51
|
Bai X, Bai A, Honda JR, Eichstaedt C, Musheyev A, Feng Z, Huitt G, Harbeck R, Kosmider B, Sandhaus RA, Chan ED. Alpha-1-Antitrypsin Enhances Primary Human Macrophage Immunity Against Non-tuberculous Mycobacteria. Front Immunol 2019; 10:1417. [PMID: 31293581 PMCID: PMC6606736 DOI: 10.3389/fimmu.2019.01417] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. Objectives: The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria. Methods: We compared the ability of monocyte-derived macrophages cultured in autologous plasma that were obtained immediately before and soon after AAT infusion—given to individuals with AAT deficiency—to control an ex vivo Mycobacterium intracellulare infection. Measurements and Main Results: We found that compared to pre-AAT infused monocyte-derived macrophages plus plasma, macrophages, and contemporaneous plasma obtained after a session of AAT infusion were significantly better able to control M. intracellulare infection; the reduced bacterial burden was linked with greater phagosome-lysosome fusion and increased autophagosome formation/maturation, the latter due to AAT inhibition of both M. intracellulare–induced nuclear factor-kappa B activation and A20 expression. While there was a modest increase in apoptosis in the M. intracellulare-infected post-AAT infused macrophages and plasma, inhibiting caspase-3 in THP-1 cells, monocyte-derived macrophages, and alveolar macrophages unexpectedly reduced the M. intracellulare burden, indicating that apoptosis impairs macrophage control of M. intracellulare and that the host protective effects of AAT occurred despite inducing apoptosis. Conclusion: AAT augments macrophage control of M. intracellulare infection through enhancing phagosome-lysosome fusion and autophagy.
Collapse
Affiliation(s)
- Xiyuan Bai
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - An Bai
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Jennifer R Honda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | | | - Ariel Musheyev
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Zhihong Feng
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gwen Huitt
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Ronald Harbeck
- Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA, United States.,Department of Physiology, Temple University, Philadelphia, PA, United States
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Edward D Chan
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States.,Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, United States
| |
Collapse
|
52
|
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. J Bacteriol 2019; 201:JB.00760-18. [PMID: 30833360 DOI: 10.1128/jb.00760-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.
Collapse
|
53
|
Danelishvili L, Rojony R, Carson KL, Palmer AL, Rose SJ, Bermudez LE. Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread. Virulence 2019; 9:1287-1300. [PMID: 30134761 PMCID: PMC6177253 DOI: 10.1080/21505594.2018.1504559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis is an opportunistic intracellular pathogen associated with disease in patients either immunosuppression or chronic lung pathology. Once in the host, M. avium preferentially infects and replicates within the phagocytic cells. The host driven macrophage apoptosis appears to be an essential aspect of innate immunity during bacterial infection; however, the existing evidence suggests that M. avium has evolved adaptive approaches to trigger the phagocyte apoptosis, exit apoptotic cells or via ingestion of infected apoptotic bodies subsequently infect neighboring macrophages. By evaluating 4,000 transposon mutants of M. avium in THP-1 cells, we identified clones that can trigger a new form of early host cell apoptosis, which is only observed upon entry into the “secondary-infected” macrophages. Inactivation of MAVA5_06970 gene lead to significant attenuation in intracellular growth within macrophages and mice, and impaired M. avium to induce rapid apoptosis in the “secondary-infected” cells as measured by Annexin V-FITC detection assay. Complementation of MAVA5_06970 gene corrected the attenuation as well as apoptotic phenotypes. The MAVA5_06970 gene encodes for a secreted protein. Using the pull-down assay and then confirmed with the yeast two-hybrid screen, we found that MAVA5_06970 effector interacts with the Secreted Phosphoprotein 1, the cytokine also known as Osteopontin. This interaction enhances the THP-1 cell apoptosis and, consequently, restricts the production of interleukin-12 that likely may limit the activation of the type I immunity pathway in vivo. This work identified a key virulence effector of M. avium that contributes to the cell-to-cell spread of the pathogen.
Collapse
Affiliation(s)
- Lia Danelishvili
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Rajoana Rojony
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Kylee L Carson
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Amy L Palmer
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Sasha J Rose
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA
| | - Luiz E Bermudez
- a Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , OR , USA.,b Department of Microbiology, College of Science , Oregon State University , Corvallis , OR , USA
| |
Collapse
|
54
|
Lin J, Chang Q, Dai X, Liu D, Jiang Y, Dai Y. Early secreted antigenic target of 6-kDa of Mycobacterium tuberculosis promotes caspase-9/caspase-3-mediated apoptosis in macrophages. Mol Cell Biochem 2019; 457:179-189. [DOI: 10.1007/s11010-019-03522-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
|
55
|
Kim BR, Kim BJ, Kook YH, Kim BJ. Phagosome Escape of Rough Mycobacterium abscessus Strains in Murine Macrophage via Phagosomal Rupture Can Lead to Type I Interferon Production and Their Cell-To-Cell Spread. Front Immunol 2019; 10:125. [PMID: 30766538 PMCID: PMC6365470 DOI: 10.3389/fimmu.2019.00125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium abscessus complex (MAB) is a rapidly growing mycobacterium(RGM) whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type, producing high glycopeptidolipid (GPL) content, and a rough (R) type, which produces low levels of GPLs and is associated with increased virulence. However, the mechanism responsible for their difference in virulence is poorly known. By ultrastructural examination of murine macrophages infected, we found that MAB-R strains could replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol via phagosomal rupture. The cytosolic access of MAB-R strains via phagosomal rupture led to enhanced Type I interferon (IFN) production and cell death, which resulted in their cell-to-cell spreading. This behavior can provide an additional niche for the survival of MAB-R strains. In addition, we found that their enhancement of cell death mediated cell spreading are dependent on Type I IFN signaling via comparison of wild-type and IFNAR1 knockout mice. In conclusion, our data indicated that a transition of MAB-S strains into MAB-R variants increased their virulence via enhanced Type I IFN production, which led to enhanced survival in infected macrophage via cell death mediated cell-to-cell spreading. This result provides not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints to their treatment strategy.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
56
|
Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, Li J, Xie J. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2018; 335:41-50. [PMID: 30415762 DOI: 10.1016/j.cellimm.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global public health threat. The success of M. tuberculosis largely contributes to its manipulation of host cell fate. The role of M. tuberculosis PE/PPE family effectors in the host destiny was intensively explored. In this study, the role of PPE60 (Rv3478) was characterized by using Rv3478 recombinant M. smegmatis. PPE60 can promote host cell pyroptosis via caspases/NLRP3/gasdermin. The production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12p40 and TNF-α was altered by PPE60. We found that LUBAC was involved in PPE60-elicited NF-κB signaling by using Linear Ubiquitin Chain Assembly Complex (LUBAC)-specific inhibitor gliotoxin. The PPE60 recombinant M. smegmatis survival rate within macrophages is increased, as well as elevated resistance to stresses such as low pH, surface stresses and antibiotics exposure. For a first time it is firstly reported that M. tuberculosis effector PPE60 can modulate the host cell fate via LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Institute of Chengdu Medical College, School of Laboratory Medicine, No 783 Xindu Avenue, Chengdu, Sichuan 610083, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Fujing Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Sai Ren
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
57
|
Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F, Behravan J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron 2018; 117:319-331. [PMID: 29933223 DOI: 10.1016/j.bios.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis is a major global health problem caused by the bacterium Mycobacterium tuberculosis (Mtb) complex. According to WHO reports, 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. The restrictions of traditional methods have encouraged the development of innovative methods for rapid, reliable, and cost-effective diagnosis of tuberculosis. In recent years, aptamer-based biosensors or aptasensors have drawn great attention to sensitive and accessible detection of tuberculosis. Aptamers are small short single-stranded molecules of DNA or RNA that fold to a unique form and bind to targets. Once combined with nanomaterials, nano-scale aptasensors provide powerful analytical platforms for diagnosing of tuberculosis. Various groups designed and studied aptamers specific for the whole cells of M. tuberculosis, mycobacterial proteins and IFN-γ for early diagnosis of TB. Advantages such as high specificity and strong affinity, potential for binding to a larger variety of targets, increased stability, lower costs of synthesis and storage requirements, and lower probability of contamination make aptasensors pivotal alternatives for future TB diagnostics. In recent years, the concept of SOMAmer has opened new horizons in high precision detection of tuberculosis biomarkers. This review article provides a description of the research progresses of aptamer-based and SOMAmer-based biosensors and nanobiosensors for the detection of tuberculosis.
Collapse
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | - Aref Farokhi-Fard
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto, Canada.
| |
Collapse
|
58
|
Gonzalo-Asensio J, Marinova D, Martin C, Aguilo N. MTBVAC: Attenuating the Human Pathogen of Tuberculosis (TB) Toward a Promising Vaccine against the TB Epidemic. Front Immunol 2017; 8:1803. [PMID: 29326700 PMCID: PMC5736532 DOI: 10.3389/fimmu.2017.01803] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Bacille Calmette-Guérin (BCG) is a live-attenuated strain of Mycobacterium bovis developed a century ago by repeated subculture. It remains the only vaccine against tuberculosis (TB) in use today, and it offers variable protection against the respiratory forms of TB responsible for transmission. The principal genetic basis for BCG attenuation is the loss of the region of difference 1 (RD1) that includes the genes codifying for production and export of the major virulence factor ESAT6. Today more than 13 TB vaccine candidates are in clinical evaluation. One of these candidates is MTBVAC, which is based on a rationally attenuated Mycobacterium tuberculosis clinical isolate belonging to modern lineage 4, one of the most widespread lineages among humans. MTBVAC conserves most of the T cell epitopes described for TB including the major immunodominant antigens ESAT6 and CFP10 of the RD1, deleted in BCG. After almost 20 years of discovery and preclinical development, MTBVAC is the only live attenuated vaccine based on a human pathogen that has successfully entered clinical trials as a preventive vaccine in newborns, aiming to replace BCG, and as a preventive vaccine in adolescents and adults (BCG-vaccinated at birth). Our recent preclinical studies have demonstrated that MTBVAC-induced immunity to ESAT6 and CFP10 correlate with improved efficacy relative to BCG encouraging exploration of these responses in human clinical trials as potential biomarkers and identification of these antigens as possible correlates of vaccine-induced protection. Such data would be extremely valuable as they would greatly accelerate clinical development to efficacy trials.
Collapse
Affiliation(s)
- Jesus Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
59
|
Stutz MD, Clark MP, Doerflinger M, Pellegrini M. Mycobacterium tuberculosis: Rewiring host cell signaling to promote infection. J Leukoc Biol 2017; 103:259-268. [PMID: 29345343 PMCID: PMC6446910 DOI: 10.1002/jlb.4mr0717-277r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to cause disease hinges upon successfully thwarting the innate defenses of the macrophage host cell. The pathogen's trump card is its armory of virulence factors that throw normal host cell signaling into disarray. This process of subverting the macrophage begins upon entry into the cell, when M. tuberculosis actively inhibits the fusion of the bacilli‐laden phagosomes with lysosomes. The pathogen then modulates an array of host signal transduction pathways, which dampens the macrophage's host‐protective cytokine response, while simultaneously adapting host cell metabolism to stimulate lipid body accumulation. Mycobacterium tuberculosis also renovates the surface of its innate host cells by altering the expression of key molecules required for full activation of the adaptive immune response. Finally, the pathogen coordinates its exit from the host cell by shifting the balance from the host‐protective apoptotic cell death program toward a lytic form of host cell death. Thus, M. tuberculosis exploits its extensive repertoire of virulence factors in order to orchestrate the infection process to facilitate its growth, dissemination, and entry into latency. This review offers critical insights into the most recent advances in our knowledge of how M. tuberculosis manipulates host cell signaling. An appreciation of such interactions between the pathogen and host is critical for guiding novel therapies and understanding the factors that lead to the development of active disease in only a subset of exposed individuals.
Collapse
Affiliation(s)
- Michael D Stutz
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Clark
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Doerflinger
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
60
|
Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death Differ 2017; 25:951-965. [PMID: 29229989 PMCID: PMC5943269 DOI: 10.1038/s41418-017-0031-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/14/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Mixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages, reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection, we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL, TNFR1, and ZBP1, whilst downregulating cIAP1, thereby establishing a strong pro-necroptotic milieu. However, blocking necroptosis either by deleting Mlkl or inhibiting RIPK1 had no effect on the survival of infected human or murine macrophages. Consistent with this, MLKL-deficiency or treatment of humanized mice with the RIPK1 inhibitor Nec-1s did not impact on disease outcomes in vivo, with mice displaying lung histopathology and bacterial burdens indistinguishable from controls. Therefore, although the necroptotic pathway is primed by Mtb infection, macrophage necroptosis is ultimately restricted to mitigate disease pathogenesis. We identified cFLIP upregulation that may promote caspase 8-mediated degradation of CYLD, and other necrosome components, as a possible mechanism abrogating Mtb’s capacity to coopt necroptotic signaling. Variability in the capacity of these mechanisms to interfere with necroptosis may influence disease severity and could explain the heterogeneity of Mtb infection and disease.
Collapse
|
61
|
Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, Benelli G, Arulselvan P, Rajan M, Kumar Subbiah S. Genomic plasticity between human and mycobacterial DNA: A review. Tuberculosis (Edinb) 2017; 107:38-47. [DOI: 10.1016/j.tube.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
|
62
|
Yabaji SM, Mishra AK, Chatterjee A, Dubey RK, Srivastava K, Srivastava KK. Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK. Biochem Biophys Res Commun 2017; 494:433-439. [DOI: 10.1016/j.bbrc.2017.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
63
|
Díaz S, Rojas ME, Galleguillos M, Maturana C, Smith PI, Cifuentes F, Contreras I, Smith PA. Apoptosis inhibition of Atlantic salmon (Salmo salar) peritoneal macrophages by Piscirickettsia salmonis. JOURNAL OF FISH DISEASES 2017; 40:1895-1902. [PMID: 28699666 DOI: 10.1111/jfd.12660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
To improve the understanding of the piscirickettsiosis pathogenesis, the in vivo apoptosis modulation of peritoneal macrophages and lymphocytes was studied in juvenile Salmo salar intraperitoneally injected with Piscirickettsia salmonis. Five fish were sampled at post-exposure days 1, 5, 8 (preclinical), 20 (clinical) and 40 (post-clinical period of the disease), and the leucocytes of their coelomic washings were analysed by flow cytometry (using the JC-1 cationic dye), TUNEL and cytology to detect apoptotic cells. A selective and temporal pattern of apoptosis modulation by P. salmonis infection was observed. Apoptosis in lymphocytes was not affected, whereas it was inhibited in macrophages but only during the preclinical stage of the induced piscirickettsiosis. Hence, it is postulated that P. salmonis inhibits macrophage apoptosis at the beginning of the disease development to survive, multiply and probably be transported inside these phagocytes; once this process is complete, macrophage apoptosis is no longer inhibited, thus facilitating the exit of the bacteria from the infected cells for continuing their life cycle.
Collapse
Affiliation(s)
- S Díaz
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | - M E Rojas
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | - M Galleguillos
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | | | - P I Smith
- Universidad del Desarrollo, Santiago, Chile
| | - F Cifuentes
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | | | - P A Smith
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
64
|
Queval CJ, Brosch R, Simeone R. The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Front Microbiol 2017; 8:2284. [PMID: 29218036 PMCID: PMC5703847 DOI: 10.3389/fmicb.2017.02284] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of human tuberculosis (TB), has plagued humans for thousands of years. TB still remains a major public health problem in our era, causing more than 4,400 deaths worldwide every day and killing more people than HIV. After inhaling Mtb-contaminated aerosols, TB primo-infection starts in the terminal lung airways, where Mtb is taken up by alveolar macrophages. Although macrophages are known as professional killers for pathogens, Mtb has adopted remarkable strategies to circumvent host defenses, building suitable conditions to survive and proliferate. Within macrophages, Mtb initially resides inside phagosomes, where its survival mostly depends on its ability to take control of phagosomal processing, through inhibition of phagolysosome biogenesis and acidification processes, and by progressively getting access to the cytosol. Bacterial access to the cytosolic space is determinant for specific immune responses and cell death programs, both required for the replication and the dissemination of Mtb. Comprehension of the molecular events governing Mtb survival within macrophages is fundamental for the improvement of vaccine-based and therapeutic strategies in order to help the host to better defend itself in the battle against the fierce invader Mtb. In this mini-review, we discuss recent research exploring how Mtb conquers and transforms the macrophage into a strategic base for its survival and dissemination as well as the associated defense strategies mounted by host.
Collapse
Affiliation(s)
| | | | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| |
Collapse
|
65
|
Choi HG, Choi S, Back YW, Paik S, Park HS, Kim WS, Kim H, Cha SB, Choi CH, Shin SJ, Kim HJ. Rv2299c, a novel dendritic cell-activating antigen of Mycobacterium tuberculosis, fused-ESAT-6 subunit vaccine confers improved and durable protection against the hypervirulent strain HN878 in mice. Oncotarget 2017; 8:19947-19967. [PMID: 28193909 PMCID: PMC5386736 DOI: 10.18632/oncotarget.15256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022] Open
Abstract
Understanding functional interactions between DCs and antigens is necessary for achieving an optimal and desired immune response during vaccine development. Here, we identified and characterized protein Rv2299c (heat-shock protein 90 family), which effectively induced DC maturation. The Rv2299c-maturated DCs showed increased expression of surface molecules and production of proinflammatory cytokines. Rv2299c induced these effects by binding to TLR4 and stimulating the downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. The Rv2299c-maturated DCs also showed an induced Th1 cell response with bactericidal activity and expansion of effector/memory T cells. The Rv2299c-ESAT-6 fused protein had greater immunoreactivity than ESAT-6. Furthermore, boosting BCG with the fused protein significantly reduced hypervirulent Mycobacterium tuberculosis HN878 burdens post-challenge. The pathological study of the lung from the challenged mice assured the efficacy of the fused protein. The fused protein boosting also induced Rv2299c-ESAT-6-specific multifunctional CD4+ T-cell response in the lungs of the challenged mice. Our findings suggest that Rv2299c is an excellent candidate for the rational design of an effective multiantigenic TB vaccine.
Collapse
Affiliation(s)
- Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
66
|
Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, Schaible UE. M. tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe 2017; 22:519-530.e3. [DOI: 10.1016/j.chom.2017.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/27/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023]
|
67
|
Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis. Int Immunopharmacol 2017; 50:319-329. [DOI: 10.1016/j.intimp.2017.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022]
|
68
|
Abstract
The granuloma is the hallmark of tuberculosis and simultaneously signifies acquisition of an infection and induction of a host immune response. But who benefits more from the development of the granuloma, the host or the pathogen? Is microbe or man dictating disease course and progression? Mycobacterial diseases affect humans and animals alike, and the concepts presented in this review reflect host-pathogen interactions that influence not only mycobacterial granulomas in humans and animals but also other infectious granulomatous diseases that are encountered in veterinary medicine. Current dogma supports that an organized granuloma is a mark of an adequate and “restrictive” host immune response. However, the formation of a granuloma also provides a niche for the maturation, growth, and persistence of numerous infectious agents, and these pathogens devote some portion of their genetic machinery to ensuring these structures’ form. An understanding of pathogens’ contributions to granuloma formation can aid the development of host-directed therapies and other antimicrobial and antiparasitic therapies that can tip this balance in favor of a restrictive host response and elimination—not just containment—of the infectious organism. This review discusses animal models that have aided our understanding of pathogens’ contribution to the host response and how mycobacterial virulence genes direct host pathology in ways that may aid disease transmission and/or persistence in the form of latent infection.
Collapse
Affiliation(s)
- Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Cruciani M, Etna MP, Camilli R, Giacomini E, Percario ZA, Severa M, Sandini S, Rizzo F, Brandi V, Balsamo G, Polticelli F, Affabris E, Pantosti A, Bagnoli F, Coccia EM. Staphylococcus aureus Esx Factors Control Human Dendritic Cell Functions Conditioning Th1/Th17 Response. Front Cell Infect Microbiol 2017; 7:330. [PMID: 28785545 PMCID: PMC5519619 DOI: 10.3389/fcimb.2017.00330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Staphylococcus aureus (S. aureus) is a major cause of nosocomial- and community-acquired infections. In addition, many antibiotic-resistant strains are emerging worldwide, thus, there is an urgent unmet need to pinpoint novel therapeutic and prophylactic strategies. In the present study, we characterized the impact of infection with the pandemic methicillin-resistant USA300 S. aureus strain on human primary dendritic cells (DC), key initiators and regulators of immune responses. In particular, among staphylococcal virulence factors, the function of EsxA and EsxB, two small acidic dimeric proteins secreted by the type VII-like secretion system Ess (ESAT-6-like secretion system), was investigated in human DC setting. A comparative analysis of bacterial entry, replication rate as well as DC maturation, apoptosis, signaling pathway activation and cytokine production was performed by using wild type (wt) USA300 and three isogenic mutants carrying the deletion of esxA (ΔesxA), esxB (ΔesxB), or both genes (ΔesxAB). The S. aureus mutant lacking only the EsxA protein (ΔesxA) stimulated a stronger pro-apoptotic phenotype in infected DC as compared to wt USA300, ΔesxAB, and ΔesxB strains. When the mutant carrying the esxB deletion (ΔesxB) was analyzed, a higher production of both regulatory and pro-inflammatory mediators was found in the infected DC with respect to those challenged with the wt counterpart and the other esx mutants. In accordance with these data, supernatant derived from ΔesxB-infected DC promoted a stronger release of both IFN-γ and IL-17 from CD4+ T cells as compared with those conditioned with supernatants derived from wild type USA300-, ΔesxAB-, and ΔesxA-infected cultures. Although, the interaction of S. aureus with human DC is not yet fully understood, our data suggest that both cytokine production and apoptotic process are modulated by Esx factors, thus indicating a possible role of these proteins in the modulation of DC-mediated immunity to S. aureus.
Collapse
Affiliation(s)
- Melania Cruciani
- Department of Science, University Roma TreRome, Italy.,Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | - Romina Camilli
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | | | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | | | | | - Fabio Polticelli
- Department of Science, University Roma TreRome, Italy.,National Institute of Nuclear Physics, Roma Tre UniversityRome, Italy
| | | | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| | | | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
70
|
Gonzalo-Asensio J, Aguilo N, Marinova D, Martin C. Breaking Transmission with Vaccines: The Case of Tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0001-2016. [PMID: 28710848 PMCID: PMC11687530 DOI: 10.1128/microbiolspec.mtbp-0001-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) have evolved causing tuberculosis (TB) in different mammalian hosts. MTBC ecotypes have adapted to diverse animal species, with M. bovis being the most common cause of TB in livestock. Cattle-to-human transmission of M. bovis through ingestion of raw milk was common before introduction of the pasteurization process. TB in humans is mainly caused by M. tuberculosis. This bacterium is considered a genetically clonal pathogen that has coevolved with humans due to its ability to manipulate and subvert the immune response. TB is a major public health problem due to airborne person-to-person transmission of M. tuberculosis. The essential yet unanswered question on the natural history of TB is when M. tuberculosis decides to establish latent infection in the host (resambling the lysogenic cycle of lambda phage) or to cause pulmonary disease (comparable to the lytic cycle of lambda phage). In this latter case, M. tuberculosis kills the host with the aim of achieving transmission to new hosts. Combating the TB epidemic requires stopping transmission. M. bovis BCG, the present vaccine against TB, is derived from M. bovis and only protects against disseminated forms of TB. Thus, a priority in TB research is development of new effective vaccines to prevent pulmonary disease. Attenuated vaccines based on M. tuberculosis as MTBVAC are potential candidates that could contribute to break the TB transmission cycle.
Collapse
Affiliation(s)
- Jesus Gonzalo-Asensio
- Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Nacho Aguilo
- Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Miguel Servet, ISS Aragón, Zaragoza, Spain
| |
Collapse
|
71
|
Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0001-2015. [PMID: 28513416 PMCID: PMC11687508 DOI: 10.1128/microbiolspec.tbtb2-0001-2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/27/2023] Open
Abstract
In this article, we have described several cellular pathological effects caused by the Mycobacterium tuberculosis ESX-1. The effects include induction of necrosis, NOD2 signaling, type I interferon production, and autophagy. We then attempted to suggest that these pathological effects are mediated by the cytosolic access of M. tuberculosis-derived materials as a result of the phagosome-disrupting activity of the major ESX-1 substrate ESAT-6. Such activity of ESAT-6 is most likely due to its pore-forming activity at the membrane. The amyloidogenic characteristic of ESAT-6 is reviewed here as a potential mechanism of membrane pore formation. In addition to ESAT-6, the ESX-1 substrate EspB interferes with membrane-mediated innate immune mechanisms such as efferocytosis and autophagy, most likely through its ability to bind phospholipids. Overall, the M. tuberculosis ESX-1 secretion system appears to be a specialized system for the deployment of host membrane-targeting proteins, whose primary function is to interrupt key steps in innate immune mechanisms against pathogens. Inhibitors that block the ESX-1 system or block host factors critical for ESX-1 toxicity have been identified and should represent attractive potential new antituberculosis drugs.
Collapse
Affiliation(s)
- Ka-Wing Wong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
72
|
Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol 2017; 25:192-204. [DOI: 10.1016/j.tim.2016.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023]
|
73
|
Marín D, Marín N, del Corral H, López L, Ramirez-Agudelo ME, Rojas CA, Arbeláez MP, García LF, Rojas M. PPD-induced monocyte mitochondrial damage is associated with a protective effect to develop tuberculosis in BCG vaccinated individuals: A cohort study. PLoS One 2017; 12:e0171930. [PMID: 28222109 PMCID: PMC5319776 DOI: 10.1371/journal.pone.0171930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/29/2017] [Indexed: 12/04/2022] Open
Abstract
Introduction The mechanisms of mononuclear phagocyte death have been associated with the permissiveness and resistance to mycobacterial replication, but it remains unknown whether or not they help predict the risk of developing TB. Objective To describe the factors associated with the induction of monocyte mitochondrial and membrane damage in response to PPD as well as determine if this type of damage might predict the susceptibility of developing active tuberculosis in a cohort of household contacts (HHCs) from Medellin, Colombia from 2005 to 2008. Methods The prospective cohort study contains 2060 HHCs patients with pulmonary tuberculosis who were meticulously followed for two years. A survey of the socio-demographic, clinical, epidemiological factors and blood samples were collected. Mononuclear cell cultures were stimulated with or without PPD and the type of monocyte death was determined by the flow of cytometry, an indicator was also used for its analysis. Logistic regression was adjusted by the Generalized Estimations Equations and the survival was estimated with the Kaplan-Meier and Cox regression. Confidence intervals were used for estimating the association. Results 1,859 out of 2,060 blood samples of the HHCs patients analyzed showed monocyte death. In response to PPD, 83.4% underwent mitochondrial damage while 50.9% had membrane damage. The membrane damage in response to PPD was higher in children under 4 years (OR: 1.57; (95% CI: 1.1 to 2.4) and the HHCs who slept regularly in the same household has an index case of (OR: 1.54; 95% CI: 1.0 to 2.3). After adjustment by age, comorbidities, nutritional status, proximity to index case and overcrowding, the risk of developing active TB among BCG vaccinated HHCs individuals with induction of mitochondrial damage was HR = 0.19 (95% CI: 0.1 to 0.5). Conclusions The induction of monocytes mitochondrial damage by PPD stimulation correlates with protection of TB disease development in BCG-vaccinated HHCs. This represents a potential tool to predict susceptibility of developing active disease in this population.
Collapse
Affiliation(s)
- Diana Marín
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- * E-mail: (DM); (MR)
| | - Nancy Marín
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Helena del Corral
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - Lucelly López
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - María Elena Ramirez-Agudelo
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos A. Rojas
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - María P. Arbeláez
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - Luis F. García
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Rojas
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- * E-mail: (DM); (MR)
| |
Collapse
|
74
|
Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, Sayes F, Le Chevalier F, Chalut C, Malaga W, Guilhot C, Brosch R, Astarie-Dequeker C. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol 2017; 19. [PMID: 28095608 DOI: 10.1111/cmi.12726] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Abstract
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT-6). This small protein, which is secreted by the type VII secretion system ESX-1 (T7SS/ESX-1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock-out or knock-in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX-1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Ainhoa Arbues
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Alice Wegener
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Fabien Le Chevalier
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| |
Collapse
|
75
|
Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L, Carvalho F, Pucciarelli MG, García-Del Portillo F, Sousa S, Cabanes D. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 2016; 8:993-1004. [PMID: 27723420 DOI: 10.1080/21505594.2016.1244589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Bacterial pathogenicity deeply depends on the ability to secrete virulence factors that bind specific targets on host cells and manipulate host responses. The Gram-positive bacterium Listeria monocytogenes is a human foodborne pathogen that remains a serious public health concern. To transport proteins across its cell envelope, this facultative intracellular pathogen engages a set of specialized secretion systems. Here we show that L. monocytogenes EGDe uses a specialized secretion system, named ESX-1, to secrete EsxA, a homolog of the virulence determinants ESAT-6 and EsxA of Mycobacterium tuberculosis and Staphylococcus aureus, respectively. Our data show that the L. monocytogenes ESX-1 secretion system and its substrates are dispensable for bacterial invasion and intracellular multiplication in eukaryotic cell lines. Surprisingly, we found that the EssC-dependent secretion of EsxA has a detrimental effect on L. monocytogenes in vivo infection.
Collapse
Affiliation(s)
- Jorge Pinheiro
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Olga Reis
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Ana Vieira
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Ines M Moura
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Luisa Zanolli Moreno
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,d Laboratório de Saúde Pública , Faculdade de Saúde Pública, Universidade de São Paulo , São Paulo , Brazil
| | - Filipe Carvalho
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - M Graciela Pucciarelli
- e Centro Nacional de Biotecnología-CSIC (CNB-CSIC) , Madrid , Spain.,f Departamento de Biología Molecular , Universidad Autónoma de Madrid, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC) , Madrid , Spain
| | | | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| |
Collapse
|
76
|
Abstract
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.
Collapse
|
77
|
Mycobacterium bovis-infected macrophages from resistant and susceptible cattle exhibited a differential pro-inflammatory gene expression profile depending on strain virulence. Vet Immunol Immunopathol 2016; 176:34-43. [DOI: 10.1016/j.vetimm.2016.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
|
78
|
Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis. PLoS Pathog 2016; 12:e1005652. [PMID: 27191591 PMCID: PMC4871555 DOI: 10.1371/journal.ppat.1005652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/01/2016] [Indexed: 02/04/2023] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with host cell death signaling pathways is characterized by an initial anti-apoptotic phase followed by a pro-necrotic phase to allow for host cell exit of the bacteria. The bacterial modulators regulating necrosis induction are poorly understood. Here we describe the identification of a transcriptional repressor, Rv3167c responsible for regulating the escape of Mtb from the phagosome. Increased cytosolic localization of MtbΔRv3167c was accompanied by elevated levels of mitochondrial reactive oxygen species and reduced activation of the protein kinase Akt, and these events were critical for the induction of host cell necrosis and macroautophagy. The increase in necrosis led to an increase in bacterial virulence as reflected in higher bacterial burden and reduced survival of mice infected with MtbΔRv3167c. The regulon of Rv3167c thus contains the bacterial mediators involved in escape from the phagosome and host cell necrosis induction, both of which are crucial steps in the intracellular lifecycle and virulence of Mtb. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly successful human pathogen. Following entry into host phagocytic cells, Mtb resides within a modified phagosomal compartment and inhibits apoptotic host cell death. Recent studies have demonstrated that Mtb eventually translocates from the phagosomal compartment to the cytosol. This event is followed by the induction of necrotic host cell death allowing the bacteria to exit the host cell and infect naive cell populations. Our study adds to this relatively unexplored aspect of Mtb pathogenesis by revealing that the transcriptional repressor Rv3167c of Mtb negatively regulates phagosomal escape and host cell necrosis. We furthermore demonstrate that the increased necrosis induction by the Mtb mutant strain deficient in Rv3167c required elevated reactive oxygen species levels within host cell mitochondria and reduced activation of the protein kinase Akt. In addition, the increased virulence of the Mtb mutant strain observed after aerosol infection of mice strengthens the link between the ability of the bacteria to induce host cell necrosis and virulence. The Mtb genes negatively regulated by Rv3167c are thus potential virulence factors that can be targeted for drug and vaccine development.
Collapse
|
79
|
Li H, Li Q, Yu Z, Zhou M, Xie J. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis 2016; 21:795-808. [DOI: 10.1007/s10495-016-1249-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
80
|
Abstract
Upon entry to the systemic circulation, neutrophils exhibit a short mean time to cell death. The viability of most cell types in a steady state is preserved by the interplay of the Bcl-2 family of proteins, wherein the anti-apoptotic members inhibit the action of their pro-apoptotic counterparts. Neutrophils, however, display absent or severely reduced expression of several anti-apoptotic Bcl-2 family proteins. Hence, they rely on the expression of Mcl-1, an anti-apoptotic member of the Bcl-2 family, for survival. This protein is uniquely short-lived relative to related proteins and its loss likely precipitates the induction of apoptosis in neutrophils. This review describes the role of Mcl-1 in the neutrophil in the context of apoptosis and highlights the proteins' importance to the cell. We also address neutrophil apoptosis in the broader context of the cells' response to pathogens, focussing particularly on the strategies used by pathogens to manipulate the apoptotic pathway to their own ends.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland,
| | | |
Collapse
|
81
|
Peng X, Jiang G, Liu W, Zhang Q, Qian W, Sun J. Characterization of differential pore-forming activities of ESAT-6 proteins from Mycobacterium tuberculosis and Mycobacterium smegmatis. FEBS Lett 2016; 590:509-19. [PMID: 26801203 DOI: 10.1002/1873-3468.12072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) plays essential roles in pathogenesis. MtbESAT-6 exhibits a unique pore-forming activity (PFA) that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis (MsESAT-6). Here, we characterized the differential PFAs and found that exchange of I25-H26/T25-A26 between two proteins reciprocally affected their PFAs. MtbESAT-6(IH/TA) had ~ 40% reduction, while MsESAT-6(TA/IH) fully acquired its activity similar to MtbESAT-6. Mutations of A17E, K38T, N67L or R74Q on MtbESAT-6(IH/TA) further reduced the activity, with MtbESAT-6(IH/TA-17) being the lowest. This study suggests I25-H26 as the pH-sensor essential for MsESAT-6 to fully acquire the activity, while multiple residues contributed to MtbESAT-6 PFA.
Collapse
Affiliation(s)
- Xiuli Peng
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agriculture University, Wuhan, China.,Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Guozhong Jiang
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Wei Liu
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Qi Zhang
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, TX, USA
| | - Wei Qian
- Sino-Duth Biomedical and Information Engineering School of Northeastern University, Shenyang, China
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, TX, USA.,Sino-Duth Biomedical and Information Engineering School of Northeastern University, Shenyang, China
| |
Collapse
|
82
|
Datta D, Khatri P, Banerjee C, Singh A, Meena R, Saha DR, Raman R, Rajamani P, Mitra A, Mazumder S. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages. PLoS One 2016; 11:e0146554. [PMID: 26752289 PMCID: PMC4713470 DOI: 10.1371/journal.pone.0146554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/19/2015] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium fortuitum causes ‘mycobacteriosis’ in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.
Collapse
Affiliation(s)
- Debika Datta
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ambika Singh
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ramavatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, India
| | - Dhira Rani Saha
- Microscopy Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, Delhi, India
| | - Abhijit Mitra
- Genome Analysis Laboratory, Animal Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
83
|
Abstract
Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.
Collapse
|
84
|
Impact of Mycobacterium tuberculosis RD1-locus on human primary dendritic cell immune functions. Sci Rep 2015; 5:17078. [PMID: 26602835 PMCID: PMC4658526 DOI: 10.1038/srep17078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
Modern strategies to develop vaccines against Mycobacterium tuberculosis (Mtb) aim to improve the current Bacillus Calmette-Guerin (BCG) vaccine or to attenuate the virulence of Mtb vaccine candidates. In the present study, the impact of wild type or mutated region of difference 1 (RD1) variants on the immunogenicity of Mtb and BCG recombinants was investigated in human primary dendritic cells (DC). A comparative analysis of transcriptome, signalling pathway activation, maturation, apoptosis, cytokine production and capacity to promote Th1 responses demonstrated that DC sense quantitative and qualitative differences in the expression of RD1-encoded factors—ESAT6 and CFP10—within BCG or Mtb backgrounds. Expansion of IFN-γ producing T cells was promoted by BCG::RD1-challenged DC, as compared to their BCG-infected counterparts. Although Mtb recombinants acted as a strong Th-1 promoting stimulus, even with RD1 deletion, the attenuated Mtb strain carrying a C-terminus truncated ESAT-6 elicited a robust Th1 promoting phenotype in DC. Collectively, these studies indicate a necessary but not sufficient role for the RD1 locus in promoting DC immune-regulatory functions. Additional mycobacterial factors are likely required to endow DC with a high Th1 polarizing capacity, a desirable attribute for a successful control of Mtb infection.
Collapse
|
85
|
Mohanty S, Dal Molin M, Ganguli G, Padhi A, Jena P, Selchow P, Sengupta S, Meuli M, Sander P, Sonawane A. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis (Edinb) 2015; 96:44-57. [PMID: 26786654 DOI: 10.1016/j.tube.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survives inside the macrophages by modulating the host immune responses in its favor. The 6-kDa early secretory antigenic target (ESAT-6; esxA) of Mtb is known as a potent virulence and T-cell antigenic determinant. At least 23 such ESAT-6 family proteins are encoded in the genome of Mtb; however, the function of many of them is still unknown. We herein report that ectopic expression of Mtb Rv2346c (esxO), a member of ESAT-6 family proteins, in non-pathogenic Mycobacterium smegmatis strain (MsmRv2346c) aids host cell invasion and intracellular bacillary persistence. Further mechanistic studies revealed that MsmRv2346c infection abated macrophage immunity by inducing host cell death and genomic instability as evident from the appearance of several DNA damage markers. We further report that the induction of genomic instability in infected cells was due to increase in the hosts oxidative stress responses. MsmRv2346c infection was also found to induce autophagy and modulate the immune function of macrophages. In contrast, blockade of Rv2346c induced oxidative stress by treatment with ROS inhibitor N-acetyl-L-cysteine prevented the host cell death, autophagy induction and genomic instability in infected macrophages. Conversely, MtbΔRv2346c mutant did not show any difference in intracellular survival and oxidative stress responses. We envision that Mtb ESAT-6 family protein Rv2346c dampens antibacterial effector functions namely by inducing oxidative stress mediated genomic instability in infected macrophages, while loss of Rv2346c gene function may be compensated by other redundant ESAT-6 family proteins. Thus EsxO plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Soumitra Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | | | - Avinash Padhi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Prajna Jena
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Srabasti Sengupta
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland; National Reference Laboratory for Mycobacteria, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
86
|
Matty MA, Roca FJ, Cronan MR, Tobin DM. Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma. Immunol Rev 2015; 264:276-87. [PMID: 25703566 DOI: 10.1111/imr.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent work in a variety of animal models, including mice, zebrafish, and macaques, as well as in humans, has led to a reassessment of several tenets of mycobacterial infection. In this review, we describe new findings about the composition and dynamics of the tuberculous granuloma, the central host structure in mycobacterial infection, as well as inflammatory mediators that drive a successful anti-microbial response on one hand and pathological inflammation on the other. We highlight granuloma heterogeneity that emerges in the context of infection, the functional consequences of angiogenesis in tuberculous granulomas, and data that balanced inflammation in humans, with a central role for tumor necrosis factor, appears to play a key role in optimal defense against mycobacterial infection. These findings have suggested new and specific host-directed therapies that await further clinical exploration.
Collapse
Affiliation(s)
- Molly A Matty
- Department of Molecular Genetics and Microbiology, Center for Host-Microbial Interactions, Duke University Medical Center, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
87
|
Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J, Martin C. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis 2015; 213:831-9. [PMID: 26494773 DOI: 10.1093/infdis/jiv503] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2015] [Indexed: 01/20/2023] Open
Abstract
Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge. In addition, our results indicate that pulmonary vaccination triggers a Mycobacterium tuberculosis-specific mucosal immune response orchestrated by interleukin 17A (IL-17A). Thus, IL-17A neutralization in vivo reduces protection and abrogates M. tuberculosis-specific immunoglobulin A (IgA) secretion to respiratory airways and lung expression of polymeric immunoglobulin receptor induced following intranasal vaccination. Together, our results demonstrate that pulmonary delivery of BCG can overcome the lack of protection observed when BCG is given parenterally, suggesting that respiratory tuberculosis vaccines could have an advantage in tuberculosis-endemic countries, where intradermally administered BCG has inefficient effectiveness against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Samuel Alvarez-Arguedas
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
88
|
Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 2015; 6:e01289-15. [PMID: 26489860 PMCID: PMC4620462 DOI: 10.1128/mbio.01289-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology.
Collapse
|
89
|
Peng X, Sun J. Mechanism of ESAT-6 membrane interaction and its roles in pathogenesis of Mycobacterium tuberculosis. Toxicon 2015; 116:29-34. [PMID: 26456678 DOI: 10.1016/j.toxicon.2015.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
The 6-kDa early secreted antigenic target (ESAT-6; EsxA) of Mycobacterium tuberculosis was first identified as a potent T-cell antigen, and it is now recognized as a pore-forming toxin that is essential for virulence of M. tuberculosis. ESAT-6 is secreted through the ESX-1 secretion system (Type VII) of M. tuberculosis and has been implicated to mediate mycobacterial cytosolic translocation within the host macrophages by rupturing the phagosomal membranes. Recent studies have made significant progresses in understanding of the mechanism of ESAT-6 membrane interaction and its role in M. tuberculosis pathogenesis, but important questions still remain to be answered. Here, we summarize the current progress in study of ESAT-6 membrane interaction and its roles in pathogenesis and discuss some of the key remaining questions for future investigation.
Collapse
Affiliation(s)
- Xiuli Peng
- Key Laboratory Agriculture Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agriculture University, Wuhan, 430070, China
| | - Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
90
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|
91
|
Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, Regueiro V, Brennan GP, Millán-Lou MI, Martín C, Garmendia J, Bengoechea JA. Klebsiella pneumoniaesurvives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 2015; 17:1537-60. [DOI: 10.1111/cmi.12466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Victoria Cano
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Catalina March
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Jose Luis Insua
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Nacho Aguiló
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Enrique Llobet
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - David Moranta
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Verónica Regueiro
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Gerard P. Brennan
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| | - Maria Isabel Millán-Lou
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Carlos Martín
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Instituto de Agrobiotecnología; CSIC - Universidad Pública de Navarra-Gobierno de Navarra; Mutilva Spain
| | - José A. Bengoechea
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
- Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| |
Collapse
|
92
|
Le Chevalier F, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol 2015; 9:969-85. [PMID: 25302954 DOI: 10.2217/fmb.14.70] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | | | |
Collapse
|
93
|
Delogu G, Provvedi R, Sali M, Manganelli R. Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 2015; 10:1177-94. [PMID: 26119086 DOI: 10.2217/fmb.15.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The existing TB vaccine, the attenuated Mycobacterium bovis strain BCG, is effective in protecting infants from severe forms of the disease, while its efficacy in protecting adults from pulmonary TB is poor. In the last two decades, a renewed interest in TB resulted in the development of several candidate vaccines that are now entering clinical trials. However, most of these vaccines are based on a common rationale and aim to induce a strong T-cell response against Mycobacterium tuberculosis. Recent advancements in the understanding of M. tuberculosis virulence determinants and associated pathogenic strategies are opening a new and broader view of the complex interaction between this remarkable pathogen and the human host, providing insights at molecular level that could lead to a new rationale for the design of novel antitubercular vaccines. A vaccination strategy that simultaneously targets different steps in TB pathogenesis may result in improved protection and reduced TB transmission.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Roberta Provvedi
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| | - Michela Sali
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| |
Collapse
|
94
|
Tiwari B, Ramakrishnan UM, Raghunand TR. The Mycobacterium tuberculosis protein pair PE9 (Rv1088)-PE10 (Rv1089) forms heterodimers and induces macrophage apoptosis through Toll-like receptor 4. Cell Microbiol 2015; 17:1653-69. [PMID: 26031846 DOI: 10.1111/cmi.12462] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
Toll-like receptor (TLR)-mediated interactions of Mycobacterium tuberculosis (M. tb) with macrophages are major determinant in the outcome of innate immune defence and subsequent adaptive immune responses. Here we report a novel interaction of the M. tb protein pair PE9 (Rv1088)-PE10 (Rv1089) with the macrophage TLR4 leading to apoptosis and modulation of cytokine levels. We demonstrate that the two proteins physically interact, and that PE9 is required for the cell wall localization of PE10 in Mycobacterium smegmatis. Interaction of the PE9-PE10 complex with TLR4 in THP-1 macrophages was associated with increased levels of phospho-IRF-3, which correlated with an increase in transcript levels of its target gene interferon-β. THP-1 macrophages treated with PE9-PE10 complex showed multiple hallmarks of apoptosis and modulation of interleukin (IL)-1b and IL-10 levels. All of these effects were abrogated when cells were treated either with an antibody to PE10 or an anti-TLR4 antibody, indicating that the complex specifically interacts with TLR4 through PE10, establishing this protein pair as a TLR4 ligand. This novel observation of two proline-glutamate (PE) proteins forming functional heterodimers represents a considerable expansion of the PE_PPE repertoire in the context of receptor engagement and the concomitant modulation of host responses by this unique class of proteins.
Collapse
Affiliation(s)
- Bhavana Tiwari
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
95
|
Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine 2015; 33:3047-55. [DOI: 10.1016/j.vaccine.2015.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
|
96
|
Abstract
Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.
Collapse
Affiliation(s)
- Günter Weiss
- Department of Internal Medicine VI, Infectious Disease, Immunology, Rheumatology, Pneumology, Medical University of InnsbruckInnsbruck, Austria
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Area Infections, Research Center BorstelBorstel, Germany
- Department of Immunology, London School of Hygiene and Tropical MedicineLondon, UK
- German Centre of Infection Research, TTU-TBBorstel, Germany
| |
Collapse
|
97
|
Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb) 2015; 95 Suppl 1:S150-4. [PMID: 25732627 DOI: 10.1016/j.tube.2015.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pathogenesis of Mycobacterium tuberculosis depends on the secretion of key virulence factors, such as the 6 kDa early secreted antigenic target ESAT-6 (EsxA) and its protein partner, the 10 kDa culture filtrate protein CFP-10 (EsxB), via the ESX-1 secretion system. ESX-1 represents the prototype system of the recently named type VII secretion systems that exist in a range of actinobacteria. The M. tuberculosis genome harbours a total of five gene clusters potentially coding for type VII secretion systems, designated ESX-1 - ESX-5, with ESX-4 being the most ancient system from which other ESX systems seem to have evolved by gene duplication and gene insertion events. The five ESX systems show similarity in gene content and gene order but differ in function. ESX-1 and ESX-5 are both crucial virulence determinants of M. tuberculosis, but with different mechanisms. While ESX-1 is implicated in the lysis of the host cell phagosomes, ESX-5 is involved in secretion of the mycobacteria specific PE and PPE proteins and cell wall stability. Research on type VII secretion systems has thus become a large and competitive research topic that is tightly linked to studies of host-pathogen interaction of pathogenic mycobacteria. Insights into this matter are of relevance for redrawing the patho-evolution of M. tuberculosis, which might help improving current strategies for prevention, diagnostics and therapy of tuberculosis as well as elucidating the virulence mechanisms employed by this important human pathogen.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Daria Bottai
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| |
Collapse
|
98
|
Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 2015; 11:e1004650. [PMID: 25658322 PMCID: PMC4450080 DOI: 10.1371/journal.ppat.1004650] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/02/2015] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) uses efficient
strategies to evade the eradication by professional phagocytes, involving—as
recently confirmed—escape from phagosomal confinement. While
Mtb determinants, such as the ESX-1 type VII secretion system,
that contribute to this phenomenon are known, the host cell factors governing this
important biological process are yet unexplored. Using a newly developed
flow-cytometric approach for Mtb, we show that macrophages
expressing the phagosomal bivalent cation transporter Nramp-1, are much less
susceptible to phagosomal rupture. Together with results from the use of the
phagosome acidification inhibitor bafilomycin, we demonstrate that restriction of
phagosomal acidification is a prerequisite for mycobacterial phagosomal rupture and
cytosolic contact. Using different in vivo approaches including an
enrichment and screen for tracking rare infected phagocytes carrying the CD45.1
hematopoietic allelic marker, we here provide first and unique evidence of M.
tuberculosis-mediated phagosomal rupture in mouse spleen and lungs and in
numerous phagocyte types. Our results, linking the ability of restriction of
phagosome acidification to cytosolic access, provide an important conceptual advance
for our knowledge on host processes targeted by Mtb evasion
strategies. The intracellular fate of the agent of the human tuberculosis agent in phagocytes is
a question of great biological relevance. Among the mycobacterial survival
strategies, the escape of Mycobacterium tuberculosis from phagosomes
has been subject of scientific debate for a long time. However, technically improved
methods recently reinforced the occurrence of this phenomenon. Here, we focused on
the host factors involved in phagosomal rupture and provide first and singular
evidence of M. tuberculosis-mediated phagosomal
rupture in vivo in mouse lungs and inside the granuloma. We show
that partial blockage of phagosomal acidification, induced by mycobacteria, is a
prerequisite for efficient vacuolar breakage by M.
tuberculosis and link maturation arrest, cytosolic contact and
the corresponding immune responses. From our results we conclude that vacuolar
breakage induced by M. tuberculosis is not an
ex vivo artifact of cell cultures, but an important process that
occurs inside infected phagocytes within organs during several days that strongly
determines the outcome of infection with this key pathogen.
Collapse
|
99
|
Ma Y, Keil V, Sun J. Characterization of Mycobacterium tuberculosis EsxA membrane insertion: roles of N- and C-terminal flexible arms and central helix-turn-helix motif. J Biol Chem 2015; 290:7314-22. [PMID: 25645924 DOI: 10.1074/jbc.m114.622076] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EsxA (ESAT-6), an important virulence factor of Mycobacterium tuberculosis, plays an essential role in phagosome rupture and bacterial cytosolic translocation within host macrophages. Our previous study showed that EsxA exhibits a unique membrane-interacting activity that is not found in its ortholog from nonpathogenic Mycobacterium smegmatis. However, the molecular mechanism of EsxA membrane insertion remains unknown. In this study, we generated truncated EsxA proteins with deletions of the N- and/or C-terminal flexible arm. Using a fluorescence-based liposome leakage assay, we found that both the N- and C-terminal arms were required for membrane disruption. Moreover, we found that, upon acidification, EsxA converted into a more organized structure with increased α-helical content, which was evidenced by CD analysis and intrinsic tryptophan fluorescence. Finally, using an environmentally sensitive fluorescent dye, we obtained direct evidence that the central helix-turn-helix motif of EsxA inserted into the membranes and formed a membrane-spanning pore. A model of EsxA membrane insertion is proposed and discussed.
Collapse
Affiliation(s)
- Yue Ma
- From the Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Verena Keil
- From the Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Jianjun Sun
- From the Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| |
Collapse
|
100
|
Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 2014; 26:543-51. [DOI: 10.1016/j.smim.2014.09.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|