51
|
Abstract
Many viruses deliver their genomes into the host cell’s nucleus before they replicate. While onco-retroviruses and papillomaviruses tether their genomes to host chromatin upon mitotic breakdown of the nuclear envelope, lentiviruses, such as human immunodeficiency virus, adenoviruses, herpesviruses, parvoviruses, influenza viruses, hepatitis B virus, polyomaviruses, and baculoviruses deliver their genomes into the nucleus of post-mitotic cells. This poses the significant challenge of slipping a DNA or RNA genome past the nuclear pore complex (NPC) embedded in the nuclear envelope. Quantitative fluorescence imaging is shedding new light on this process, with recent data implicating misdelivery of viral genomes at nuclear pores as a bottleneck to virus replication. Here, we infer NPC functions for nuclear import of viral genomes from cell biology experiments and explore potential causes of misdelivery, including improper virus docking at NPCs, incomplete translocation, virus-induced stress and innate immunity reactions. We conclude by discussing consequences of viral genome misdelivery for viruses and host cells, and lay out future questions to enhance our understanding of this phenomenon. Further studies into viral genome misdelivery may reveal unexpected aspects about NPC structure and function, as well as aid in developing strategies for controlling viral infections to improve human health.
Collapse
|
52
|
Nguyen TH, Vidovszky MZ, Ballmann MZ, Sanz-Gaitero M, Singh AK, Harrach B, Benkő M, van Raaij MJ. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus. Virol J 2015; 12:81. [PMID: 25994880 PMCID: PMC4451742 DOI: 10.1186/s12985-015-0309-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
Background In adenoviruses, primary host cell recognition is generally performed by the head domains of their homo-trimeric fibre proteins. This first interaction is reversible. A secondary, irreversible interaction subsequently takes place via other adenovirus capsid proteins and leads to a productive infection. Although many fibre head structures are known for human mastadenoviruses, not many animal adenovirus fibre head structures have been determined, especially not from those belonging to adenovirus genera other than Mastadenovirus. Methods We constructed an expression vector for the fibre head domain from a ruminant atadenovirus, bovine adenovirus 4 (BAdV-4), consisting of amino acids 414–535, expressed the protein in Escherichia coli, purified it by metal affinity and cation exchange chromatography and crystallized it. The structure was solved using single isomorphous replacement plus anomalous dispersion of a mercury derivative and refined against native data that extended to 1.2 Å resolution. Results Like in other adenoviruses, the BAdV-4 fibre head monomer contains a beta-sandwich consisting of ABCJ and GHID sheets. The topology is identical to the fibre head of the other studied atadenovirus, snake adenovirus 1 (SnAdV-1), including the alpha-helix in the DG-loop, despite of them having a sequence identity of only 15 %. There are also differences which may have implications for ligand binding. Beta-strands G and H are longer and differences in several surface-loops and surface charge are observed. Conclusions Chimeric adenovirus fibres have been used to retarget adenovirus-based anti-cancer and gene therapy vectors. Ovine adenovirus 7 (OAdV-7), another ruminant atadenovirus, is intensively tested as a basis for such a vector. Here, we present the high-resolution atomic structure of the BAdV-4 fibre head domain, the second atadenovirus fibre head structure known and the first of an atadenovirus that infects a mammalian host. Future research should focus on the receptor-binding properties of these fibre head domains.
Collapse
Affiliation(s)
- Thanh H Nguyen
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain.
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mónika Z Ballmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Marta Sanz-Gaitero
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain. .,Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | - Abhimanyu K Singh
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain. .,Current address: School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom.
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mark J van Raaij
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
53
|
Kotha PLN, Sharma P, Kolawole AO, Yan R, Alghamri MS, Brockman TL, Gomez-Cambronero J, Excoffon KJDA. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLoS Pathog 2015; 11:e1004696. [PMID: 25768646 PMCID: PMC4358923 DOI: 10.1371/journal.ppat.1004696] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.
Collapse
Affiliation(s)
- Poornima L. N. Kotha
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Priyanka Sharma
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Abimbola O. Kolawole
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Ran Yan
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Mahmoud S. Alghamri
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Trisha L. Brockman
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Julian Gomez-Cambronero
- Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Katherine J. D. A. Excoffon
- Departments of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
54
|
Greber UF. How cells tune viral mechanics--insights from biophysical measurements of influenza virus. Biophys J 2015; 106:2317-21. [PMID: 24896110 DOI: 10.1016/j.bpj.2014.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022] Open
Abstract
During replication, the physical state of a virus is controlled by assembly and disassembly processes, when particles are put together and dismantled by cellular cues, respectively. A fundamental question has been how a cell can assemble an infectious virus, and dismantle a virus entering an uninfected cell and thereby trigger a new round of infection. This apparent paradox might be explained by considering that infected and uninfected cells are functionally different, or that assembly and disassembly take place along different cellular pathways. A third possibility is that the physical properties of newly assembled viruses are different from the infection-ready viruses. Recent biophysical experiments measured the stiffness of single Influenza viruses and combined this with biochemical measurements and cell biological assays. Besides inducing the fusogenic state of hemagglutinin, low pH cues softened the virus and precluded aggregation of viral ribonucleoprotein particles with the matrix protein M1. The recent experiments suggest a two-step model for Influenza virus entry and uncoating involving low pH in early and late endosomes, respectively. I conclude with a short outlook into how combined biophysical and cell biological approaches might lead to the identification of new cellular cues controlling viral uncoating and infection.
Collapse
Affiliation(s)
- Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
55
|
Guinn BA, Braidwood L, Parker A, Peng KW, Seymour L. 8th international conference on oncolytic virus therapeutics. Hum Gene Ther 2014; 25:1062-84. [PMID: 25274574 DOI: 10.1089/hum.2014.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The 8th International Conference on Oncolytic Virus Therapeutics meeting was held from April 10-13, 2014, in Oxford, United Kingdom. It brought together experts in the field of oncolytics from Europe, Asia, Australasia, and the Americas and provided a unique opportunity to hear the latest research findings in oncolytic virotherapy. Presentations of recent work were delivered in an informal and intimate setting afforded by a small group of attendees and an exquisitely focused conference topic. Here we describe the oral presentations and enable the reader to share in the benefits of bringing together experts to share their findings.
Collapse
Affiliation(s)
- Barbara-Ann Guinn
- 1 Department of Life Sciences, University of Bedfordshire , Park Square, Luton LU1 3JU, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Proteomic analysis of ubiquitin-like posttranslational modifications induced by the adenovirus E4-ORF3 protein. J Virol 2014; 89:1744-55. [PMID: 25410875 DOI: 10.1128/jvi.02892-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Viruses interact with and regulate many host metabolic pathways in order to advance the viral life cycle and counteract intrinsic and extrinsic antiviral responses. The human adenovirus (Ad) early protein E4-ORF3 forms a unique scaffold throughout the nuclei of infected cells and inhibits multiple antiviral defenses, including a DNA damage response (DDR) and an interferon response. We previously reported that the Ad5 E4-ORF3 protein induces sumoylation of Mre11 and Nbs1, which are essential for the DDR, and their relocalization into E4-ORF3-induced nuclear inclusions is required for this modification to occur. In this study, we sought to analyze a global change in ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, by the Ad5 E4-ORF3 protein and to identify new substrates with these modifications. By a comparative proteome-wide approach utilizing immunoprecipitation/mass spectrometry, we found that Ubl modifications of 166 statistically significant lysine sites in 51 proteins are affected by E4-ORF3, and the proteome of modifications spans a diverse range of cellular functions. Ubl modifications of 92% of these identified sites were increased by E4-ORF3. We further analyzed SUMO3 conjugation of several identified proteins. Our findings demonstrated a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and revealed new SUMO3 substrates induced by E4-ORF3. IMPORTANCE The adenovirus E4-ORF3 protein induces dynamic structural changes in the nuclei of infected cells and counteracts host antiviral responses. One of the mechanisms that accounts for this process is the relocalization and sequestration of cellular proteins into an E4-ORF3 nuclear scaffold, but little is known about how this small viral protein affects diverse cellular responses. In this study, we analyzed for the first time the global pattern of ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, altered by E4-ORF3 expression. The results suggest a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and reveal new SUMO3 substrates targeted by E4-ORF3. Our findings propose Ubl modifications as a new mechanism by which E4-ORF3 may modulate cellular protein functions in addition to subnuclear relocalization.
Collapse
|
57
|
Conformational changes in the adenovirus hexon subunit responsible for regulating cytoplasmic dynein recruitment. J Virol 2014; 89:1013-23. [PMID: 25355895 DOI: 10.1128/jvi.02889-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Virus capsids provide genome protection from environmental challenges but are also poised to execute a program of compositional and conformational changes to facilitate virion entry and infection. The most abundant adenovirus serotype 5 (AdV5) capsid protein, hexon, directly recruits the motor protein cytoplasmic dynein following virion entry. Dynein recruitment is crucial for capsid transport to the nucleus and requires the transient exposure of AdV5 hexon to low pH, presumably mimicking passage through the endosomal compartment. These results suggest a pH-dependent capsid modification during early infection. The changes to hexon structure controlling this behavior have not been explored. We report that hexon remains trimeric at low pH but undergoes more subtle conformational changes. These changes are indicated by increased sensitivities to SDS-mediated dissociation and dispase proteolysis. Both effects are reversed at neutral pH, as is dynein binding by low-pH-treated hexon. Dispase cleavage, which we find maps to a specific site within hypervariable region 1 (HVR1) of AdV5 hexon, has no apparent effect on virion entry but completely inhibits its transport to the nucleus. In addition, an AdV5 mutant containing HVR1 of AdV48 is unable to bind dynein and is strongly inhibited in the postentry transport step. These results reveal that conformational changes involving hexon HVR1 are the basis for a novel viral mechanism controlling capsid transport to the nucleus. IMPORTANCE The adenovirus serotype 5 (AdV5) capsid protein hexon recruits the molecular motor protein cytoplasmic dynein in a pH-dependent manner, a function critical for efficient transport toward the nucleus and AdV5 infectivity. In this work, we describe how low-pH exposure induces reversible structural changes in AdV5 hexon and how these changes affect dynein binding. In addition, we identified a pH-sensitive dispase cleavage site in hexon HVR1, which depends on the same structural changes and furthermore regulates dynein recruitment and capsid redistribution in infected cells. These data provide the first evidence relating long-known but subtle pH-dependent structural changes in hexon to a more recently established essential but poorly understood role in virus transport. These results have broad implications for understanding virus infectivity in general, and our ability to block the recruitment mechanism has potential therapeutic implications as well.
Collapse
|
58
|
Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 2014; 25:3-11. [PMID: 24444179 DOI: 10.1089/hum.2013.2527] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, NY 10065
| |
Collapse
|
59
|
Chemical induction of unfolded protein response enhances cancer cell killing through lytic virus infection. J Virol 2014; 88:13086-98. [PMID: 25187554 DOI: 10.1128/jvi.02156-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cancer cells are susceptible to oncolytic viruses, albeit variably. Human adenoviruses (HAdVs) are widely used oncolytic agents that have been engineered to produce progeny within the tumor and elicit bystander effects. We searched for host factors enhancing bystander effects and conducted a targeted RNA interference screen against guanine nucleotide exchange factors (GEFs) of small GTPases. We show that the unfolded protein response (UPR), which is readily inducible in aggressive tumor cells, enhances melanoma or epithelial cancer cell killing upon HAdV infection. UPR was triggered by knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or the GBF-1 inhibitor golgicide A (GCA) and stimulated HAdV infection. GBF-1 is a GEF for ADP ribosylation factors (Arfs) regulating endoplasmic reticulum (ER)-to-Golgi apparatus and intra-Golgi apparatus membrane transport. Cells treated with GCA enhanced HAdV-induced cytopathic effects in epithelial and melanoma cancer cells but not normal cells, if the drug was applied several hours prior to HAdV inoculation. This was shown by real-time label-free impedance measurements using the xCELLigence system. GCA-treated cells contained fewer incoming HAdVs than control cells, but GCA treatment boosted HAdV titers and spreading in cancer cells. GCA enhanced viral gene expression or transgene expression from the cytomegalovirus promoter of B- or C-species HAdVs but did not enhance viral early region 1A (E1A) expression in uninfected cell lines or cells transfected with plasmid reporter DNA. The UPR-enhanced cell killing required the nuclease activity of the UPR sensor inositol-requiring enzyme 1 (IRE-1) and X box binding protein 1 (XBP-1), which alleviate ER stress. The collective results show that chemical UPR induction and viruses boost tumor cell killing by enhancing oncolytic viral efficacy. IMPORTANCE Cancer is difficult to combat. A wide range of oncolytic viruses show promise for killing cancer cells, yet the efficacy of oncolytic killing is low. We searched for host factors enhancing adenovirus cancer cell killing and found that the knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or chemical inhibition of GBF-1 enhanced adenovirus infection by triggering the IRE-1/XBP-1 branch of the unfolded protein response (UPR). IRE-1/XBP-1 promote cell survival and enhanced the levels of the adenoviral immediate early gene product E1A, virus spreading, and killing of cancer cells. Aggressive tumor cells depend on a readily inducible UPR and, hence, present prime targets for a combined strategy involving adenoviruses and small chemicals inducing UPR.
Collapse
|
60
|
Wang IH, Suomalainen M, Andriasyan V, Kilcher S, Mercer J, Neef A, Luedtke NW, Greber UF. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 2014; 14:468-80. [PMID: 24139403 DOI: 10.1016/j.chom.2013.09.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023]
Abstract
Viral DNA trafficking in cells has large impacts on physiology and disease development. Current methods lack the resolution and accuracy to visualize and quantify viral DNA trafficking at single-molecule resolution. We developed a noninvasive protocol for accurate quantification of viral DNA-genome (vDNA) trafficking in single cells. Ethynyl-modified nucleosides were used to metabolically label newly synthesized adenovirus, herpes virus, and vaccinia virus vDNA, without affecting infectivity. Superresolution microscopy and copper(I)-catalyzed azide-alkyne cycloaddition (click) reactions allowed visualization of infection at single vDNA resolution within mammalian cells. Analysis of adenovirus infection revealed that a large pool of capsid-free vDNA accumulated in the cytosol upon virus uncoating, indicating that nuclear import of incoming vDNA is a bottleneck. The method described here is applicable for the entire replication cycle of DNA viruses and offers opportunities to localize cellular and viral effector machineries on newly replicated viral DNA, or innate immune sensors on cytoplasmic viral DNA.
Collapse
Affiliation(s)
- I-Hsuan Wang
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zurich, Switzerland; Molecular Life Sciences Graduate School, ETH and University of Zürich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther 2014; 25:265-84. [PMID: 24512150 DOI: 10.1089/hum.2014.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate-adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features.
Collapse
Affiliation(s)
- Rodinde Hendrickx
- 1 Institute of Molecular Life Sciences, University of Zurich , CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
62
|
Chen RF, Lee CY. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int Rev Immunol 2013; 33:45-53. [PMID: 24127823 DOI: 10.3109/08830185.2013.823420] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.
Collapse
Affiliation(s)
- Rong-Fu Chen
- 1Department of Medical Research and Development, Show Chwan Health Care System, Changhua, Taiwan
| | | |
Collapse
|
63
|
Mercer J, Greber UF. Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends Microbiol 2013; 21:380-8. [PMID: 23830563 DOI: 10.1016/j.tim.2013.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022]
Abstract
Macrophages and dendritic cells (DCs) are at the front line of defence against fungi, bacteria, and viruses. Together with physical barriers, such as mucus and a range of antimicrobial compounds, they constitute a major part of the intrinsic and innate immune systems. They have elaborate features, including pattern recognition receptors (PRRs) and specialized endocytic mechanisms, cytokines and chemokines, and the ability to call on reserves. As masters of manipulation and counter-attack, viruses shunt intrinsic and innate recognition, enter immune cells, and spread from these cells throughout an organism. Here, we review mechanisms by which viruses subvert endocytic and pathogen-sensing functions of macrophages and DCs, while highlighting possible strategic advantages of infecting cells normally tuned into pathogen destruction.
Collapse
Affiliation(s)
- Jason Mercer
- Eidgenössische Technische Hochschule (ETH) Zürich, Institute of Biochemistry, Schafmattstr. 18, CH-8093, Zürich, Switzerland.
| | | |
Collapse
|
64
|
Aldhoon-Hainerová I, Zamrazilová H, Atkinson RL, Dušátková L, Sedláčková B, Hlavatý P, Lee ZP, Kunešová M, Hainer V. Clinical and laboratory characteristics of 1179 Czech adolescents evaluated for antibodies to human adenovirus 36. Int J Obes (Lond) 2013; 38:285-91. [PMID: 23732656 DOI: 10.1038/ijo.2013.72] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human adenovirus 36 (Adv36) is associated with obesity in children. Most prior studies have been small and the association of Adv36 status with markers of metabolic risks has been inconsistent. OBJECTIVES To determine the prevalence of Adv36 antibodies in different weight categories of adolescents and to evaluate the association of Adv36 infection with anthropometric parameters and cardiometabolic health risks. SUBJECTS AND METHODS In 1179 Czech adolescents (85 underweight, 506 normal weight, 160 overweight and 428 obese), the following variables were evaluated: anthropometric (body weight, height, body mass index, circumferences, fat mass), blood pressure, biochemical and hormonal (lipid profile, glucose, insulin, liver enzymes, adiponectin) and Adv36 antibodies (enzyme-linked immunosorbent assay). RESULTS Of the total cohort, 26.5% were positive for Adv36 antibodies (underweight: 22.3%; normal weight: 21.5%; overweight: 40.0% and obese: 28.0%). The odds ratio for Adv36 antibody positivity evaluated vs normal weight was 2.61 for overweight (95% confidence interval (CI): 1.77-3.86, P<0.001) and 1.46 for obesity (95% CI: 1.07-1.99, P=0.016). A significantly higher prevalence of Adv36 infection was observed in female subjects (32.5%) in comparison to male subjects (19.7%; P<0.001). Adv36 positivity of the whole cohort was significantly related to body weight (P=0.042), body mass index (P=0.015), hip circumference (P=0.004), body height z-score (P=0.029), and total body fat (P=0.000) and trunk fat (P=0.000). Adv36 antibody-positive girls demonstrated significantly higher body height (167.8 vs 165.0 cm, P=0.01) and waist circumference (77.0 vs 72.0 cm, P=0.01). Infected adolescents exhibited significantly higher levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), but lower levels of blood glucose. Liver enzymes were significantly increased only in Adv36-positive boys. CONCLUSION These results demonstrated an association of Adv36 antibodies with obesity and an even greater association with overweight. Adv36 positivity was related to increased fat mass, levels of TC and LDL-C, but to decreased level of blood glucose. No relation to adiponectin levels was revealed.
Collapse
Affiliation(s)
- I Aldhoon-Hainerová
- 1] Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic [2] Department of Pediatrics and Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - H Zamrazilová
- Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic
| | - R L Atkinson
- Obetech Obesity Research Center, Richmond, VA, USA
| | - L Dušátková
- 1] Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic [2] Faculty of Science, Charles University, Prague, Czech Republic
| | - B Sedláčková
- 1] Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic [2] Faculty of Science, Charles University, Prague, Czech Republic
| | - P Hlavatý
- Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic
| | - Z P Lee
- Obetech Obesity Research Center, Richmond, VA, USA
| | - M Kunešová
- Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic
| | - V Hainer
- Obesity Management Center, Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
65
|
|
66
|
Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells. J Virol 2012; 87:2307-19. [PMID: 23236070 DOI: 10.1128/jvi.02014-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human adenoviruses typically cause mild infections in the upper or lower respiratory tract, gastrointestinal tract, or ocular epithelium. However, adenoviruses may be life-threatening in patients with impaired immunity and some serotypes cause epidemic outbreaks. Attachment to host cell receptors activates cell signaling and virus uptake by endocytosis. At present, it is unclear how vital cellular homeostatic mechanisms affect these early steps in the adenovirus life cycle. Autophagy is a lysosomal degradation pathway for recycling intracellular components that is upregulated during periods of cell stress. Autophagic cargo is sequestered in double-membrane structures called autophagosomes that fuse with endosomes to form amphisomes which then deliver their content to lysosomes. Autophagy is an important adaptive response in airway epithelial cells targeted by many common adenovirus serotypes. Using two established tissue culture models, we demonstrate here that adaptive autophagy enhances expression of the early region 1 adenovirus protein, induction of mitogen-activated protein kinase signaling, and production of new viral progeny in airway epithelial cells infected with adenovirus type 2. We have also discovered that adenovirus infections are tightly regulated by endosome maturation, a process characterized by abrupt exchange of Rab5 and Rab7 GTPases, associated with early and late endosomes, respectively. Moreover, endosome maturation appears to control a pool of early endosomes capable of fusing with autophagosomes which enhance adenovirus infection. Many viruses have evolved mechanisms to induce autophagy in order to aid their own replication. Our studies reveal a novel role for host cell autophagy that could have a significant impact on the outcome of respiratory infections.
Collapse
|