang P. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur J Pharmacol 2020; 880:173198. [PMID: 32473167 DOI: 10.1016/j.ejphar.2020.173198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis is a new iron and reactive oxygen species dependent programmed cell death process which is different from apoptosis, necrosis, and autophagy. It is closely related to a number of disease progression including cancers, neurodegenerative disease, cerebral hemorrhage, liver disease, and renal failure. The development of different ferroptotic inducers has been proved as an efficient therapeutic strategy for a variety of chemoradiotherapy-resistant cancer cells and cancer stem cells. In addition, the development of ferroptotic inhibitors is also becoming an emerging research hotspot for the treatment of many non-cancerous diseases. Furthermore, the combination of nanotechnology with ferroptotic therapies has exhibited additional advantages such as enhanced targeting and/or stimuli-responsive ability to tumor microenvironment, ameliorated drug solubility, ease of preparation and the integration of multifunctional theranostic platforms to develop synergetic combined therapies of great clinical importance. This paper reviews the latest advances of using tailored ferroptotic nanoparticles and ferroptotic molecular probes to be relevant for the accurate diagnosis and treatment of different diseases. Finally, the opportunities and challenges of this burgeoning field were spotlighted to promote the rational design of nano-ferroptotic drugs or theranostic probes in the near future.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Zhuo Qin
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, PR China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, PR China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, PR China.
| |
Collapse
|
61
|
Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis. Cell Chem Biol 2020; 27:436-447. [PMID: 32275864 PMCID: PMC7597851 DOI: 10.1016/j.chembiol.2020.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a non-apoptotic mode of regulated cell death that is iron and lipid peroxidation dependent. As new mechanistic insight into ferroptotic effectors and how they are regulated in different disease contexts is uncovered, our understanding of the physiological and pathological relevance of this mode of cell death continues to grow. Along these lines, a host of pharmacological modulators of this pathway have been identified, targeting proteins involved in iron homeostasis; the generation and reduction of lipid peroxides; or cystine import and glutathione metabolism. Also, of note, many components of the ferroptosis cascade are target genes of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), indicating its critical role in mediating the ferroptotic response. In this review, we discuss the in vitro, in vivo, and clinical evidence of ferroptosis in disease, including a brief discussion of targeting upstream mediators of this cascade, including NRF2, to treat ferroptosis-driven diseases.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
62
|
Feng D, Yang Y, Han P, Wei X. The preliminary outcome of the combination of immunotherapy and targeted therapy after recurrence and metastasis for hereditary leiomyomatosis and renal cell cancer-a case report. Transl Androl Urol 2020; 9:789-793. [PMID: 32420185 PMCID: PMC7215000 DOI: 10.21037/tau.2019.12.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated kidney cancer is a rare and exceptionally aggressive, with early metastasis and die at a young age. Most reported patients usually present with back pain and hematuria, and died within 5 years after diagnosis. Currently, there is not a guideline or census about the management of HLRCC. On April 19, 2019, the Food and Drug Administration (FDA) of the USA approved the combination of pembrolizumab and axitinib for first-line treatment of patients with advanced renal cell carcinoma based on the results of KEYNOTE-426 trial. Thus, the combination of immunotherapy and targeted therapy should be considered for HLRCC. We present a case of 46-year-old man without family history, possessing specific mutation and sensitive to the combination of immunotherapy and targeted therapy. After he completed seven cycles of combined treatments, his discomfort improved and the lesions of pleura almost disappeared and the mass in the left kidney area was basically stable. This patient might be the first one to receive the combination therapy and the efficacy seemed acceptable.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yubo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
63
|
Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol 2020; 30:478-490. [PMID: 32413317 DOI: 10.1016/j.tcb.2020.02.009] [Citation(s) in RCA: 655] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Cell death is an essential feature of development in multicellular organisms, a critical driver of degenerative diseases, and can be harnessed for treating some cancers. Understanding the mechanisms governing cell death is critical for addressing its role in disease. Similarly, metabolism is essential for normal energy and biomolecule production, and goes awry in many diseases. Metabolism and cell death are tightly linked in the phenomenon of ferroptosis, a form of regulated cell death driven by peroxidation of phospholipids. Glutathione peroxidase 4 (GPX4) uses glutathione to protect cells from ferroptosis by eliminating phospholipid peroxides. Recent data have revealed glutathione/GPX4-independent axes for suppressing ferroptosis, and insight into the regulation of iron and mitochondria in ferroptosis. Ferroptosis has recently been implicated in multiple diseases, and functions as a tumor suppression mechanism. Ferroptosis induction is a promising approach in treating several conditions, including neoplastic diseases. Here, we summarize these recent advances.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA.
| | - Xuejun Jiang
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA.
| |
Collapse
|
64
|
Shi ZZ, Fan ZW, Chen YX, Xie XF, Jiang W, Wang WJ, Qiu YT, Bai J. Ferroptosis in Carcinoma: Regulatory Mechanisms and New Method for Cancer Therapy. Onco Targets Ther 2019; 12:11291-11304. [PMID: 31908494 PMCID: PMC6927606 DOI: 10.2147/ott.s232852] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a new form of programmed cell death with characteristic accumulation of reactive oxygen species (ROS) resulting from iron accumulation and lipid peroxidation. Ferroptosis is involved in many diseases, including cancer, and induction of ferroptosis has shown attractive antitumour activities. In this review, we summarize recent findings on the regulatory mechanisms of key regulators of ferroptosis, including the catalytic subunit solute carrier family 7 member 11 (SLC7A11), the glutathione peroxidase 4 (GPX4), p53 and non-coding RNAs, the correlations between ferroptosis and iron homeostasis or autophagy, ferroptosis-inducing agents and nanomaterials and the diagnostic and prognostic value of ferroptosis-associated genes in TCGA data.
Collapse
Affiliation(s)
- Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yun-Xia Chen
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiu-Feng Xie
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Wen-Jun Wang
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yun-Tan Qiu
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
65
|
Abstract
Ferroptosis is a form of iron-dependent, non-apoptotic regulated cell death, which is characterized by the accumulation of lipid hydroperoxides to lethal levels. Ferroptosis recently has been shown to have implications in diverse kidney diseases, such as acute kidney injury, polycystic kidney disease and renal cell carcinoma. This review summarizes current research on ferroptosis, its underlying mechanisms and its role in the progression of different kidney diseases to provide more information regarding treatment and prevention of these destructive diseases.
Collapse
|
66
|
Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol 2019; 61:158-166. [PMID: 31689495 DOI: 10.1016/j.semcancer.2019.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022]
Abstract
Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an autosomal dominant hereditary cancer syndrome with incomplete penetrance. It is caused by a germline amorphic allele of the FH gene, which encodes the TCA cycle enzyme, fumarate hydratase (FH). HLRCC patients are genetically predisposed to develop skin leiomyomas, uterine fibroids, and the aggressive kidney cancer of type 2 papillary morphology. Loss-of-heterozygocity at the FH locus that cause a complete loss of FH enzymatic function is always detected in these tumor tissues. Molecular pathway elucidation, genomic studies, and systematic genetics screens reported over the last two decades have identified several FH-inactivation driven pathways alterations, as well as rationally conceived treatment strategies that specifically target FH-/- tumor cells. These treatment strategies include ferroptosis induction, oxidative stress promotion, and metabolic alteration. As the fundamental biology of HLRCC continues to be uncovered, these treatment strategies continue to be refined and may one day lead to a strategy to prevent disease onset among HLRCC patients. With a more complete picture of HLRCC biology, the safe translation of experimental treatment strategies into clinical practice is achievable in the foreseeable future.
Collapse
Affiliation(s)
- Aikseng Ooi
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, 1703 East Mabel Street, 85721, Tucson, AZ, United States.
| |
Collapse
|
67
|
Targeting Glutathione Metabolism: Partner in Crime in Anticancer Therapy. Nutrients 2019; 11:nu11081926. [PMID: 31426306 PMCID: PMC6724225 DOI: 10.3390/nu11081926] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022] Open
Abstract
Glutathione (GSH) is the predominant low-molecular-weight antioxidant with a ubiquitous distribution inside the cell. The steady-state level of cellular GSH is dependent on the balance between synthesis, hydrolysis, recycling of glutathione disulphide (GSSG) as well as cellular extrusion of reduced, oxidized, or conjugated-forms. The augmented oxidative stress typical of cancer cells is accompanied by an increase of glutathione levels that confers them growth advantage and resistance to a number of chemotherapeutic agents. Targeting glutathione metabolism has been widely investigated for cancer treatment although GSH depletion as single therapeutic strategy has resulted largely ineffective if compared with combinatorial approaches. In this review, we circumstantiate the role of glutathione in tumour development and progression focusing on how interfering with different steps of glutathione metabolism can be exploited for therapeutic purposes. A dedicated section on synthetic lethal interactions with GSH modulators will highlight the promising option of harnessing glutathione metabolism for patient-directed therapy in cancer.
Collapse
|
68
|
Koch A, Schönlebe J, Vojvodic A, Lotti T, Wollina U. Multiple Cutaneous Leiomyomas with Uterus Myomatosus (MCUL) - Two Case Reports and One New Mutation of FH Gene. Open Access Maced J Med Sci 2019; 7:3026-3029. [PMID: 31850115 PMCID: PMC6910784 DOI: 10.3889/oamjms.2019.625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND: Reed syndrome or multiple cutaneous leiomyomas with uterine leiomyomas are part of the spectrum of heterozygous hereditary disorders with cutaneous, genital and renal manifestations. CASE REPORTS: We report two female cases of multiple cutaneous leiomyomas with uterine leiomyomas (MCUL) without renal disease, in particular without cysts or papillary renal carcinoma, aged 52 and 55 years, respectively. The diagnosis of pilar leiomyomas was confirmed by histology and immunostaining for smooth muscle actin and desmin. Both females had a hysterectomy in the past because of uterus myomatosus. In one patient, a new mutation of the FH gene was detected, i.e. a heterozygote c1300_1301del (p.Cys434Argfs17) mutation in the exon 9 of the FH gene. CONCLUSION: Since MCUL shares features with the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC), these patients need a regular follow-up to prevent the late diagnosis of renal cancer.
Collapse
Affiliation(s)
- André Koch
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany
| | - Jacqueline Schönlebe
- Städtisches Klinikum Dresden, Institute of Pathology "Georg Schmorl", Dresden, Germany
| | | | - Torello Lotti
- Department of Dermatology, University of Rome "G. Marconi", Rome, Italy
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany
| |
Collapse
|
69
|
Li N, Zhan X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J 2019; 10:153-172. [PMID: 31258820 PMCID: PMC6562010 DOI: 10.1007/s13167-019-00170-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
RELEVANCE Molecular network changes are the hallmark of the pathogenesis of ovarian cancers (OCs). Network-based biomarkers benefit for the effective treatment of OC. PURPOSE This study sought to identify key pathway-network alterations and network-based biomarkers for clarification of molecular mechanisms and treatment of OCs. METHODS Ingenuity Pathway Analysis (IPA) platform was used to mine signaling pathway networks with 1198 human tissue mitochondrial differentially expressed proteins (mtDEPs) and compared those pathway network changes between OCs and controls. The mtDEPs in important cancer-related pathway systems were further validated with qRT-PCR and Western blot in OC cell models. Moreover, integrative analysis of mtDEPs and Cancer Genome Atlas (TCGA) data from 419 patients was used to identify hub molecules with molecular complex detection method. Hub molecule-based survival analysis and multiple multivariate regression analysis were used to identify survival-related hub molecules and hub molecule signature model. RESULTS Pathway network analysis revealed 25 statistically significant networks, 192 canonical pathways, and 5 significant molecular/cellular function models. A total of 52 canonical pathways were activated or inhibited in cancer pathogenesis, including antigen presentation, mitochondrial dysfunction, GP6 signaling, EIF2 signaling, and glutathione-mediated detoxification. Of them, mtDEPs (TPM1, CALR, GSTP1, LYN, AKAP12, and CPT2) in those canonical pathway and molecular/cellular models were validated in OC cell models at the mRNA and protein levels. Moreover, 102 hub molecules were identified, and they were regulated by post-translational modifications and functioned in multiple biological processes. Of them, 62 hub molecules were individually significantly related to OC survival risk. Furthermore, multivariate regression analysis of 102 hub molecules identified significant seven hub molecule signature models (HIST1H2BK, ALB, RRAS2, HIBCH, EIF3E, RPS20, and RPL23A) to assess OC survival risks. CONCLUSION These findings provided the overall signaling pathway network profiling of human OCs; offered scientific data to discover pathway network-based cancer biomarkers for diagnosis, prognosis, and treatment of OCs; and clarify accurate molecular mechanisms and therapeutic targets. These findings benefit for the discovery of effective and reliable biomarkers based on pathway networks for OC predictive and personalized medicine.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
70
|
Kerins MJ, Milligan J, Wohlschlegel JA, Ooi A. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci 2018; 109:2757-2766. [PMID: 29917289 PMCID: PMC6125459 DOI: 10.1111/cas.13701] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/17/2018] [Indexed: 12/31/2022] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a hereditary cancer syndrome characterized by inactivation of the Krebs cycle enzyme fumarate hydratase (FH). HLRCC patients are at high risk of developing kidney cancer of type 2 papillary morphology that is refractory to current radiotherapy, immunotherapy and chemotherapy. Hence, an effective therapy for this deadly form of cancer is urgently needed. Here, we show that FH inactivation (FH-/- ) proves synthetic lethal with inducers of ferroptosis, an iron-dependent and nonapoptotic form of cell death. Specifically, we identified gene signatures for compound sensitivities based on drug responses for 9 different drug classes against the NCI-60 cell lines. These signatures predicted that ferroptosis inducers would be selectively toxic to FH-/- cell line UOK262. Preferential cell death against UOK262-FH-/- was confirmed with 4 different ferroptosis inducers. Mechanistically, the FH-/- sensitivity to ferroptosis is attributed to dysfunctional GPX4, the primary cellular defender against ferroptosis. We identified that C93 of GPX4 is readily post-translationally modified by fumarates that accumulate in conditions of FH-/- , and that C93 modification represses GPX4 activity. Induction of ferroptosis in FH-inactivated tumors represents an opportunity for synthetic lethality in cancer.
Collapse
Affiliation(s)
- Michael J. Kerins
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of ArizonaTucsonAZUSA
| | - John Milligan
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of ArizonaTucsonAZUSA
| | - James A. Wohlschlegel
- Department of Biological ChemistryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aikseng Ooi
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|