51
|
Bykhovskaya Y, Margines B, Rabinowitz YS. Genetics in Keratoconus: where are we? EYE AND VISION 2016; 3:16. [PMID: 27350955 PMCID: PMC4922054 DOI: 10.1186/s40662-016-0047-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/03/2016] [Indexed: 01/06/2023]
Abstract
Keratoconus (KC) is a non-inflammatory thinning and protrusion of the cornea in which the cornea assumes a conical shape. Complex etiology of this condition at present remains an enigma. Although environmental factors have been involved in KC pathogenesis, strong underlining genetic susceptibility has been proven. The lack of consistent findings among early genetic studies suggested a heterogeneity and complex nature of the genetic contribution to the development of KC. Recently, genome-wide linkage studies (GWLS) and genome-wide association studies (GWAS) were undertaken. Next-generation sequencing (NGS)-based genomic screens are also currently being carried out. Application of these recently developed comprehensive genetic tools led to a much greater success and increased reproducibility of genetic findings in KC. Involvement of the LOX gene identified through GWLS has been confirmed in multiple cohorts of KC patients around the world. KC susceptibility region located at the 2q21.3 chromosomal region near the RAB3GAP1 gene identified through GWAS was independently replicated. Rare variants in the ZNF469 gene (mutated in corneal dystrophy Brittle Cornea Syndrome) and in the TGFBI gene (mutated in multiple corneal epithelial–stromal TGFBI dystrophies) have been repeatedly identified in familial and sporadic KC patients of different ethnicities. Additional comprehensive strategies using quantitative endophenotypes have been successfully employed to bring further understanding to the genetics of KC. Additional genetic determinants including the COL5A1 gene have been identified in the GWAS of KC-related trait central corneal thickness. These recent discoveries confirmed the importance of the endophenotype approach for studying complex genetic diseases such as KC and showed that different connective tissue disorders may have the same genetic determinants.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA ; Cornea Genetic Eye Institute, 50 N. La Cienega Blvd. Suite #340, Beverly Hills, CA 90211 USA
| | - Benjamin Margines
- Cornea Genetic Eye Institute, 50 N. La Cienega Blvd. Suite #340, Beverly Hills, CA 90211 USA
| | - Yaron S Rabinowitz
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA ; Cornea Genetic Eye Institute, 50 N. La Cienega Blvd. Suite #340, Beverly Hills, CA 90211 USA ; The Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
52
|
Shen AL, Moran SA, Glover EA, Drinkwater NR, Swearingen RE, Teixeira LB, Bradfield CA. Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression. PLoS One 2016; 11:e0157577. [PMID: 27310661 PMCID: PMC4910986 DOI: 10.1371/journal.pone.0157577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
We have previously described a mouse model of human posterior polymorphous corneal dystrophy (PPCD) and localized the causative mutation to a 6.2 Mbp region of chromosome 2, termed Ppcd1. We now show that the gene rearrangement linked to mouse Ppcd1 is a 3.9 Mbp chromosomal inversion flanked by 81 Kbp and 542 bp deletions. This recombination event leads to deletion of Csrp2bp Exons 8 through 11, Dzank1 Exons 20 and 21, and the pseudogene Znf133. In addition, we identified translocation of novel downstream sequences to positions adjacent to Csrp2bp Exon 7 and Dzank1 Exon 20. Twelve novel fusion transcripts involving Csrp2bp or Dzank1 linked to downstream sequences have been identified. Eight are expressed at detectable levels in PPCD1 but not wildtype eyes. Upregulation of two Csrp2bp fusion transcripts, as well as upregulation of the adjacent gene, Ovol2, was observed. Absence of the PPCD1 phenotype in animals haploinsufficient for Csrp2bp or both Csrp2bp and Dzank1 rules out haploinsufficiency of these genes as a cause of mouse PPCD1. Complementation experiments confirm that PPCD1 embryonic lethality is due to disruption of Csrp2bp expression. The ocular expression pattern of Csrp2bp is consistent with a role for this protein in corneal development and pathogenesis of PPCD1.
Collapse
Affiliation(s)
- Anna L. Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| | - Susan A. Moran
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Edward A. Glover
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Norman R. Drinkwater
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Rebecca E. Swearingen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leandro B. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher A. Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| |
Collapse
|
53
|
|
54
|
Hand CK, McGuire M, Parfrey NA, Murphy CC. Homozygous SLC4A11 mutation in a large Irish CHED2 pedigree. Ophthalmic Genet 2016; 38:148-151. [PMID: 27057589 DOI: 10.3109/13816810.2016.1151901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Congenital hereditary endothelial dystrophy (CHED) is a genetic disorder of corneal endothelial cells resulting in corneal clouding and visual impairment. Autosomal dominant (CHED1) and autosomal recessive (CHED2) forms have been reported and map to distinct loci on chromosome 20. CHED2 is caused by mutations in the SLC4A11 gene which encodes a membrane transporter protein. MATERIALS AND METHODS Members of a large CHED2 family were recruited for clinical and genetic studies. Genomic DNA was sequenced for the exons and intron-exon boundaries of the SLC4A11 gene. RESULTS Twelve family members were recruited, of which eight were diagnosed with CHED. A homozygous SLC4A11 mutation (Leu843Pro) was detected in the eight patients; a single copy of the mutation was present in three unaffected carriers. CONCLUSIONS A missense SLC4A11 mutation (Leu843Pro) is responsible for CHED2 in this family; this is the first report of this mutation in a homozygous state.
Collapse
Affiliation(s)
- Collette K Hand
- a Department of Pathology , University College Cork , Cork , Ireland
| | - Mairide McGuire
- b Department of Ophthalmology , Royal Victoria Eye and Ear Hospital , Dublin , Ireland
| | - Nollaig A Parfrey
- a Department of Pathology , University College Cork , Cork , Ireland
| | - Conor C Murphy
- b Department of Ophthalmology , Royal Victoria Eye and Ear Hospital , Dublin , Ireland.,c Department of Ophthalmology , Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
55
|
Davidson A, Liskova P, Evans C, Dudakova L, Nosková L, Pontikos N, Hartmannová H, Hodaňová K, Stránecký V, Kozmík Z, Levis H, Idigo N, Sasai N, Maher G, Bellingham J, Veli N, Ebenezer N, Cheetham M, Daniels J, Thaung C, Jirsova K, Plagnol V, Filipec M, Kmoch S, Tuft S, Hardcastle A. Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. Am J Hum Genet 2016; 98:75-89. [PMID: 26749309 PMCID: PMC4716680 DOI: 10.1016/j.ajhg.2015.11.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 11/27/2022] Open
Abstract
Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.−339_361dup for CHED1 and c.−370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.−274T>G and c.−307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies.
Collapse
|
56
|
|
57
|
SLC4A11 and the Pathophysiology of Congenital Hereditary Endothelial Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:475392. [PMID: 26451371 PMCID: PMC4588344 DOI: 10.1155/2015/475392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022]
Abstract
Congenital hereditary endothelial dystrophy (CHED) is a rare autosomal recessive disorder of the corneal endothelium characterized by nonprogressive bilateral corneal edema and opacification present at birth. Here we review the current knowledge on the role of the SLC4A11 gene, protein, and its mutations in the pathophysiology and clinical presentation of CHED. Individuals with CHED have mutations in SLC4A11 which encodes a transmembrane protein in the SLC4 family of bicarbonate transporters. The expression of SLC4A11 in the corneal endothelium and inner ear patterns the deficits seen in CHED with corneal edema and hearing loss (Harboyan syndrome). slc4a11-null-mouse models recapitulate the CHED disease phenotype, thus establishing a functional role for SLC4A11 in CHED. However, the transport function of SLC4A11 remains unsettled. Some of the roles that have been attributed to SLC4A11 include H(+) and NH4 (+) permeation, electrogenic Na(+)-H(+) exchange, and water transport. Future studies of the consequences of SLC4A11 dysfunction as well as further understanding of corneal endothelial ion transport will help clarify the involvement of SLC4A11 in the pathophysiology of CHED.
Collapse
|
58
|
Frausto RF, Le DJ, Aldave AJ. Transcriptomic Analysis of Cultured Corneal Endothelial Cells as a Validation for Their Use in Cell Replacement Therapy. Cell Transplant 2015; 25:1159-76. [PMID: 26337789 DOI: 10.3727/096368915x688948] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays a primary role in maintaining corneal homeostasis and clarity and must be surgically replaced with allogenic donor corneal endothelium in the event of visually significant dysfunction. However, a worldwide shortage of donor corneal tissue has led to a search for alternative sources of transplantable tissue. Cultured human corneal endothelial cells (HCEnC) have been shown to restore corneal clarity in experimental models of corneal endothelial dysfunction in animal models, but characterization of cultured HCEnC remains incomplete. To this end, we utilized next-generation RNA sequencing technology to compare the transcriptomic profile of ex vivo human corneal endothelial cells (evHCEnC) with that of primary HCEnC (pHCEnC) and HCEnC lines and to determine the utility of cultured and immortalized corneal endothelial cells as models of in vivo corneal endothelium. Multidimensional analyses of the transcriptome data sets demonstrated that primary HCEnC have a closer relationship to evHCEnC than do immortalized HCEnC. Subsequent analyses showed that the majority of the genes specifically expressed in HCEnC (not expressed in ex vivo corneal epithelium or fibroblasts) demonstrated a marked variability of expression in cultured cells compared with evHCEnC. In addition, genes associated with either corneal endothelial cell function or corneal endothelial dystrophies were investigated. Significant differences in gene expression and protein levels were observed in the cultured cells compared with evHCEnC for each of the genes tested except for AGBL1 and LOXHD1, which were not detected by RNA-seq or qPCR. Our transcriptomic analysis suggests that at a molecular level pHCEnC most closely resemble evHCEnC and thus represent the most viable cell culture-based therapeutic option for managing corneal endothelial cell dysfunction. Our findings also suggest that investigators should perform an assessment of the entire transcriptome of cultured HCEnC prior to determination of their potential clinical utility for the management of corneal endothelial cell failure.
Collapse
Affiliation(s)
- Ricardo F Frausto
- The Jules Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | |
Collapse
|
59
|
Zhang W, Ogando DG, Bonanno JA, Obukhov AG. Human SLC4A11 Is a Novel NH3/H+ Co-transporter. J Biol Chem 2015; 290:16894-905. [PMID: 26018076 DOI: 10.1074/jbc.m114.627455] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na(+), H(+) (OH(-)), bicarbonate, borate, and NH4 (+). Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4 (+), Na(+), and H(+) contributions to electrogenic ion transport through SLC4A11 stably expressed in Na(+)/H(+) exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4 (+)]o, and current amplitudes varied with the [H(+)] gradient. These currents were relatively unaffected by removal of Na(+), K(+), or Cl(-) from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H(+)-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H(+)). NH3-dependent currents were insensitive to 10 μM ethyl-isopropyl amiloride or 100 μM 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid. We propose that SLC4A11 is an NH3/2H(+) co-transporter exhibiting unique characteristics.
Collapse
Affiliation(s)
- Wenlin Zhang
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Diego G Ogando
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Joseph A Bonanno
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Alexander G Obukhov
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
60
|
|
61
|
Weiss JS, Møller HU, Aldave AJ, Seitz B, Bredrup C, Kivelä T, Munier FL, Rapuano CJ, Nischal KK, Kim EK, Sutphin J, Busin M, Labbé A, Kenyon KR, Kinoshita S, Lisch W. IC3D classification of corneal dystrophies--edition 2. Cornea 2015; 34:117-59. [PMID: 25564336 DOI: 10.1097/ico.0000000000000307] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE To update the 2008 International Classification of Corneal Dystrophies (IC3D) incorporating new clinical, histopathologic, and genetic information. METHODS The IC3D reviewed worldwide peer-reviewed articles for new information on corneal dystrophies published between 2008 and 2014. Using this information, corneal dystrophy templates and anatomic classification were updated. New clinical, histopathologic, and confocal photographs were added. RESULTS On the basis of revisiting the cellular origin of corneal dystrophy, a modified anatomic classification is proposed consisting of (1) epithelial and subepithelial dystrophies, (2) epithelial-stromal TGFBI dystrophies, (3) stromal dystrophies, and (4) endothelial dystrophies. Most of the dystrophy templates are updated. The entity "Epithelial recurrent erosion dystrophies" actually includes a number of potentially distinct epithelial dystrophies (Franceschetti corneal dystrophy, Dystrophia Smolandiensis, and Dystrophia Helsinglandica) but must be differentiated from dystrophies such as TGFBI-induced dystrophies, which are also often associated with recurrent epithelial erosions. The chromosome locus of Thiel-Behnke corneal dystrophy is only located on 5q31. The entity previously designated as a variant of Thiel-Behnke corneal dystrophy on chromosome 10q24 may represent a novel corneal dystrophy. Congenital hereditary endothelial dystrophy (CHED, formerly CHED2) is most likely only an autosomal recessive disorder. The so-called autosomal dominant inherited CHED (formerly CHED1) is insufficiently distinct to continue to be considered a unique corneal dystrophy. On review of almost all of the published cases, the description appeared most similar to a type of posterior polymorphous corneal dystrophy linked to the same chromosome 20 locus (PPCD1). Confocal microscopy also has emerged as a helpful tool to reveal in vivo features of several corneal dystrophies that previously required histopathologic examination to definitively diagnose. CONCLUSIONS This revision of the IC3D classification includes an updated anatomic classification of corneal dystrophies more accurately classifying TGFBI dystrophies that affect multiple layers rather than are confined to one corneal layer. Typical histopathologic and confocal images have been added to the corneal dystrophy templates.
Collapse
Affiliation(s)
- Jayne S Weiss
- *Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University Eye Center of Excellence, Louisiana State University Health Sciences Center, Louisiana State University, New Orleans, LA; †Department of Pediatric Ophthalmology, Viborg Hospital and Aarhus University Hospital, Aarhus, Denmark; ‡The Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA; §Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany; ¶Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway; ‖Department of Opthalmology, Helsinki University Central Hospital, Helsinki, Finland; **Jules-Gonin Eye Hospital, Lausanne, Switzerland; ††Cornea Service, Wills Eye Hospital, Philadelphia, PA; ‡‡University of Pittsburgh Medical Center Children's Eye Center, Pittsburgh, PA; §§Cornea Dystrophy Research Institute, Department of Ophthalmology, College of Medicine, Yonsei University, Seoul, Korea; ¶¶Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS; ‖‖Department of Ophthalmology, Villa Igea Hospital, Maître de Conférences des Universités Praticien Hospitalier, Forli, Italy; ***Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut de la Vision, Paris, France; †††Tufts University School of Medicine, Harvard Medical School, Schepens Eye Research Institute, New England Eye Center, Boston, MA; ‡‡‡Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; and §§§Department of Ophthalmology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, Davila J, Kocher JP, Patel SV, Gottesfeld JM, Baratz KH, Wieben ED. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J Biol Chem 2015; 290:5979-90. [PMID: 25593321 PMCID: PMC4358235 DOI: 10.1074/jbc.m114.621607] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Ross A Aleff
- the Departments of Biochemistry and Molecular Biology
| | - Elisabetta Soragni
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | - Joel M Gottesfeld
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | - Eric D Wieben
- the Departments of Biochemistry and Molecular Biology,
| |
Collapse
|
63
|
Kao L, Azimov R, Abuladze N, Newman D, Kurtz I. Human SLC4A11-C functions as a DIDS-stimulatable H⁺(OH⁻) permeation pathway: partial correction of R109H mutant transport. Am J Physiol Cell Physiol 2014; 308:C176-88. [PMID: 25394471 DOI: 10.1152/ajpcell.00271.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The SLC4A11 gene mutations cause a variety of genetic corneal diseases, including congenital hereditary endothelial dystrophy 2 (CHED2), Harboyan syndrome, some cases of Fuchs' endothelial dystrophy (FECD), and possibly familial keratoconus. Three NH2-terminal variants of the human SLC4A11 gene, named SLC4A11-A, -B, and -C are known. The SLC4A11-B variant has been the focus of previous studies. Both the expression of the SLC4A11-C variant in the cornea and its functional properties have not been characterized, and therefore its potential pathophysiological role in corneal diseases remains to be explored. In the present study, we demonstrate that SLC4A11-C is the predominant SLC4A11 variant expressed in human corneal endothelial mRNA and that the transporter functions as an electrogenic H(+)(OH(-)) permeation pathway. Disulfonic stilbenes, including 4,4'-diisothiocyano-2,2'-stilbenedisulfonate (DIDS), 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS), and 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulfonate (SITS), which are known to bind covalently, increased SLC4A11-C-mediated H(+)(OH(-)) flux by 150-200% without having a significant effect in mock-transfected cells. Noncovalently interacting 4,4'-diaminostilbene-2,2'-disulfonate (DADS) was without effect. We tested the efficacy of DIDS on the functionally impaired R109H mutant (SLC4A11-C numbering) that causes CHED2. DIDS (1 mM) increased H(+)(OH(-)) flux through the mutant transporter by ∼40-90%. These studies provide a basis for future testing of more specific chemically modified dilsulfonic stilbenes as potential therapeutic agents to improve the functional impairment of specific SLC4A11 mutant transporters.
Collapse
Affiliation(s)
- Liyo Kao
- Division of Nephrology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Rustam Azimov
- Division of Nephrology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Natalia Abuladze
- Division of Nephrology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Debra Newman
- Division of Nephrology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and Brain Research Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
64
|
Matthaei M, Hu J, Kallay L, Eberhart CG, Cursiefen C, Qian J, Lackner EM, Jun AS. Endothelial cell microRNA expression in human late-onset Fuchs' dystrophy. Invest Ophthalmol Vis Sci 2014; 55:216-25. [PMID: 24334445 DOI: 10.1167/iovs.13-12689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are a class of endogenous noncoding RNA and post transcriptionally modulate gene expression during development and disease. Our study investigated the differential miRNA expression in human Fuchs' endothelial corneal dystrophy (FECD) compared with normal endothelium to identify miRNA sequences that are involved in the pathogenesis of FECD. METHODS Comparative miRNA expression profiles of endothelial samples obtained from FECD patients during lamellar corneal transplant surgery and from normal donor globes were generated using OpenArray plate technology. Differential expression of individual miRNAs was validated in the original and in independent samples using stem-loop RT qPCR assays. Expression of miRNA target genes was assessed using qPCR and tissue microarray (TMA) immunolabeling. RESULTS Our results demonstrate downregulation of 87 miRNAs in FECD compared with normal endothelium (>3-fold change; P < 0.01). Correspondingly, DICER1, (encoding an endoribonuclease critical to miRNA biogenesis) showed a moderate but significant decrease in FECD samples (P < 0.05). Significant repression of three miR-29 family members (miR-29a-3p, miR-29b-2-5p, and miR-29c-5p) was paralleled by upregulation of their extracellular matrix associated mRNA targets collagen I and collagen IV. Tissue microarray immunolabeling showed histologically verifiable subendothelial collagen I and collagen IV deposition and increased endothelial laminin protein expression in FECD samples. CONCLUSIONS The present study provides the first miRNA profile in FECD and normal endothelial cells and demonstrates widespread miRNA downregulation in FECD. Decreased endothelial expression of miR-29 family members may be associated with increased subendothelial extracellular matrix accumulation in FECD.
Collapse
Affiliation(s)
- Mario Matthaei
- The Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Kim EY, Song JE, Park CH, Joo CK, Khang G. Recent advances in tissue-engineered corneal regeneration. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|