51
|
Chang Y, Dai DH, Li Y, Zhang Y, Zhang M, Zhou GB, Zeng CJ. Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm. Theriogenology 2016; 86:2162-2171. [PMID: 27527406 DOI: 10.1016/j.theriogenology.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
Mammalian spermatozoa gradually mature and acquire fertility during the transition from the testis to the caput and cauda epididymis, after which they are stored at the tail of the epididymis and the ampulla of vas deferens. During ejaculation, mixing of spermatozoa with the secretions of accessory sex glands leads to their dilution and changes in their function. Although remarkable progress has been made toward the understanding of changes in spermatozoa biochemistry and function before and after ejaculation, it is unknown whether microRNAs (miRNAs) are involved in regulating the function of spermatozoa during the transition between the cauda epididymis and ejaculation. In this study, 48 miRNAs were selected for analysis on the basis of their potential involvement in spermatogenesis, sperm maturation, and quality parameters markers. The differential expression levels of these 48 miRNAs between the caudal epididymis and fresh ejaculates of boar spermatozoa were determined. We found that 15 miRNAs were significantly differentially expressed (eight downregulated and seven upregulated) between boar cauda epididymal and fresh spermatozoa. Five miRNAs hypothesized to be involved in sperm apoptosis were further tested to demonstrate their influence over the expression of their target mRNAs using quantitative reverse-transcription polymerase chain reaction. Together, our findings suggest that these differentially expressed miRNAs are associated with the functional regulation of spermatozoa between cauda epididymis and ejaculation.
Collapse
Affiliation(s)
- Yu Chang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ding-Hui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yuan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Guang-Bin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Chang-Jun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China.
| |
Collapse
|
52
|
Li S, Zhao W, Xu Q, Yu Y, Yin C. MicroRNA-765 regulates neural stem cell proliferation and differentiation by modulating Hes1 expression. Am J Transl Res 2016; 8:3115-3123. [PMID: 27508032 PMCID: PMC4969448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/23/2016] [Indexed: 06/06/2023]
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing and undifferentiated cells that have the ability to differentiate to both glial and neuronal lineages. miRNAs act a key role in regulating neuronal fate and self-renewal of NSCs. In this study, we found that ectopic expression of miR-765 promoted NSCs proliferation. Moreover, miR-765 overexpression increased the ki-67 and β-tubulin-III expression inNSCs. Overexpression of miR-765 inhibited the expression of GFAP in NSCs. Furthermore, Hes1 was identified as a direct target gene of miR-765 in NSCs. Overexpression of Hes1 decreased miR-765-induced proliferation of NSCs and inhibited NSCs differentiation to neurons in miR-765-treated NSCs. These results demonstrated that miR-765 acted a crucial role in NSCs differentiation and proliferation by inhibiting Hes1 expression.
Collapse
Affiliation(s)
- Siou Li
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Qing Xu
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Yang Yu
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Changhao Yin
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| |
Collapse
|
53
|
Liu Q, Wang H, Singh A, Shou F. Expression and function of microRNA-497 in human osteosarcoma. Mol Med Rep 2016; 14:439-45. [PMID: 27176490 DOI: 10.3892/mmr.2016.5256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
The expression and function of microRNA-497 (miR-497) has previously been reported in various types of human cancer; however, miR-497 has not previously been investigated in human osteosarcoma (OS). In the present study, the expression levels of miR‑497 were analyzed by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in OS tissues and cell lines. In addition, post-transfection with miR‑497, RT‑qPCR, cell proliferation, migration and invasion assays, western blot analysis, and luciferase assays were performed in OS cell lines. The results of the present study demonstrated that miR‑497 was downregulated in OS tissues and cells compared with normal controls. Furthermore, upregulation of miR‑497 inhibited cell proliferation, migration and invasion in osteosarcoma cell lines compared with the negative control group. In addition, the present study demonstrated that miR‑497 may function by directly targeting insulin‑like growth factor 1 receptor in OS cells. These findings indicated that miR‑497 may be useful as a therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Huan Wang
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ankit Singh
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fenyong Shou
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
54
|
Abstract
Ankylosing spondylitis (AS) is a common and genetically heterozygous inflammatory rheumatic disease characterized by new bone formation, ankylosis and inflammation of hip, sacroiliac joints and spine. Until now, there is no method for early diagnosis of AS and the effective treatment available for AS patients remain largely undefined.We searched articles indexed in PubMed (MEDLINE) database using Medical Subject Heading (MeSH) or Title/Abstract words ("microRNA" and "ankylosing spondylitis") from inception up to November 2015.Genetic polymorphisms of miRNAs and their targets might alter the risk of AS development whereas certain miRNAs exhibit correlation with inflammatory index.Let-7i and miR-124 were upregulated whereas miR-130a was downregulated in circulating immune cells of AS patients. These deregulated miRNAs could modulate key immune cell functions, such as cytokine response and T-cell survival.miRNA deregulation is key to AS pathogenesis. However, clinical utilization of miRNAs for management of AS patients requires further support from future translational studies.
Collapse
Affiliation(s)
- Zheng Li
- From the Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (ZL, JS); State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences and Department of Medicine & Therapeutics (SHW, WKKW); and Department of Anaesthesia and Intensive Care (MTVC), The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
55
|
Yang F, Xu Z, Duan S, Luo M. MicroRNA-541 promotes the proliferation of vascular smooth muscle cells by targeting IRF7. Am J Transl Res 2016; 8:506-515. [PMID: 27158343 PMCID: PMC4846900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
MiRNAs play crucial roles in abnormal proliferation and invasion of VSMCs. However, the roles and mechanisms of miRNAs in VSMCs are not fully understood. In our study, we demonstrated that PDGF-BB and serum induced proliferation of VSMCs led to the upregulation of miR-541. We also showed that overexpression of miR-541 promoted VSMC proliferation and invasion. In addition, Interferon regulatory factor 7 (IRF7) was found to be a potential target of miR-541 and upregulation of IRF7 could inhibit VSMC proliferation. Restored expression of miR-541 promoted IRF7-inhibited VSMCs proliferation. In conclusion, these findings suggest that inhibitors targeting miR-541 or its specific downstream molecules may be therapeutic strategy for VSMC growth-related diseases.
Collapse
Affiliation(s)
- Fang Yang
- Department of Cardiology, Yantaishan Hospital of YantaiYantai 264001, Shandong, China
| | - Zonglei Xu
- Department of Cardiology, Liaocheng People’s HospitalLiaocheng 252000, Shandong, China
| | - Shaobin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in HunanChangsha 410011, Hunan, China
| | - Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in HunanChangsha 410011, Hunan, China
| |
Collapse
|
56
|
Jiang G, Cui Y, Yu X, Wu Z, Ding G, Cao L. miR-211 suppresses hepatocellular carcinoma by downregulating SATB2. Oncotarget 2016; 6:9457-66. [PMID: 25888635 PMCID: PMC4496230 DOI: 10.18632/oncotarget.3265] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/31/2015] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of microRNAs (miRs) is involved in carcinogenesis. Deregulation of miR-211 has recently been observed in many tumors, but its function in hepatocellular carcinoma (HCC) is still unknown. Here we found that miR-211 was decreased in HCC cancer tissues compared with adjacent normal tissues. We also found that overexpression of miR-211 repressed proliferation and invasion in HepG2 and SMMC7721 cells. Luciferase reporter assays and western blot indicated that special AT-rich sequence-binding protein-2 (SATB2), is a direct target of miR-211. The expression of SATB2 was upregulated in HCC cancer tissues and cell lines and miR-211 levels inversely correlated with SATB2 levels in HCC. Importantly, SATB2 rescued the miR-211-mediated inhibition of cell invasion and proliferation. Finally, reintroduction of miR-211 repressed tumor formation of HCC in xenograft mice. This study provides insights into molecular mechanisms that miR-211 contributed to HCC.
Collapse
Affiliation(s)
- Guixing Jiang
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Yu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengrong Wu
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Ding
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Cao
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Niu B, Wu J, Mu H, Li B, Wu C, He X, Bai C, Li G, Hua J. miR-204 Regulates the Proliferation of Dairy Goat Spermatogonial Stem Cells via Targeting to Sirt1. Rejuvenation Res 2016. [PMID: 26213858 DOI: 10.1089/rej.2015.1719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The regulation of spermatogonial stem cell (SSC) proliferation and self-renewal is a complex process. Several studies on the microRNA regulation of mammalian spermatogenesis have been reported. Here, we predicted miRNA targeting of Sirt1, and a dual luciferase experiment confirmed that miR-204 interacted with the Sirt1 3'-untranslated region (3'-UTR). The expression of miR-204 and Sirt1 in dairy goat testicles was investigated, and the results showed that the expression pattern of Sirt1 was similar to that of miR-204 in the temporal-spatial distribution. The over-expression of Sirt1 in goat SSCs can promote SSCs' self-renewal gene expression and cell proliferation. Furthermore, miRNA sequencing results showed that Sirt1 had a higher expression level in dairy goat CD49f(+) and CD90(+) SSCs, but the expression level of miR-204 was lower. In an in vitro assay, Sirt1 was significantly down-regulated in dairy goat SSCs when transfected with miR-204 mimics, indicating that Sirt1 was a target of miR-204 in the dairy goat. On the basis of the results of RT-qPCR, fluorescence-activated cell sorting (FACS), and western blotting, we found that the over-expression of Sirt1 in goat SSCs can promote cellular proliferation and change self-renewal and pluripotent gene expression. Thus, miR-204 was involved in the regulation of dairy goat SSCs proliferation via Sirt1.
Collapse
Affiliation(s)
- Bowen Niu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Jiang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China .,2 College of Agriculture, Guangdong Ocean University , Zhanjiang, China
| | - Hailong Mu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Bo Li
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Chongyang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin He
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Chunling Bai
- 3 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Guangpeng Li
- 3 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Jinlian Hua
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
58
|
Li W, Wang P, Zhang Z, Wang W, Liu Y, Qi Q. MiR-184 Regulates Proliferation in Nucleus Pulposus Cells by Targeting GAS1. World Neurosurg 2016; 97:710-715.e1. [PMID: 26805687 DOI: 10.1016/j.wneu.2016.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The precise mechanism of nucleus pulposus proliferation in the degeneration of the intervertebral disk pathogenesis remains to be implicated. MicroRNAs (MiRNAs) are a class of 18-22 nucleotides, which are small, noncoding RNAs that inhibit protein translation by binding to the 3'-UTR of target gene. Recent studies have shown that miRNAs play a crucial role in various cell biologies such as cell proliferation, invasion, migration, and cell cycle. However, the role of miR-184 in nucleus pulposus proliferation is still unknown. METHOD qRT-PCR was performed to measure the expression of miR-184. CCK-8 assay, qRT-PCR, and Western blot were used to measure the functional role of miR-184 in nucleus pulposus (NP) cells. Western blot and Luciferase assays were done to find the miR-184 target gene. RESULT We demonstrated that expression of miR-184 was upregulated in degenerative NP tissues compared with that in the control NP tissues, and the expression of miR-184 was positively correlated with disk degeneration grade. We identified Growth Arrest Specific Gene 1 (GAS1) as a direct target gene of miR-184 in NP cells, and ectopic expression of miR-184 promoted NP cells proliferation. In addition, we found that GAS1 expression was downregulated in degenerative NP tissues compared with that in the control NP tissues and the GAS1 expression was inversely correlated with the grade of disk degeneration. Moreover, we demonstrated that miR-184 overexpression could induce AKT phosphorylation and ectopic expression of GAS1 decreased the miR-184 overexpressing NP cells proliferation. CONCLUSION These results demonstrated that miR-184 and the GAS1/Akt pathway may be a potential therapeutic target for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiming Li
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Pei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zheng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wantao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Quan Qi
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
59
|
miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol 2016; 37:9001-7. [DOI: 10.1007/s13277-015-4578-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
|
60
|
Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H, Ren M, He S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumour Biol 2016. [PMID: 26738864 DOI: 10.1007/s13277-015-4645-y.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that modulate development, cell proliferation, and apoptosis. The deregulated expression of microRNAs is found in carcinogenesis including gastric cancer (GC). In this study, we showed that the expression levels of miR-488 were downregulated in GC tissues compared to in non-tumor tissues. In addition, the expression of miR-488 was also lower in GC cell lines in contrast with the gastric epithelial cell line (GES). In addition, the expression level of miR-488 was negatively correlated with the TNM stage in GC patients, and lower miR-488 expression was found in tumors with advanced TNM stage. The ectopic expression of miR-488 suppressed the GC cell proliferation, cell cycle, colony information, and migration. PAX6 was identified as a direct target gene of miR-488 in HGC-27. Moreover, we found that the expression level of PAX6 was upregulated in the GC tissues compared with the non-tumor tissues. The PAX6 expression level was correlated with the cancer TNM stage, and higher PAX6 expression was found in tumors with advanced TNM stage. Furthermore, there was an inverse correlation between PAX6 and miR-488 expression levels in GC tissues. Therefore, these studies demonstrated that miR-488 might act as a tumor suppressor miRNA in the development of GC.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiquan Ke
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Wang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongxia Li
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
61
|
Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H, Ren M, He S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumour Biol 2016; 37:8691-8. [PMID: 26738864 DOI: 10.1007/s13277-015-4645-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiquan Ke
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Wang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongxia Li
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
62
|
Yu X, Li Z. New insights into MicroRNAs involves in drug resistance in diffuse large B cell lymphoma. Am J Transl Res 2015; 7:2536-2542. [PMID: 26885255 PMCID: PMC4731655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) accounts for nearly 40% of non-Hodgkin's lymphoma cases. The combined chemotherapy of rituximab, cyclophosphamide, Adriamycin, vincristine, and prednisone (R-CHOP) is considered as the standard therapy for DLBCL; however, nearly half of the patients become refractory to the R-CHOP regimen. Early identification of drug resistance and therapeutic failures are crucial for the identification of high-risk patients. MicroRNAs (miRNAs) are a group of small and non-coding RNAs negatively regulating gene expression through binding to their target mRNAs. Recent studies demonstrated that miRNAs are involved in chemotherapeutic drug resistance in tumor. In our review, we summarize the current evidence on the role of miRNAs in the prediction and modulation of cellular response to rituximab, cyclophosphamide, Adriamycin, vincristine, and prednisone in DLBCL.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| |
Collapse
|
63
|
Gao Y, Xue Q, Wang D, Du M, Zhang Y, Gao S. miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1. Am J Transl Res 2015; 7:2519-2526. [PMID: 26807196 PMCID: PMC4697728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
microRNAs (miRNAs) are endogenously expressed, conserved and small noncoding RNA that regulate gene expression by the post-transcriptional level. In this study, we aim to examine the role of miR-873 in lung adenocarcinoma. We found that the expression of miR-873 was upregulated in four lung adenocarcinoma cell lines and tissues. In addition, the expression levels of SRCIN1 were inversely correlated with the expression levels of miR-873 in lung adenocarcinoma tissues. Furthermore, SRCIN1 was confirmed asthe direct target of miR-873 by luciferase reporter assay and Western blotting. Overexpression of miR-873 promoted the proliferation and migration of lung adenocarcinoma cells, while SRCIN1 upregulation inhibited their proliferation and migration. Restoration of SRCIN1 could significantly reverse the proliferation and migration promotion imposed by miR-873. In summary, this study reveals for the first time that miR-873 increase the lung adenocarcinoma cell proliferation and migration through directly inhibiting SRCIN1 expression.
Collapse
Affiliation(s)
- Yushun Gao
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Qi Xue
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Dali Wang
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Minjun Du
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Yanjiao Zhang
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| |
Collapse
|
64
|
Li Y, Huang R, Wang L, Hao J, Zhang Q, Ling R, Yun J. microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression. Cell Prolif 2015; 48:643-9. [PMID: 26597380 DOI: 10.1111/cpr.12223] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/31/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES miRNAs play crucial roles in human tumourigenesis. This study was performed to measure expression and function of miR-762 in breast cancer. MATERIALS AND METHODS Expression of miR-762 in breast tissues and cell lines (SK-BR-3, DA-MB-435s, MCF-7 and MDA-MB-231, HBL-100) was measured by using real-time RT-PCR. We restored expression of miR-762 in MCF-7 cells to measure its functional roles. Luciferase assays were performed to reveal the target gene of miR-762. RESULTS Expression of miR-762 was high in both breast cancer cell lines and specimens, and its overexpression increased breast cancer cell proliferation and invasion. Interferon regulatory factor 7 (IRF7) is a direct target of miR-762 and overexpression of miR-762 reduced expression of IRF7. Moreover, IRF7 was repressed, its levels inversely correlated to miR-762 expression. IRF7 rescued miR-762-induced cell invasion and proliferation. CONCLUSIONS These results demonstrate that miR-762 tumour effect was achieved by targeting IRF7 in human breast cancer specimens.
Collapse
Affiliation(s)
- Yongping Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| | - Ruixue Huang
- Department of occupational and environmental Health, School of Public Health, Central South University, Changsha, HuNan, 410078, China
| | - Ling Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| | - Junsheng Hao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| | - Qiong Zhang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| | - Jun Yun
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaan Xi, 710032, China
| |
Collapse
|
65
|
Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med 2015; 20:10-6. [PMID: 26498914 PMCID: PMC4717854 DOI: 10.1111/jcmm.12650] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common type of oral squamous cell carcinomas and is well known for its high rate of lymph nodal metastasis. Despite the identification of many molecular mechanisms in TSCC, the number of deaths associated with TSCC increased during the past 5 years. MicroRNAs (miRNAs) are a family of small non-coding RNA molecules, which regulate gene expression by either translational inhibition or mRNA degradation. miRNAs have been proven to be key regulators of various biological and pathological processes including cell proliferation, development and tumourigenesis. Increasing evidence has demonstrated that the deregulated miRNAs are implicated in the diagnosis and treatment of TSCC. In this review, we summarized the expressions and roles of miRNAs in TSCC and comment on the potential roles of miRNAs in diagnosis, prognosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
66
|
Lv C, Bai Z, Liu Z, Luo P, Zhang J. MicroRNA-495 suppresses human renal cell carcinoma malignancy by targeting SATB1. Am J Transl Res 2015; 7:1992-1999. [PMID: 26692942 PMCID: PMC4656775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Deregulated expression of miRNAs is related to progression and initiation of human cancers. Although miR-495 has identified in various tumors, its expression and function in renal cell carcinoma (RCC) is still unknown. In this study, we found that the expression of miR-495 was downregulated in RCC cell lines and tissues. Ectopic expression of miR-495 induced G0/G1 phase arrest and suppressed cell proliferation and migration in RCC cell lines. We further validated SATB1 was a direct target of miR-495 in RCC. In addition, re-expression of SATB1 reversed the miR-495-induced inhibition of cell proliferation and migration. These data suggest that miR-495 functions as a tumor suppressor and may be a promising therapeutic target in RCC in the future.
Collapse
Affiliation(s)
- Cai Lv
- Department of Urology, Haikou Municipal HospitalHaikou, Hainan, 570208, China
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan, Hubei, 430060, China
| | - Zhiming Bai
- Department of Urology, Haikou Municipal HospitalHaikou, Hainan, 570208, China
| | - Zhenxiang Liu
- Department of Urology, Haikou Municipal HospitalHaikou, Hainan, 570208, China
| | - Pengcheng Luo
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan, Hubei, 430060, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan, Hubei, 430060, China
| |
Collapse
|
67
|
Wang G, Zhang Y, Zhao X, Meng C, Ma L, Kong Y. MicroRNA-411 inhibited matrix metalloproteinase 13 expression in human chondrocytes. Am J Transl Res 2015; 7:2000-2006. [PMID: 26692943 PMCID: PMC4656776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Osteoarthritis (OA) is the most common joint degenerative disease affecting the joint structure, leading to loss of joint function and tissue destruction. Recent studies have demonstrated that miRNAs are involved in many pathological conditions, including OA. The study was to investigate the role of miR-411 in the pathogenesis of OA. The expression of miR-411 was downregulated in OA cartilage compared with in normal cartilage. Conversely, the expression of MMP-13 was upregulated in OA cartilage compared with in normal cartilage. IL-1β treatment repressed miR-411 expression in chondrocytes. Moreover, we identified MMP-13 as a direct target gene of miR-411 in chondrocytes and overexpression of miR-411 inhibited the MMP-13 expression. Furthermore, overexpression of miR-411 increased the expression of type II collagen and type IV collagen expression in chondrocytes. MiR-411 is a crucial regulator of MMP-13 in chondrocytes and may response to the development of OA.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Yuanmin Zhang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Xiaowei Zhao
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Chunyang Meng
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Longfei Ma
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Ying Kong
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| |
Collapse
|
68
|
Luo Y, Sun R, Zhang J, Sun T, Liu X, Yang B. miR-506 inhibits the proliferation and invasion by targeting IGF2BP1 in glioblastoma. Am J Transl Res 2015; 7:2007-14. [PMID: 26692944 PMCID: PMC4656777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Increasing evidence has indicated that microRNAs (miRNAs) play an essential role in cancers. Deregulation of miR-506 was reported in several cancers. However, the expression and function of miR-506 in glioblastoma remain unclear. Our data showed that the level of miR-506 was downregulated in glioblastoma tissues and cell lines. Overexpression of miR-506 repressed cell growth, blocked G1/S transition, and suppressed cell invasion in glioblastoma cell. Moreover, IGF2BP1 was a direct target of miR-506 in glioblastoma cells. Knockdown of IGF2BP1 recapitulated the anti-proliferative and anti-invasive effects of miR-506, whereas IGF2BP1 overexpression antagonized the tumor-suppressive function of miR-506. Our data showed that miRNA-506 played a tumor suppressor gene role in human glioblastoma by regulating IGF2BP1 gene and might be a new therapeutic target of human glioblastoma.
Collapse
Affiliation(s)
- Yonggang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Ranran Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Tongwen Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| |
Collapse
|
69
|
The role of miRNAs in the pheochromocytomas. Tumour Biol 2015; 37:4235-9. [DOI: 10.1007/s13277-015-4199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
|
70
|
Saito S, Lin YC, Murayama Y, Nakamura Y, Eckner R, Niemann H, Yokoyama KK. Retracted article: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application. Cell Mol Life Sci 2015; 72:4545-60. [PMID: 26439925 PMCID: PMC4628088 DOI: 10.1007/s00018-015-2020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Abstract
Pluripotent stem cells (PSCs) are a unique type of cells because they
exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to
differentiate into any cell type, even male and female germ cells, suggesting their
potential as novel cell-based therapeutic treatment for infertility problems.
Spermatogenesis is an intricate biological process that starts from self-renewal of
spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa.
Errors at any stage in spermatogenesis may result in male infertility. During the
past decade, much progress has been made in the derivation of male germ cells from
various types of progenitor stem cells. Currently, there are two main approaches for
the derivation of functional germ cells from PSCs, either the induction of in vitro
differentiation to produce haploid cell products, or combination of in vitro
differentiation and in vivo transplantation. The production of mature and fertile
spermatozoa from stem cells might provide an unlimited source of autologous gametes
for treatment of male infertility. Here, we discuss the current state of the art
regarding the differentiation potential of SSCs, embryonic stem cells, and induced
pluripotent stem cells to produce functional male germ cells. We also discuss the
possible use of livestock-derived PSCs as a novel option for animal reproduction and
infertility treatment.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan. .,SPK Co., Ltd., Aizuwakamatsu, Fukushima, 965-0025, Japan. .,College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan.
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaoshiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Yoshinobu Murayama
- College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, 3050074, Japan
| | - Richard Eckner
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07101, USA
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Löffler-Institut, Mariensee, 31535, Neustadt, Germany.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Center of Stem Cell Research, Center of Environmental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung, 807, Taiwan. .,Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, 763-2193, Japan. .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
71
|
Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y, Zhu Y. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression. PLoS One 2015; 10:e0138973. [PMID: 26431046 PMCID: PMC4591969 DOI: 10.1371/journal.pone.0138973] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Baoquan Liu
- Department of anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, 150081, PR China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
72
|
Wang B, Yu P, Li T, Bian Y, Weng X. MicroRNA expression in bone marrow mesenchymal stem cells from mice with steroid-induced osteonecrosis of the femoral head. Mol Med Rep 2015; 12:7447-54. [PMID: 26459755 DOI: 10.3892/mmr.2015.4386] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify microRNAs (miRNAs) from bone marrow mesenchymal stem cells (BMSCs) in a rat model of steroid-induced osteonecrosis of the femoral head (ONFH) using Affymetrix GeneChip®. Following identification of miRNAs, the present study aimed to elucidate the molecular mechanisms underlying steroid‑induced ONFH. A total of six C57BL/6J mice were randomly divided into two groups, control and experimental groups (n=3 per group). The mice in the experimental group were subcutaneously injected with 21 mg/kg methylprednisolone for 4 weeks, while the mice in the control group were injected with the identical dose of normal saline. The femoral head was subsequently removed and sectioned. Following sectioning, hematoxylin and eosin staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling were performed to confirm the establishment of the model. To replicate the animal model ex vivo, the bone marrow was isolated. Next, different miRNAs were screened for using GeneChip®, and the key miRNAs were assessed by bioinformatics analysis and their functions were confirmed. Compared with the control, 23 miRNAs in the experimental group were identified, with seven upregulated and 16 downregulated. Of these miRNAs, putative target miRNAs were predicted by bioinformatics analysis, with two being upregulated (miR‑21‑3p and miR‑652‑5p) and five downregulated (miR‑206‑3p, miR‑196a‑5p, miR‑34b‑3p, miR‑34c‑5p and miR‑148a‑3p). The results of reverse transcription‑quantitative polymerase chain reaction were consistent with the gene‑chip results. Steroid‑induced ONFH may cause miRNA changes in BMSCs. Numerous miRNAs regulate osteogenic differentiation and the decrease in miRNA‑196a‑5p may be important in steroid-induced ONFH.
Collapse
Affiliation(s)
- Bingqing Wang
- Fourth Department of Plastic Surgery, Plastic Surgery Hospital Affiliated to The Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Peng Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanyan Bian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
73
|
Wen F, Li B, Huang C, Wei Z, Zhou Y, Liu J, Zhang H. MiR-34a is Involved in the Decrease of ATP Contents Induced by Resistin Through Target on ATP5S in HepG2 Cells. Biochem Genet 2015; 53:301-9. [PMID: 26385595 DOI: 10.1007/s10528-015-9693-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/05/2015] [Indexed: 01/22/2023]
Abstract
Resistin is associated with metabolic syndrome and deciphering its developmental and molecular mechanisms may help the development of new treatments. MiRNAs serve as negative regulators in many physiological and pathological processes. Here, miRNA microarrays were used to detect differences in expression between resistin-treated and control mice, and results showed miR-34a to be upregulated by resistin. The purpose of this study was to determine whether miR-34a played a role in resistin-induced decrease of ATP contents. Transient transfection of miR-34a mimics was used to overexpress miR-34a and quantitative RT-PCR was used to detect its expression. Western blot analysis was used to determine the rate of expression at the protein level. ATP content was measured using an ATP assay kit. The target gene of miR-34a was analyzed using bioinformatics and confirmed with dual-luciferase report system. MiR-34a was upregulated by resistin in HepG2 cells, and overexpression of miR-34a was found to diminish ATP levels significantly. This study is the first to show that ATP5S is one of the target genes of miR-34a. Resistin diminishes ATP content through the targeting of ATP5S mRNA 3'UTR by miR-34a.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Bin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunyan Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yingying Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jianyu Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Haiwei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
74
|
Sun L, Wang Q, Gao X, Shi D, Mi S, Han Q. MicroRNA-454 functions as an oncogene by regulating PTEN in uveal melanoma. FEBS Lett 2015; 589:2791-6. [PMID: 26296312 DOI: 10.1016/j.febslet.2015.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by targeted repression of transcription and translation, and are involved in carcinogenesis. In this study, we demonstrated that the expression of miR-454 was up-regulated in uveal melanoma tissues compared to normal tissues. Ectopic expression of miR-454 resulted in significant promotion of cell proliferation, colony formation, invasion and induction of cell cycle in uveal melanoma cells. Furthermore, we identified PTEN as a direct target of miR-454. Our data revealed that ectopic expression of PTEN restored the effects of miR-454 on cell proliferation and invasion in uveal melanoma cells. These findings support an oncogene role of miR-454 in development of uveal melanoma.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xiangchun Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dejing Shi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shuyong Mi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qing Han
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
75
|
Yu X, Li Z, Chan MTV, Wu WKK. PAQR3: a novel tumor suppressor gene. Am J Cancer Res 2015; 5:2562-2568. [PMID: 26609468 PMCID: PMC4633890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023] Open
Abstract
PAQR3, also known as RKTG (Raf kinase trapping to Golgi), is a member of the progestin and adipoQ receptor (PAQR) family. The role of PAQR3 as a tumor suppressor has recently been established in different types of human cancer in which PAQR3 exerts its biological function through negative regulation of the oncogenic Raf/MEK/ERK signaling. Multiple studies have found that PAQR3 downregulation frequently occurs in human cancers and is very often associated with tumor progression and shortened patients' survival. Moreover, restoring the expression of PAQR3 could induce apoptosis and inhibit proliferation and invasiveness of cancer cells. Downregulation of PAQR3 by oncogenic microRNAs has also been reported. In this review, we summarized current knowledge concerning the role of PAQR3 in tumor development. To our knowledge, this is the first review on the role of this novel tumor suppressor.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
76
|
Song W, Mu H, Wu J, Liao M, Zhu H, Zheng L, He X, Niu B, Zhai Y, Bai C, Lei A, Li G, Hua J. miR-544 Regulates Dairy Goat Male Germline Stem Cell Self-Renewal via Targeting PLZF. J Cell Biochem 2015; 116:2155-65. [DOI: 10.1002/jcb.25172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jiang Wu
- College of Agriculture; Guangdong Ocean University; Zhanjiang 524088 China
| | - Mingzhi Liao
- College of Life Science; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Haijing Zhu
- College of Life Science; Yulin College, Yulin University; 719000 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education; Inner Mongolia University; Hohhot 010021 China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
77
|
Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget 2015; 6:13914-21. [PMID: 26040010 PMCID: PMC4546440 DOI: 10.18632/oncotarget.4227] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignancy with poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which regulate gene expression at post-transcriptional and translational levels. Several studies have demonstrated aberrant expression of miRNAs in gallbladder cancer tissues. Recent evidences also demonstrated that specific miRNAs are functionally involved in gallbladder cancer development through modulating cell proliferation, apoptosis, migration, invasion and metastasis. In this review, we explore the possibilities of using miRNAs as prognostic, diagnostic markers and therapeutic targets in gallbladder cancer.
Collapse
Affiliation(s)
- Zheng Li
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Yu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Priscilla T.Y. Law
- 2 Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William K.K. Wu
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
78
|
Xue Z, Zhao J, Niu L, An G, Guo Y, Ni L. Up-Regulation of MiR-300 Promotes Proliferation and Invasion of Osteosarcoma by Targeting BRD7. PLoS One 2015; 10:e0127682. [PMID: 26010572 PMCID: PMC4444266 DOI: 10.1371/journal.pone.0127682] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Increasing reports suggest that deregulated microRNAs (miRNAs) might provide novel therapeutic targets for cancers. However, the expression and function of miR-300 in osteosarcoma is still unknown. In our study, we found that the expression of miR-300 was up-regulated in osteosarcoma tissues and cells compared with paired adjacent non-tumor bone tissues and osteoblastic cells using RT-qPCR. The enforced expression of miR-300 could promote cell proliferation, invasion and epithelial-mesenchymal transition (EMT). Moreover, we identified that bromodomain-containing protein 7 (BRD7), a new tumor suppressor gene, was a direct target of miR-300. Ectopic expression of BRD7 could significantly inhibit miR-300-promoted proliferation, invasion and EMT. Therefore, our results identify an important role for miR-300 in osteosarcoma through regulating BRD7 expression.
Collapse
Affiliation(s)
- Zhen Xue
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
- * E-mail:
| | - Jindong Zhao
- Department of Orthopaedic Surgery, the Fifth Hospital of Harbin City, Harbin, Heilongjiang Province, 150040, China
| | - Liyuan Niu
- Department of Physical diagnosis, The Affiliated Hospital of Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Gang An
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yashan Guo
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Linying Ni
- Department of Orthopaedic Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
79
|
Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X. The Downregulation of MiR-182 Is Associated with the Growth and Invasion of Osteosarcoma Cells through the Regulation of TIAM1 Expression. PLoS One 2015; 10:e0121175. [PMID: 25973950 PMCID: PMC4431740 DOI: 10.1371/journal.pone.0121175] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background Osteosarcoma is the most common primary bone malignancy in children and young adults. Increasing results suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for osteosarcoma. Methods MiR-182 expression level in osteosarcoma cell lines and tissues were assayed by qRT-PCR. MiRNA mimics or inhibitor were transfected for up-regulation or down-regulation of miR-182 expression. Cell function was assayed by CCK8, migration assay and invasion assay. The target genes of miR-182 were predicated by bioinformatics algorithm (TargetScan Human). Results MiR-182 was down-regulated in osteosarcoma tissues and cell lines. Overexpression of miR-182 inhibited tumor growth, migration and invasion. Subsequent investigation revealed that TIAM1 was a direct and functional target of miR-182 in osteosarcoma cells. Overexpression of miR-182 impaired TIAM1-induced inhibition of proliferation and invasion in osteosarcoma cells. Conclusions Down-expression of miR-182 in osteosarcoma promoted tumor growth, migration and invasion by targeting TIAM1. MiR-182 might act as a tumor suppressor gene whose down-regulation contributes to the progression and metastasis of osteosarcoma, providing a potential therapy target for osteosarcoma patients.
Collapse
Affiliation(s)
- Jun Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Guohua Lv
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail:
| | - Shuguang Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Affiliated Hospital of Hunan University of Medicine and The Third People’s Hospital of Huaihua, Huaihua, Hunan, China
| | - Yucheng Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The People’s Hospital of Qingyuan, Qingyuan, Guangdong, China
| | - Bangxu Nie
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Hong Duan
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Yunfeng Zhang
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Xiaofeng Yuan
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| |
Collapse
|
80
|
Wu J, Liao M, Zhu H, Kang K, Mu H, Song W, Niu Z, He X, Bai C, Li G, Li X, Hua J. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis. J Cell Biochem 2015; 115:1712-23. [PMID: 24817091 DOI: 10.1002/jcb.24835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/07/2022]
Abstract
miRNAs, a type of small RNA, play critical roles in mammalian spermatogenesis. Spermatogonia are the foundation of spermatogenesis and are valuable for the study of spermatogenesis. However, the expression profiling of the miRNAs in spermatogonia of dairy goats remains unclear. CD49f has been one of the surface markers used for spermatogonia enrichment by magnetic activated cell sorting (MACS). Therefore, we used a CD49f microbead antibody to purify CD49f-positive and -negative cells of dairy goat testicular cells by MACS and then analysed the miRNA expression in these cells in depth using Illumina sequencing technology. The results of miRNA expression profiling in purified CD49f-positive and -negative testicular cells showed that 933 miRNAs were upregulated in CD49f-positive cells and 916 miRNAs were upregulated in CD49f-negative cells with a twofold increase, respectively; several miRNAs and marker genes specific for spermatogonial stem cells (SSCs) in testis had a higher expression level in CD49f-positive testicular cells, including miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, and miR-21 and CD90, Gfra1, and Plzf. The bioinformatics analysis of differently expressed miRNAs indicated that the target genes of these miRNAs in CD49f-positive cells were involved in cell-cycle biological processes and the cell-cycle KEGG pathway. In conclusion, our comparative miRNAome data provide useful miRNA profiling data of dairy goat spermatogonia cells and suggest that CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Collapse
Affiliation(s)
- Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sun L, Bian G, Meng Z, Dang G, Shi D, Mi S. MiR-144 Inhibits Uveal Melanoma Cell Proliferation and Invasion by Regulating c-Met Expression. PLoS One 2015; 10:e0124428. [PMID: 25961751 PMCID: PMC4427317 DOI: 10.1371/journal.pone.0124428] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/15/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a group endogenous small non-coding RNAs that inhibit protein translation through binding to specific target mRNAs. Recent studies have demonstrated that miRNAs are implicated in the development of cancer. However, the role of miR-144 in uveal melanoma metastasis remains largely unknown. MiR-144 was downregulated in both uveal melanoma cells and tissues. Transfection of miR-144 mimic into uveal melanoma cells led to a decrease in cell growth and invasion. After identification of two putative miR-144 binding sites within the 3' UTR of the human c-Met mRNA, miR-144 was proved to inhibit the luciferase activity inMUM-2B cells with a luciferase reporter construct containing the binding sites. In addition, the expression of c-Met protein was inhibited by miR-144. Furthermore, c-Met-mediated cell proliferation and invasion were inhibited by restoration of miR-144 in uveal melanoma cells. In conclusion, miR-144 acts as a tumor suppressor in uveal melanoma, through inhibiting cell proliferation and migration. miR-144 might serve as a potential therapeutic target in uveal melanoma patients.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guangqing Bian
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Jinan 250000, Shandong, China
| | - ZhaoJun Meng
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guangfu Dang
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Jinan 250000, Shandong, China
| | - DeJing Shi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Shuyong Mi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- * E-mail:
| |
Collapse
|
82
|
Niu G, Li B, Sun L, An C. MicroRNA-153 inhibits osteosarcoma cells proliferation and invasion by targeting TGF-β2. PLoS One 2015; 10:e0119225. [PMID: 25793604 PMCID: PMC4368543 DOI: 10.1371/journal.pone.0119225] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNAs, participate in almost every step of cellular processes. MiRNAs are aberrantly expressed in human cancers and contribute to cancer development and progression. Study of miRNAs may provide a new clue for understanding the mechanism of carcinogenesis and a new tool for cancer treatment. In the present study, miR-153 was downregulated in human osteosarcoma tissues and cell lines. Introduction of miR-153 mimics into the MG-63 cells inhibited cell proliferation and invasion. Our results further revealed that transforming growth factor beta 2 (TGF-β2) was negatively regulated by miR-153. Furthermore, overexpression of miR-153 decreased p-SMAD2, p-SMAD3, epidermal growth factor receptor (EGFR) and insulin-like growth factor binding protein-3 (IGFBP-3) expressions, which were the downstream signaling molecules of TGF-β. Furthermore, miRNA-153 suppressed TGF-β-mediated MG-63 proliferation and migration. Therefore, our results suggest that miR-153 may act as a tumor suppressor in osteosarcoma through targeting TGF-β2.
Collapse
Affiliation(s)
- Guangfeng Niu
- Department of Orthopaedics, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Bin Li
- Department of Orthopaedics, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, P.R. China
- * E-mail:
| | - Li Sun
- Department of Orthopaedics, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, P.R. China
| | - Chenggong An
- Department of Orthopaedics, Dingtao County Hospital, Dintao, P.R. China
| |
Collapse
|
83
|
Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget 2015; 6:4562-8. [PMID: 25682876 PMCID: PMC4467099 DOI: 10.18632/oncotarget.2923] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma is the second most common form of melanoma and a predominant intraocular malignant tumor in adults. The development of uveal melanoma is a multistep process involving genetic and epigenetic alteration of proto-oncogenes and tumor-suppressor genes. Recent discoveries have shed a new light on the involvement of a class of noncoding RNA known as microRNAs (miRNAs) in uveal melanoma. A lot of miRNAs show differential expressions in uveal melanoma tissues and cell lines. Genes coding for these miRNAs have been characterized as novel oncogene and tumor-suppressor genes based on findings that these miRNAs control malignant phenotypes of uveal melanoma cells. Several studies have confirmed that dysregulation of miRNAs promotes cell-cycle progression, confers resistance to apoptosis, and enhances invasiveness and metastasis. Moreover, several miRNAs have also been shown to correlate with uveal melanoma initiation and progression, and thus may be used as biomarkers for early diagnosis and prognosis. Elucidating the biological aspects of miRNA dysregulation may help us better understand the pathogenesis of uveal melanoma and promote the development of miRNA directed-therapeutics against this disease.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Jiang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
84
|
Wang L, Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 2015; 149:R127-37. [DOI: 10.1530/rep-14-0239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are a class of small endogenous RNAs, 19–25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.
Collapse
|
85
|
Zheng L, Zhu H, Tang F, Mu H, Li N, Wu J, Hua J. The Tet1 and histone methylation expression pattern in dairy goat testis. Theriogenology 2015; 83:1154-61. [PMID: 25662202 DOI: 10.1016/j.theriogenology.2014.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 12/13/2022]
Abstract
DNA methylation and histone methylation are critical for mammalian development. Ten-eleven translocation (Tet1), a key regulator of DNA methylation, has been identified as a key enzyme for the activation of DNA demethylation; histone H3 lysine 9 (H3K9) and 27 (H3K27) methylation repress gene expression. Significant progress on the biological functions of Tet proteins has been made in mice and humans. However, their expression pattern and function in the male germ cells in the dairy goat testis are still unclear. The present study described the expression pattern of Tet1, H3K9, and H3K27 in the dairy goat testis and cultured goat spermatogonia stem cells (gSSCs). The results showed that Tet1 was weakly expressed in the dairy goat's testis compared to other organ tissues. Tet1, 5-hydroxymethylcytosine, H3K9, and H3K27 expressions were positive and dynamically changing during spermatogenesis; however, they showed weak expression in neonate stage in vivo. Tet1 and 5-hydroxymethylcytosine showed low expression in gSSCs in vitro in differentiated cultures. These will provide new perspectives for DNA methylation/demethylation and better regulation of epigenetic modifications in gSSCs.
Collapse
Affiliation(s)
- Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
86
|
Abstract
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Collapse
|
87
|
Small RNAs: Their Possible Roles in Reproductive Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:49-79. [PMID: 26178845 DOI: 10.1007/978-3-319-18881-2_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Posttranscriptional gene regulation is a regulatory mechanism which occurs "above the genome" and confers different phenotypes and functions within a cell. Transcript and protein abundance above the level of transcription can be regulated via noncoding ribonucleic acid (ncRNA) molecules, which potentially play substantial roles in the regulation of reproductive function. MicroRNA (miRNA), endogenous small interfering RNA (endo-siRNA), and PIWI-interacting RNA (piRNA) are three primary classes of small ncRNA. Similarities and distinctions between their biogenesis and in the interacting protein machinery that facilitate their function distinguish these three classes. Characterization of the expression and importance of the critical components for the biogenesis of each class in different tissues contributes a clearer understanding of their contributions in specific reproductive tissues and their ability to influence fertility in both males and females. This chapter discusses the expression and potential roles of miRNA, endo-siRNA, and piRNA in the regulation of reproductive function. Additionally, this chapter elaborates on investigations aimed to address and characterize specific mechanisms through which miRNA may influence infertility and the use of miRNA as biomarkers associated with several reproductive calamities such as defective spermatogenesis in males, polycystic ovarian failure, endometriosis and obesity, and chemical-induced subfertility.
Collapse
|
88
|
Du Y, Wang X, Wang B, Chen W, He R, Zhang L, Xing X, Su J, Wang Y, Zhang Y. Deep sequencing analysis of microRNAs in bovine sperm. Mol Reprod Dev 2014; 81:1042-52. [PMID: 25279827 DOI: 10.1002/mrd.22426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that participates in the regulation of many physiological pathways, but a role for spermatozoon-delivered miRNAs in fertilization and embryonic development remains controversial. A library of miRNAs in bovine sperm was constructed using Illumina high-throughput sequencing technology, along with the predication and the pathway analysis of target genes. miRNAs in mammalian spermatozoon were systematically investigated, and a protocol for RNA isolation from the cauda region of an epididymal biopsy was established. Unique sequences that were 18-26 nucleotides in length were mapped to specific precursors in miRBase 20.0 using BLAST. A total of 951 known miRNAs and 8 novel, highly expressed miRNA candidates were identified. The search for endogenous sperm miRNAs will contribute to a preliminary database for functional and molecular mechanistic studies in embryonic development and sperm epigenetic programming.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Animal Biotechnology of Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, China; College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
90
|
Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J Cell Biochem 2014; 115:232-42. [PMID: 24038201 DOI: 10.1002/jcb.24655] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
miRNAs are expressed in many mammalian cells, acting specific roles in regulating gene expression or mediating special mRNAs cleavage by targeting their 3'-untranslated region (3'UTR). Some miRNAs are essential and important for animal development. However, it is still unclear what the relationship is between miR-34c and mammalian spermatogonial stem cells (SSCs). We found that a conserved microRNA-34c through its target-Nanos2, regulating SSCs' differentiation in mouse. Immunohistochemistry analysis of Nanos2 and miR-34c FISH results revealed the opposite expression trends between them. Seven bioinformatics websites and programs predicted that miR-34c has interaction sites in Nanos2's 3'UTR. Dual-luciferase reporter vector and mutated dual-luciferase reporter vector analysis validated that they are interacted. After transfection miR-34c mimics into mouse SSCs, or miR-34c lentiviral vector in vitro co-cultivation with seminiferous tubules, and Western blot analysis demonstrated that miR-34c over-expression could suppress Nanos2 expression in post-transcription level. Our experiments identified that miR-34c may promote meiosis process by interacting with Nanos2 leading up-regulation of Stra8 in mouse spermatogonial stem cells.
Collapse
Affiliation(s)
- Meng Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | |
Collapse
|
91
|
Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014; 101:1552-62. [PMID: 24882619 DOI: 10.1016/j.fertnstert.2014.04.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
92
|
Gou LT, Dai P, Liu MF. Small noncoding RNAs and male infertility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:733-45. [PMID: 25044449 DOI: 10.1002/wrna.1252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/07/2022]
Abstract
Small noncoding RNAs (ncRNAs) are a novel class of gene regulators that modulate gene expression at transcriptional, post-transcriptional, and epigenetic levels, and they play crucial roles in almost all cellular processes in eukaryotes. Recent studies have indicated that several types of small noncoding RNAs, including microRNAs (miRNAs), endo-small interference RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs), are expressed in the male germline and are required for spermatogenesis in animals. In this review, we summarize the recent knowledge of these small noncoding RNAs in male germ cells and their biological functions and mechanisms of action in animal spermatogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
93
|
Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun 2014; 445:517-23. [PMID: 24548410 DOI: 10.1016/j.bbrc.2014.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Resistin is associated with insulin resistance, and determining its developmental and molecular mechanisms may help the development of novel treatments. MicroRNAs (miRNAs) are involved in many physiological and pathological processes as negative regulators. However, it remains unclear whether miRNAs play a role in resistin-induced insulin resistance. We performed mouse liver miRNA microarrays to analyze the differences in expression between resistin-treated and control mice. Resistin upregulated miR-145 both in vivo and in vitro. Therefore, we aimed to study whether miR-145 played a role in resistin-induced insulin resistance. METHODS AND RESULTS We transfected HepG2 cells, and used miR-145 mimics and inhibitors to assess the role of miR-145 in resistin-induced insulin resistance. The overexpression of miR-145 inhibited glucose uptake in HepG2 cells, diminished the phosphorylation of Akt and IRS-1, and induced insulin resistance in hepatocytes. Next, a study of transcriptional regulation revealed that p65 was essential for the upregulation of miR-145 by resistin, and chromatin immunoprecipitation (ChIP) confirmed that p65 could bind to the promoter region of miR-145. CONCLUSION miR-145 plays a role in the development of resistin-induced insulin resistance via the p65 pathway.
Collapse
Affiliation(s)
- Fengyun Wen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
94
|
Song W, Zhu H, Li M, Li N, Wu J, Mu H, Yao X, Han W, Liu W, Hua J. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis. Cell Prolif 2014; 46:457-68. [PMID: 23869766 DOI: 10.1111/cpr.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. MATERIALS AND METHODS Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. RESULTS Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. CONCLUSIONS Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock.
Collapse
Affiliation(s)
- W Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wu J, Zhu H, Song W, Li M, Liu C, Li N, Tang F, Mu H, Liao M, Li X, Guan W, Li X, Hua J. Identification of Conservative MicroRNAs in Saanen Dairy Goat Testis Through Deep Sequencing. Reprod Domest Anim 2013; 49:32-40. [DOI: 10.1111/rda.12217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023]
Affiliation(s)
- J Wu
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - H Zhu
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - W Song
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - M Li
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - C Liu
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - N Li
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - F Tang
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - H Mu
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - M Liao
- College of Life Science Northwest A & F University Yangling China
| | - X Li
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - W Guan
- Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China
| | - X Li
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| | - J Hua
- College of Veterinary Medicine Shaanxi Centre of Stem Cells Engineering & Technology Key Lab for Animal Biotechnology of Agriculture Ministry of China Northwest A & F University Yangling China
| |
Collapse
|
96
|
Li M, Yu M, Zhu H, Song W, Hua J. The effects of Nanos2 on Boule and Stra8 in male germline stem cells (mGSCs). Mol Biol Rep 2013; 40:4383-9. [PMID: 23644984 DOI: 10.1007/s11033-013-2527-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
Abstract
The mitosis-meiosis switch is a key event in the differentiation of germ cells. Meiosis is important in development biology, however, it has not been clear what is the regulation mechanism in mammals. Our previous study showed that Boule could activate Stra8 directly and result in the meiosis initiation of dairy goat male germline stem cells (mGSCs). Nanos2, a RNA-binding protein, plays critical roles in the suppression of meiosis by preventing Stra8 expression and maintain the male germ cell development. The main purpose of this study was to explore whether Nanos2 represses Stra8 transcription through Boule or not. We found ectopic over-expression of Nanos2 in GC-1 and mGSCs down-regulated Stra8 transcription and translation, and Boule expression was not affected. It was in consistent with our expectation that RA could up-regulate Boule and Stra8 expression, but down-regulate Nanos2 expression in mGSCs. In dairy goat, the expression levels of Boule and Stra8 would rise with the increase of age, but the expression level of Nanos2 in 90 dpp and adult testis had not shown a clear change. In conclusion, Nanos2 represses Stra8 expression but not through Boule in dairy goat mGSCs.
Collapse
Affiliation(s)
- Mingzhao Li
- Key Lab for Animal Biotechnology of Agriculture Ministry, Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | |
Collapse
|
97
|
Li M, Yu M, Liu C, Zhu H, Hua J. Expression of miR-34c in response to overexpression of Boule and Stra8 in dairy goat male germ line stem cells (mGSCs). Cell Biochem Funct 2013; 31:281-8. [DOI: 10.1002/cbf.2970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/10/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Mingzhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry; Northwest A&F University; Yangling; Shaanxi; China
| | - Meng Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry; Northwest A&F University; Yangling; Shaanxi; China
| | - Chao Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry; Northwest A&F University; Yangling; Shaanxi; China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry; Northwest A&F University; Yangling; Shaanxi; China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry; Northwest A&F University; Yangling; Shaanxi; China
| |
Collapse
|