51
|
Cochran JN, McKinley EC, Cochran M, Amaral MD, Moyers BA, Lasseigne BN, Gray DE, Lawlor JMJ, Prokop JW, Geier EG, Holt JM, Thompson ML, Newberry JS, Yokoyama JS, Worthey EA, Geldmacher DS, Love MN, Cooper GM, Myers RM, Roberson ED. Genome sequencing for early-onset or atypical dementia: high diagnostic yield and frequent observation of multiple contributory alleles. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003491. [PMID: 31836585 PMCID: PMC6913143 DOI: 10.1101/mcs.a003491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
We assessed the results of genome sequencing for early-onset dementia. Participants were selected from a memory disorders clinic. Genome sequencing was performed along with C9orf72 repeat expansion testing. All returned sequencing results were Sanger-validated. Prior clinical diagnoses included Alzheimer's disease, frontotemporal dementia, and unspecified dementia. The mean age of onset was 54 (41–76). Fifty percent of patients had a strong family history, 37.5% had some, and 12.5% had no known family history. Nine of 32 patients (28%) had a variant defined as pathogenic or likely pathogenic (P/LP) by American College of Medical Genetics and Genomics standards, including variants in APP, C9orf72, CSF1R, and MAPT. Nine patients (including three with P/LP variants) harbored established risk alleles with moderate penetrance (odds ratios of ∼2–5) in ABCA7, AKAP9, GBA, PLD3, SORL1, and TREM2. All six patients harboring these moderate penetrance variants but not P/LP variants also had one or two APOE ε4 alleles. One patient had two APOE ε4 alleles with no other established contributors. In total, 16 patients (50%) harbored one or more genetic variants likely to explain symptoms. We identified variants of uncertain significance (VUSs) in ABI3, ADAM10, ARSA, GRID2IP, MME, NOTCH3, PLCD1, PSEN1, TM2D3, TNK1, TTC3, and VPS13C, also often along with other variants. In summary, genome sequencing for early-onset dementia frequently identified multiple established or possible contributory alleles. These observations add support for an oligogenic model for early-onset dementia.
Collapse
Affiliation(s)
| | - Emily C McKinley
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Bryan A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - David E Gray
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA.,Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California 94158, USA
| | - James M Holt
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - J Scott Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California 94158, USA
| | | | - David S Geldmacher
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Marissa Natelson Love
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
52
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
53
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
54
|
Muñoz-Braceras S, Tornero-Écija AR, Vincent O, Escalante R. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis Model Mech 2019; 12:dmm036681. [PMID: 30709847 PMCID: PMC6398486 DOI: 10.1242/dmm.036681] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the VPS13 family are associated with various human diseases. In particular, the loss of function of VPS13A leads to chorea-acanthocytosis (ChAc), a rare neurodegenerative disease without available curative treatments. Autophagy has been considered a promising therapeutic target because the absence of VPS13A causes a defective autophagy flux. However, the mechanistic details of this deficiency are unknown. Here, we identified Rab7A as an interactor of one of the VPS13 family members in Dictyostelium discoideum and showed that this interaction is conserved between the human homologs VPS13A and RAB7A in HeLa cells. As RAB7A is a key player in endosome trafficking, we addressed the possible function of VPS13A in endosome dynamics and lysosome degradation. Our results suggest that the decrease in autophagy observed in the absence of VPS13A may be the result of a more general defect in endocytic trafficking and lysosomal degradation. Unexpectedly, we found that VPS13A is closely localized to mitochondria, suggesting that the role of VPS13A in the endolysosomal pathway might be related to inter-organelle communication. We show that VPS13A localizes at the interface between mitochondria-endosomes and mitochondria-endoplasmic reticulum and that the presence of membrane contact sites is altered in the absence of VPS13A. Based on these findings, we propose that therapeutic strategies aimed at modulating the endolysosomal pathway could be beneficial in the treatment of ChAc.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sandra Muñoz-Braceras
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Alba R Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| |
Collapse
|
55
|
Zech M, Wagner M, Schormair B, Oexle K, Winkelmann J. [Exome diagnostics in neurology]. DER NERVENARZT 2019; 90:131-137. [PMID: 30645660 DOI: 10.1007/s00115-018-0667-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After an impressively successful application as a research instrument, whole-exome sequencing (WES) now enters the clinical practice due to its high diagnostic, time, and economic efficiency. WES is the diagnostic method of choice for symptoms that may be due to many different monogenic causes. Neurological indications include movement disorders, especially in cases of early symptom onset, familial clustering and complex manifestation. Starting from a blood sample, enrichment and sequencing of the exome enable the examination of all coding DNA regions for point mutations and small insertions/deletions. The identification of variants as the cause of a disease requires a professional evaluation pipeline, variant prioritization schemes and variant classification databases. Whereas many variants can be reliably classified as pathogenic or benign, variants of unclear significance (VUS) remain a challenge for the clinical evaluation and necessitate a periodic reanalysis of WES data. As a genetic examination WES requires adequate patient informed consent which in particular should address possible secondary findings as well as data security. A positive molecular result ends diagnostic odysseys, enables accurate genetic counseling and can point to targeted preventive measures and treatment. A WES significantly contributes to the understanding of the genetic architecture and pathophysiology of neurological diseases, enriching and enabling precision medicine.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, München, Deutschland. .,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
| | - Matias Wagner
- Institut für Neurogenomik, Helmholtz Zentrum München, München, Deutschland.,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - Barbara Schormair
- Institut für Neurogenomik, Helmholtz Zentrum München, München, Deutschland
| | - Konrad Oexle
- Institut für Neurogenomik, Helmholtz Zentrum München, München, Deutschland
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, München, Deutschland.,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| |
Collapse
|
56
|
Trinh J, Lohmann K, Baumann H, Balck A, Borsche M, Brüggemann N, Dure L, Dean M, Volkmann J, Tunc S, Prasuhn J, Pawlack H, Imhoff S, Lill CM, Kasten M, Bauer P, Rolfs A, Klein C. Utility and implications of exome sequencing in early‐onset Parkinson's disease. Mov Disord 2018; 34:133-137. [DOI: 10.1002/mds.27559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Katja Lohmann
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Hauke Baumann
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Alexander Balck
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Department of Neurology University of Lübeck Lübeck Germany
| | - Max Borsche
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Department of Neurology University of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Department of Neurology University of Lübeck Lübeck Germany
| | - Leon Dure
- Department of Neurology University of Alabama at Birmingham Birmingham Alabama USA
| | - Marissa Dean
- Department of Neurology University of Alabama at Birmingham Birmingham Alabama USA
| | - Jens Volkmann
- Departement of Neurology Universitatsklinikum Würzburg Würzburg Germany
| | - Sinem Tunc
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Department of Neurology University of Lübeck Lübeck Germany
| | - Jannik Prasuhn
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Department of Neurology University of Lübeck Lübeck Germany
| | - Heike Pawlack
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Sophie Imhoff
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | | - Meike Kasten
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Psychiatry University of Lübeck Lübeck Germany
| | - Peter Bauer
- Centogene AG, Institute for Rare Diseases Rostock Germany
| | - Arndt Rolfs
- Centogene AG, Institute for Rare Diseases Rostock Germany
- Albrecht Kossel Institute for Neuroregeneration University Hospital Rostock Rostock Germany
| | - Christine Klein
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | |
Collapse
|
57
|
Darvish H, Bravo P, Tafakhori A, Azcona LJ, Ranji-Burachaloo S, Johari AH, Paisán-Ruiz C. Identification of a large homozygous VPS13C deletion in a patient with early-onset Parkinsonism. Mov Disord 2018; 33:1968-1970. [PMID: 30452786 DOI: 10.1002/mds.27516] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Paloma Bravo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L, New York, New York, USA
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis J Azcona
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L, New York, New York, USA.,Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sakineh Ranji-Burachaloo
- Iranian Center of Neurological Research, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Johari
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Coro Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
58
|
Seong E, Insolera R, Dulovic M, Kamsteeg EJ, Trinh J, Brüggemann N, Sandford E, Li S, Ozel AB, Li JZ, Jewett T, Kievit AJ, Münchau A, Shakkottai V, Klein C, Collins C, Lohmann K, van de Warrenburg BP, Burmeister M. Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects. Ann Neurol 2018; 83:1075-1088. [PMID: 29604224 PMCID: PMC6105379 DOI: 10.1002/ana.25220] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify novel causes of recessive ataxias, including spinocerebellar ataxia with saccadic intrusions, spastic ataxias, and spastic paraplegia. METHODS In an international collaboration, we independently performed exome sequencing in 7 families with recessive ataxia and/or spastic paraplegia. To evaluate the role of VPS13D mutations, we evaluated a Drosophila knockout model and investigated mitochondrial function in patient-derived fibroblast cultures. RESULTS Exome sequencing identified compound heterozygous mutations in VPS13D on chromosome 1p36 in all 7 families. This included a large family with 5 affected siblings with spinocerebellar ataxia with saccadic intrusions (SCASI), or spinocerebellar ataxia, recessive, type 4 (SCAR4). Linkage to chromosome 1p36 was found in this family with a logarithm of odds score of 3.1. The phenotypic spectrum in our 12 patients was broad. Although most presented with ataxia, additional or predominant spasticity was present in 5 patients. Disease onset ranged from infancy to 39 years, and symptoms were slowly progressive and included loss of independent ambulation in 5. All but 2 patients carried a loss-of-function (nonsense or splice site) mutation on one and a missense mutation on the other allele. Knockdown or removal of Vps13D in Drosophila neurons led to changes in mitochondrial morphology and impairment in mitochondrial distribution along axons. Patient fibroblasts showed altered morphology and functionality including reduced energy production. INTERPRETATION Our study demonstrates that compound heterozygous mutations in VPS13D cause movement disorders along the ataxia-spasticity spectrum, making VPS13D the fourth VPS13 paralog involved in neurological disorders. Ann Neurol 2018.
Collapse
Affiliation(s)
- Eunju Seong
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Insolera
- Department of Molecular, Cellular, and Developmental Biology,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Marija Dulovic
- Institute of Neurogenetics, University of Lübeck,
Germany
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre,
Nijmegen, The Netherlands
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck,
Germany
| | | | - Erin Sandford
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
| | | | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
- Department of Computational Medicine & Bioinformatics,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamison Jewett
- Department of Pediatrics, Section on Medical Genetics, Wake Forest
School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Vikram Shakkottai
- Departments of Neurology and of Molecular and Integrative
Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Catherine Collins
- Department of Molecular, Cellular, and Developmental Biology,
University of Michigan, Ann Arbor, MI 48109, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck,
Germany
| | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and
Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
48109, USA
- Department of Computational Medicine & Bioinformatics,
University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
48109, USA
| |
Collapse
|