51
|
Zhao G, Liu X, Zhang Q, Wang K. PRRT2 mutations in a cohort of Chinese families with paroxysmal kinesigenic dyskinesia and genotype-phenotype correlation reanalysis in literatures. Int J Neurosci 2018; 128:751-760. [PMID: 29285950 DOI: 10.1080/00207454.2017.1418345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE STUDY Though rare, children are susceptible to paroxysmal dyskinesias such as paroxysmal kinesigenic dyskinesia, and infantile convulsions and choreoathetosis. Recent studies showed that the cause of paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis could be proline-rich transmembrane protein 2 (PRRT2) gene mutations. MATERIAL AND METHODS This study analysed PRRT2 gene mutations in 51 families with paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis by direct sequencing. In particular, we characterize the genotype-phenotype correlation between age at onset and the types of PRRT2 mutations in all published cases. RESULTS Direct sequencing showed that 12 out of the 51 families had three different pathogenic mutations (c.649dupC, c.776dupG, c.649C>T) in the PRRT2 gene. No significant difference of age at onset between the patients with and without PRRT2 mutations was found in this cohort of patients. A total of 97 different PRRT2 mutations have been reported in 87 studies till now. The PRRT2 mutation classes are wide, and most mutations are frameshift mutations but the most common mutation remains c.649dupC. Comparisons of the age at onset in paroxysmal kinesigenic dyskinesia or infantile convulsions patients with different types of mutations showed no significant difference. CONCLUSIONS This study expands the clinical and genetic spectrums of Chinese patients with paroxysmal kinesigenic dyskinesia and infantile convulsions and choreoathetosis. No clear genotype-phenotype correlation between the age at onset and the types of mutations has been determined.
Collapse
Affiliation(s)
- Guohua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| | - Xiaomin Liu
- b Department of Neurology, Qianfoshan Hospital , Shandong University, Jinan, China
| | - Qiong Zhang
- c Department of Psychology and Behavioral Sciences , Zhejiang University, Hangzhou, China
| | - Kang Wang
- d Department of Neurology, First Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| |
Collapse
|
52
|
Koutroumanidis M, Arzimanoglou A, Caraballo R, Goyal S, Kaminska A, Laoprasert P, Oguni H, Rubboli G, Tatum W, Thomas P, Trinka E, Vignatelli L, Moshé SL. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 2). Epileptic Disord 2017; 19:385-437. [PMID: 29350182 DOI: 10.1684/epd.2017.0952] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The concept of epilepsy syndromes, introduced in 1989, was defined as "clusters of signs and symptoms customarily occurring together". Definition of epilepsy syndromes based on electro-clinical features facilitated clinical practice and, whenever possible, clinical research in homogeneous groups of patients with epilepsies. Progress in the fields of neuroimaging and genetics made it rapidly clear that, although crucial, the electro-clinical description of epilepsy syndromes was not sufficient to allow much needed development of targeted therapies and a better understanding of the underlying pathophysiological mechanisms of seizures. The 2017 ILAE position paper on Classification of the Epilepsies recognized that "as a critical tool for the practicing clinician, epilepsy classification must be relevant and dynamic to changes in thinking". The concept of "epilepsy syndromes" evolved, incorporating issues related to aetiologies and comorbidities. A comprehensive update (and revision where necessary) of the EEG diagnostic criteria in the light of the 2017 revised terminology and concepts was deemed necessary. Part 2 covers the neonatal and paediatric syndromes in accordance with the age of onset. [Published with educational EEG plates at www.epilepticdisorders.com].
Collapse
Affiliation(s)
| | - Alexis Arzimanoglou
- University Hospitals of Lyon (HCL), Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the European Reference Centre EpiCARE, Lyon, France, Epilepsy Unit, Department of Paediatric Neurology, San Juan de Deu Hospital, Member of the European Reference Centre EpiCARE, Barcelona, Spain
| | - Roberto Caraballo
- Hospital J P Garrahan, Neurology, Capital Federal, Buenos Aires, Argentina
| | | | - Anna Kaminska
- APHP, Hopital Necker-Enfants Malades, Department of Clinical Neurophysiology, Paris, France
| | | | - Hirokazu Oguni
- Tokyo Women's Medical University, Department of Pediatrics, Shinjuku-ku, Tokyo, Japan
| | - Guido Rubboli
- Danish Epilepsy Centre, Department of Neurology, Dianalund, Denmark
| | | | - Pierre Thomas
- Hopital Pasteur, Neurology, Hôpital Pasteur 24C, Nice, France
| | - Eugen Trinka
- Paracelsus Medizinische Privatuniversitat, Salzburg, Austria
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Solomon L Moshé
- Albert Einstein College of Medicine, Neurology, Neuroscience, and Pediatrics, Bronx, New York, USA
| |
Collapse
|
53
|
Genetic analysis of benign familial epilepsies in the first year of life in a Chinese cohort. J Hum Genet 2017; 63:9-18. [PMID: 29215089 PMCID: PMC8075886 DOI: 10.1038/s10038-017-0359-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
Benign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We used Sanger sequencing and targeted next-generation sequencing to detect gene mutations in a Chinese cohort of patients with these three disorders. A total of 79 families were collected, including 4 BFNE, 7 BFNIE, and 68 BFIE. Genetic testing led to the identification of gene mutations in 60 families (60 out of 79, 75.9%). A total of 42 families had PRRT2 mutations, 9 had KCNQ2 mutations, 8 had SCN2A mutations, and 1 had a GABRA6 mutation. In total three of four BFNE families were detected with KCNQ2 mutations. Mutations were detected in all BFNIE families, including 3 KCNQ2 mutations, 3 SCN2A mutations, and 1 PRRT2 mutation. Gene mutations were identified in 50 out of 68 BFIE families (73.5%), including 41 PRRT2 mutations (41 out of 68, 60.3%), 5 SCN2A mutations, 3 KCNQ2 mutations, and 1 GABRA6 mutation. Our results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE.
Collapse
|
54
|
Usluer S, Kayserili MA, Eken AG, Yiş U, Leu C, Altmüller J, Thiele H, Nürnberg P, Sander T, Çağlayan SH. Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE). Eur J Paediatr Neurol 2017; 21:773-782. [PMID: 28566192 DOI: 10.1016/j.ejpn.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/26/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
Benign Familial Infantile Epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses. Genome-wide linkage analysis revealed significant evidence for linkage in the chromosomal region 19p12-q13 (LOD score 3.48). Mutation screening of positional candidate genes identified a synonymous SCN1B variant (c.492T>C, p.Tyr164Tyr) affecting splicing by the removal of a splicing silencer sequence, shown by in silico analysis, as the most likely causative mutation. In addition, the PRRT2 frameshift mutation (c.649dupC/p.Arg217Profs*8) was observed, showing incomplete, but high segregation with the phenotype. In vitro splicing assay of SCN1B expression confirmed the in silico findings showing a splicing imbalance between wild type and mutant exons. Herein, the involvement of the SCN1B gene in the etiology of BFIE, contributing to the disease phenotype as a modifier or part of an oligogenic predisposition, is shown for the first time.
Collapse
Affiliation(s)
- Sunay Usluer
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Melek Aslı Kayserili
- Formerly Affiliated with the Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslı Gündoğdu Eken
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Uluc Yiş
- Department of Pediatrics, Division of Child Neurology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Costin Leu
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - S Hande Çağlayan
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
55
|
Bennett CA, Petrovski S, Oliver KL, Berkovic SF. ExACtly zero or once: A clinically helpful guide to assessing genetic variants in mild epilepsies. NEUROLOGY-GENETICS 2017; 3:e163. [PMID: 28717674 PMCID: PMC5503456 DOI: 10.1212/nxg.0000000000000163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/13/2017] [Indexed: 02/04/2023]
Abstract
Objective: To assist the interpretation of genomic data for common epilepsies, we asked whether variants implicated in mild epilepsies in autosomal dominant families are present in the general population. Methods: We studied 12 genes for the milder epilepsies and identified published variants with strong segregation support (de novo germline mutation or ≥4 affected family members). These variants were checked in the Exome Aggregation Consortium (ExAC), a database of genetic variation in over 60,000 individuals. We subsequently evaluated variants in these epilepsy genes that lacked strong segregation support. To determine whether the findings in epilepsies were representative of other diseases, we also assessed the presence of variants in other dominant neurologic disorders (e.g., CADASIL). Results: Published epilepsy variants with strong segregation support (n = 65) were absent (n = 61) or present once (n = 4) in ExAC. By contrast, of 46 published epilepsy variants without strong segregation support, 8 occurred recurrently (2–186 times). Similarly, none of the 45 disease-associated variants from other neurologic disorders with strong segregation support occurred more than once in ExAC. Reanalysis using the larger ExAC V2 plus gnomAD reference cohort showed consistent results. Conclusions: Variants causing autosomal dominant epilepsies are ultra-rare in the general population. Variants observed more than once in ExAC were only found among reports without strong segregation support, suggesting that they may be benign. Clinicians are increasingly faced with the interpretation of genetic variants of unknown significance. These data illustrate that variants present more than once in ExAC are less likely to be pathogenic, reinforcing the valuable clinical role of ExAC.
Collapse
Affiliation(s)
- Caitlin A Bennett
- Department of Medicine (C.A.B., S.P., K.L.O., S.F.B.), Epilepsy Research Centre; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Slavé Petrovski
- Department of Medicine (C.A.B., S.P., K.L.O., S.F.B.), Epilepsy Research Centre; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Karen L Oliver
- Department of Medicine (C.A.B., S.P., K.L.O., S.F.B.), Epilepsy Research Centre; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine (C.A.B., S.P., K.L.O., S.F.B.), Epilepsy Research Centre; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| |
Collapse
|
56
|
Abstract
Epilepsy is a common neurological problem, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes the patient assured of the reasons of his/her seizures and avoids unnecessary, expensive, and invasive investigations. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available at the bedside. Whole exome sequencing is now being routinely used in the clinical setting for making a genetic diagnosis. Genetic testing not only makes the diagnosis but also has an effect on the management of the patients, for example, the role of sodium channels blockers in SCN1A+ Dravet syndrome patients and usefulness of ketogenic diet therapy in SLC2A1+ generalized epilepsy patients. Many clinicians in our country have no or limited knowledge about the molecular genetics of epilepsies, types of genetic tests available, how to access them and how to interpret the results. The purpose of this review is to give an overview in this direction and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram and magnetic resonance imaging for better understanding and management of epilepsy in their patients.
Collapse
Affiliation(s)
- Vikas Dhiman
- Department of Neurology, Ivy Hospital, Panchkula, Haryana, India
| |
Collapse
|
57
|
Vlaskamp DRM, Callenbach PMC, Rump P, Giannini LAA, Dijkhuizen T, Brouwer OF, van Ravenswaaij-Arts CMA. Copy number variation in a hospital-based cohort of children with epilepsy. Epilepsia Open 2017; 2:244-254. [PMID: 29588953 PMCID: PMC5719854 DOI: 10.1002/epi4.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Objective To evaluate the diagnostic yield of microarray analysis in a hospital‐based cohort of children with seizures and to identify novel candidate genes and susceptibility loci for epilepsy. Methods Of all children who presented with their first seizure in the University Medical Center Groningen (January 2000 through May 2013) (n = 1,368), we included 226 (17%) children who underwent microarray analysis before June 2014. All 226 children had a definite diagnosis of epilepsy. All their copy number variants (CNVs) on chromosomes 1–22 and X that contain protein‐coding genes and have a prevalence of <1% in healthy controls were evaluated for their pathogenicity. Results Children selected for microarray analysis more often had developmental problems (82% vs. 25%, p < 0.001), facial dysmorphisms (49% vs. 8%, p < 0.001), or behavioral problems (41% vs. 13%, p < 0.001) than children who were not selected. We found known clinically relevant CNVs for epilepsy in 24 of the 226 children (11%). Seventeen of these 24 children had been diagnosed with symptomatic focal epilepsy not otherwise specified (71%) and five with West syndrome (21%). Of these 24 children, many had developmental problems (100%), behavioral problems (54%) or facial dysmorphisms (46%). We further identified five novel CNVs comprising four potential candidate genes for epilepsy: MYT1L, UNC5D, SCN4B, and NRXN3. Significance The 11% yield in our hospital‐based cohort underscores the importance of microarray analysis in diagnostic evaluation of children with epilepsy.
Collapse
Affiliation(s)
- Danique R M Vlaskamp
- Departments of Neurology University Medical Center Groningen University of Groningen Groningen the Netherlands.,Department of Genetics University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Petra M C Callenbach
- Departments of Neurology University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Patrick Rump
- Department of Genetics University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Lucia A A Giannini
- Department of Genetics University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics University Medical Center Groningen University of Groningen Groningen the Netherlands
| | - Oebele F Brouwer
- Departments of Neurology University Medical Center Groningen University of Groningen Groningen the Netherlands
| | | |
Collapse
|
58
|
Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, Lesca G, Ville D, Milh M, Villard L, Afenjar A, Chantot-Bastaraud S, Mignot C, Lardennois C, Nava C, Schwarz N, Gérard M, Perrin L, Doummar D, Auvin S, Miranda MJ, Hempel M, Brilstra E, Knoers N, Verbeek N, van Kempen M, Braun KP, Mancini G, Biskup S, Hörtnagel K, Döcker M, Bast T, Loddenkemper T, Wong-Kisiel L, Baumeister FM, Fazeli W, Striano P, Dilena R, Fontana E, Zara F, Kurlemann G, Klepper J, Thoene JG, Arndt DH, Deconinck N, Schmitt-Mechelke T, Maier O, Muhle H, Wical B, Finetti C, Brückner R, Pietz J, Golla G, Jillella D, Linnet KM, Charles P, Moog U, Õiglane-Shlik E, Mantovani JF, Park K, Deprez M, Lederer D, Mary S, Scalais E, Selim L, Van Coster R, Lagae L, Nikanorova M, Hjalgrim H, Korenke GC, Trivisano M, Specchio N, Ceulemans B, Dorn T, Helbig KL, Hardies K, Stamberger H, de Jonghe P, Weckhuysen S, Lemke JR, Krägeloh-Mann I, Helbig I, Kluger G, Lerche H, Møller RS. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140:1316-1336. [DOI: 10.1093/brain/awx054] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Markus Wolff
- 1 Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
| | - Katrine M. Johannesen
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Ulrike B. S. Hedrich
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Silvia Masnada
- 5 Department of Brain and Behavior, University of Pavia, Italy
| | - Guido Rubboli
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 6 University of Copenhagen, Copenhagen, Denmark
| | - Elena Gardella
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gaetan Lesca
- 7 Department of Genetics, Lyon University Hospital, Lyon, France
- 8 Claude Bernard Lyon I University, Lyon, France
- 9 Lyon Neuroscience Research Centre, CNRS UMRS5292, INSERM U1028, Lyon, France
| | - Dorothée Ville
- 10 Department of Pediatric Neurology and Reference Center for Rare Children Epilepsy and Tuberous Sclerosis, Hôpital Femme Mere Enfant, Centre Hospitalier Universitaire de Lyon, HCL, France
| | - Mathieu Milh
- 11 APHM Service de neurologie pédiatrique, Marseille, France
- 12 Aix Marseille Univ, Inserm, GMGF, UMR-S 910, Marseille, France
| | - Laurent Villard
- 12 Aix Marseille Univ, Inserm, GMGF, UMR-S 910, Marseille, France
| | - Alexandra Afenjar
- 13 AP-HP, Unité de Gènètique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire de l’Est Parisien, Paris, France
| | - Sandra Chantot-Bastaraud
- 13 AP-HP, Unité de Gènètique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire de l’Est Parisien, Paris, France
| | - Cyril Mignot
- 14 AP-HP, Département de Génétique; Centre de Référence Défiences Intellectuelles de Causes Rares; Groupe de Recherche Clinique UPMC “Déficiences Intellectuelles et Autisme” GH Pitié-Salpêtrère, Paris, France
| | - Caroline Lardennois
- 15 Service de Pediatrie neonatale et Réanimation - Neuropediatrie, 76000 Rouen, France
| | - Caroline Nava
- 16 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, France
- 17 Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
| | - Niklas Schwarz
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Laurence Perrin
- 19 Department of Genetics, Robert Debré Hospital, AP-HP, Paris, France
| | - Diane Doummar
- 20 AP-HP, Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Stéphane Auvin
- 21 Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- 22 AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Maria J. Miranda
- 23 Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Maja Hempel
- 24 Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Brilstra
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nine Knoers
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nienke Verbeek
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjan van Kempen
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees P. Braun
- 26 Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Grazia Mancini
- 27 Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia Biskup
- 28 CeGaT - Center for Genomics and Transcriptomics, Tübingen, Germany
| | | | - Miriam Döcker
- 28 CeGaT - Center for Genomics and Transcriptomics, Tübingen, Germany
| | | | - Tobias Loddenkemper
- 30 Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
| | - Lily Wong-Kisiel
- 31 Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester MN, USA
| | | | - Walid Fazeli
- 33 Pediatric Neurology, University Hospital Cologne, Germany
| | - Pasquale Striano
- 34 Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa ‘G. Gaslini’ Institute, Genova, Italy
| | - Robertino Dilena
- 35 Servizio di Epilettologia e Neurofisiopatologia Pediatrica, UO Neurofisiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elena Fontana
- 36 Centro di Diagnosi e Cura delle Epilessie Infantili, Azienda Ospedaliera -Policlinico Gianbattista Rossi, Verona, Italy
| | - Federico Zara
- 37 Laboratory of Neurogenetics and Neuroscience, Department of Neuroscience, “G. Gaslini” Institute, Genova, Italy
| | - Gerhard Kurlemann
- 38 Department of Pediatric Neurology, University Children’s Hospital, Münster, Germany
| | - Joerg Klepper
- 39 Children’s Hospital, Klinikum Aschaffenburg, Germany
| | - Jess G. Thoene
- 40 University of Michigan, Pediatric Genetics, Ann Arbor, MI USA
| | - Daniel H. Arndt
- 41 Division of Pediatric Neurology and Epilepsy – Beaumont Children’s Hospital, William Beaumont Oakland University School of Medicine, Royal Oak, Michigan, USA
| | - Nicolas Deconinck
- 42 Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Schmitt-Mechelke
- 43 Children’s Hospital Lucerne, Luzerner Kantonsspital, Kinderspital Luzern, CH-6000 Luzern 16, Switzerland
| | - Oliver Maier
- 44 Department of child neurology, Children’s Hospital, St. Gallen, Switzerland
| | - Hiltrud Muhle
- 45 Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Beverly Wical
- 46 Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Claudio Finetti
- 47 Klinik für Kinder- und Jugendmedizin, Elisabeth-Krankenhaus, Essen, Germany
| | | | - Joachim Pietz
- 49 Pediatric Practice University Medical Center for Children and Adolescents, Angelika Lautenschläger Children’s Hospital, Heidelberg, Germany
| | - Günther Golla
- 50 Klinik für Kinder- und Jugendmedizin, Klinikum Lippe GmbH, Detmold, Germany
| | - Dinesh Jillella
- 51 Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Karen M. Linnet
- 52 Department of Pediatrics, Aarhus University hospital, Aarhus, Denmark
| | - Perrine Charles
- 53 Department of Genetics and Cytogenetics, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles-Foix, Paris, France
| | - Ute Moog
- 54 Institute of Genetics, University Hospital, Heidelberg, Germany
| | - Eve Õiglane-Shlik
- 55 Children’s Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - John F. Mantovani
- 56 Department of Pediatrics and Mercy Kids Autism Center, Mercy Children’s Hospital, St. Louis, Missouri, USA
| | - Kristen Park
- 57 Department of Pediatrics and Neurology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marie Deprez
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Damien Lederer
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Sandrine Mary
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Emmanuel Scalais
- 59 Pediatric Neurology Unit, Pediatric Department, Centre Hospitalier de Luxembourg, Luxembourg
| | - Laila Selim
- 60 Department of Pediatrics, Pediatric Neurology and Neurometabolic Unit, Cairo University Children Hospital, Cairo, Egypt
| | - Rudy Van Coster
- 61 Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- 62 Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| | | | - Helle Hjalgrim
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - G. Christoph Korenke
- 63 Zentrum für Kinder- und Jugendmedizin (Elisabeth Kinderkrankenhaus), Klinik für Neuropädiatrie u. Angeborene, Stoffwechselerkrankungen, Oldenburg, Germany
| | - Marina Trivisano
- 64 Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- 64 Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Berten Ceulemans
- 65 Paediatric Neurology University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Thomas Dorn
- 66 Swiss Epilepsy Center, Zurich, Switzerland
| | - Katherine L. Helbig
- 67 Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Katia Hardies
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hannah Stamberger
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Peter de Jonghe
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Sarah Weckhuysen
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Johannes R. Lemke
- 71 Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Ingeborg Krägeloh-Mann
- 1 Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
| | - Ingo Helbig
- 45 Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
- 72 Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Gerhard Kluger
- 73 Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Klinik, Vogtareuth, Germany
- 74 PMU Salzburg, Austria
| | - Holger Lerche
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
59
|
Mei D, Parrini E, Marini C, Guerrini R. The Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Epilepsy in Paediatric Patients. Mol Diagn Ther 2017; 21:357-373. [DOI: 10.1007/s40291-017-0257-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
60
|
Al-Nimer MS, Al-Mahdawi SA, Abdullah NM, Al-Mahdawi A. Epileptic Patients are at Risk of Cardiac Arrhythmias: A Novel Approach using QT-nomogram, Tachogram, and Cardiac Restitution Plots. J Neurosci Rural Pract 2017; 8:7-13. [PMID: 28149075 PMCID: PMC5225727 DOI: 10.4103/0976-3147.193553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sudden death is reported in patients who had a history of epilepsy and some authors believed that is due to cardiac arrhythmias. OBJECTIVES This study aimed to predict that the epileptic patients are at risk of serious cardiac arrhythmias by QT-nomogram, tachogram (Lorenz), and cardiac restitution plots. METHODS A total number of 71 healthy subjects (Group I) and 64 newly diagnosed epileptic patients (Group II) were recruited from Al-Yarmouk and Baghdad Teaching hospitals in Baghdad from March 2015 to July 2015 and included in this study. The diagnosis of epilepsy achieved clinically, electroencephalograph record and radio-images including computerized tomography and magnetic image resonance. At the time of entry into the study, an electrocardiography (ECG) was done, and the determinants of each ECG record were calculated. The QT-nomogram, tachogram, and cardiac restitution plots were used to identify the patients at risk of cardiac arrhythmias. RESULTS Significant prolonged corrected QT corrected (QTc) and JT corrected intervals were observed in female compared with male at age ≥50 years while the TQ interval was significantly prolonged in males of Group II. Eight patients of Group II had a significant pathological prolonged QTc interval compared with undetectable finding in Group I. QT nomogram did not disclose significant findings while the plots of Lorenz and restitution steepness disclose that the patients of Group II were vulnerable to cardiac arrhythmias. Abnormal ECG findings were observed in the age extremities (≤18 years and ≥50 years) in Group II compared with Group I. CONCLUSION Utilization of QT-nomogram, restitution steepness, and tachogram plots is useful tools for detection subclinical vulnerable epileptic patient with cardiac arrhythmias.
Collapse
Affiliation(s)
- Marwan S Al-Nimer
- Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq; Department of Pharmacology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sura A Al-Mahdawi
- Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | | | | |
Collapse
|
61
|
Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord 2017; 32:310-318. [PMID: 28090678 DOI: 10.1002/mds.26901] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Historically, the syndrome of primary paroxysmal dyskinesias was considered a group of disorders as a result of ion channel dysfunction. This proposition was primarily based on the discovery of mutations in ion channels, which caused other episodic neurological disorders such as epilepsy and migraine and also supported by the frequent association between paroxysmal dyskinesias and epilepsy. However, the discovery of the genes responsible for the 3 classic forms of paroxysmal dyskinesias disproved this ion channel theory. On the other hand, novel gene mutations implicating ion channels have been recently reported to produce episodic movement disorders clinically similar to the classic paroxysmal dyskinesias. Here, we review the clinical and pathophysiological aspects of the paroxysmal dyskinesias, further proposing a pathophysiological framework according to which they can be classified as synaptopathies (proline-rich transmembrane protein 2 and myofibrillogenesis regulator gene), channelopathies (calcium-activated potassium channel subunit alpha-1 and voltage-gated sodium channel type 8), or transportopathies (solute carrier family 2 member 1). This proposal might serve to explain similarities and differences among the various paroxysmal dyskinesias in terms of clinical features, treatment response, and natural history. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK
| | - Alberto J Espay
- Gardner Neuroscience Institute, Department of Neurology, Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| |
Collapse
|
62
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
63
|
Peycheva V, Ivanova N, Kamenarova K, Tsekova I, Aleksandrova I, Bozhinova V, Bozhidarova M, Litvinenko I, Hristova D, Mitev V, Kaneva R, Jordanova A. Impact of KCNQ2 mutations in Bulgarian patients with electroclinical syndromes with onset in the first year of life. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1259017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Valentina Peycheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Neviana Ivanova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Kunka Kamenarova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Irina Tsekova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Iliyana Aleksandrova
- Department of Neurology, Clinic of Child Neurology, University Hospital of Neurology and Psychiatry “St' Naum”, Medical University of Sofia, Sofia, Bulgaria
| | - Veneta Bozhinova
- Department of Neurology, Clinic of Child Neurology, University Hospital of Neurology and Psychiatry “St' Naum”, Medical University of Sofia, Sofia, Bulgaria
| | - Maria Bozhidarova
- Department of Pediatric Neurology, University Pediatrics Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Litvinenko
- Department of Pediatric Neurology, University Pediatrics Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Dimitrina Hristova
- Children Neurology Unit, Pediatrics Clinic, Tokuda Hospital, Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
| | - Albena Jordanova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
- VIB Department of Molecular Genetics, Molecular Neurogenomics Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
64
|
Vilan A, Mendes Ribeiro J, Striano P, Weckhuysen S, Weeke LC, Brilstra E, de Vries LS, Cilio MR. A Distinctive Ictal Amplitude-Integrated Electroencephalography Pattern in Newborns with Neonatal Epilepsy Associated with KCNQ2 Mutations. Neonatology 2017; 112:387-393. [PMID: 28926830 DOI: 10.1159/000478651] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recurrent and prolonged seizures are harmful for the developing brain, emphasizing the importance of early seizure recognition and effective therapy. Amplitude-integrated electroencephalography (aEEG) has become a valuable tool to diagnose epileptic seizures, and, in parallel, genetic etiologies are increasingly being recognized, changing the paradigm of the workup and management of neonatal seizures. OBJECTIVE To report the ictal aEEG pattern in neonates with KCNQ2-related epilepsy. SUBJECTS AND METHODS In this multicenter descriptive study, clinical data and aEEG findings of 9 newborns with KCNQ2 mutations are reported. RESULTS Refractory seizures occurred in the early neonatal period with similar seizure type, including tonic features, apnea, and desaturation. A distinct aEEG seizure pattern, consisting of a sudden rise of the lower and upper margin of the aEEG, followed by a marked depression of the aEEG amplitude, was found in 8 of the 9 patients. Prompt recognition of this pattern led to early treatment with carbamazepine in the 2 most recent cases. CONCLUSION Early recognition of the electroclinical phenotype by using aEEG may direct genetic testing and a precision medicine approach with sodium channel blockers in neonates with KCNQ2 mutations.
Collapse
Affiliation(s)
- Ana Vilan
- Department of Neonatology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Sands TT, Balestri M, Bellini G, Mulkey SB, Danhaive O, Bakken EH, Taglialatela M, Oldham MS, Vigevano F, Holmes GL, Cilio MR. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 2016; 57:2019-2030. [DOI: 10.1111/epi.13596] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Tristan T. Sands
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Martina Balestri
- Department of Neurology; Bambino Gesú Children's Hospital and Research Institute; Rome Italy
| | - Giulia Bellini
- Department of Experimental Medicine; Second University of Naples; Naples Italy
| | - Sarah B. Mulkey
- Department of Pediatrics; University of Arkansas for Medical Sciences; Little Rock Arkansas U.S.A
| | - Olivier Danhaive
- Department of Pediatrics; University of California San Francisco; San Francisco California U.S.A
| | - Eliza Hayes Bakken
- Department of Pediatrics; University of California San Francisco; San Francisco California U.S.A
| | | | - Michael S. Oldham
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Federico Vigevano
- Department of Neurology; Bambino Gesú Children's Hospital and Research Institute; Rome Italy
| | - Gregory L. Holmes
- Department of Neurological Sciences; University of Vermont; College of Medicine; Burlington Vermont U.S.A
| | - Maria Roberta Cilio
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| |
Collapse
|
66
|
Strulovich R, Tobelaim WS, Attali B, Hirsch JA. Structural Insights into the M-Channel Proximal C-Terminus/Calmodulin Complex. Biochemistry 2016; 55:5353-65. [PMID: 27564677 DOI: 10.1021/acs.biochem.6b00477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Kv7 (KCNQ) channel family, comprising voltage-gated potassium channels, plays major roles in fine-tuning cellular excitability by reducing firing frequency and controlling repolarization. Kv7 channels have a unique intracellular C-terminal (CT) domain bound constitutively by calmodulin (CaM). This domain plays key functions in channel tetramerization, trafficking, and gating. CaM binds to the proximal CT, comprising helices A and B. Kv7.2 and Kv7.3 are expressed in neural tissues. Together, they form the heterotetrameric M channel. We characterized Kv7.2, Kv7.3, and chimeric Kv7.3 helix A-Kv7.2 helix B (Q3A-Q2B) proximal CT/CaM complexes by solution methods at various Ca(2+)concentrations and determined them all to have a 1:1 stoichiometry. We then determined the crystal structure of the Q3A-Q2B/CaM complex at high Ca(2+) concentration to 2.0 Å resolution. CaM hugs the antiparallel coiled coil of helices A and B, braced together by an additional helix. The structure displays a hybrid apo-Ca(2+) CaM conformation even though four Ca(2+) ions are bound. Our results pinpoint unique interactions enabling the possible intersubunit pairing of Kv7.3 helix A and Kv7.2 helix B while underlining the potential importance of Kv7.3 helix A's role in stabilizing channel oligomerization. Also, the structure can be used to rationalize various channelopathic mutants. Functional testing of the chimeric channel found it to have a voltage-dependence similar to the M channel, thereby demonstrating helix A's importance in imparting gating properties.
Collapse
Affiliation(s)
- Roi Strulovich
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Bernard Attali
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| |
Collapse
|
67
|
|
68
|
Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, Miranda MJ, Farooq M, Nielsen JEK, Svendsen LL, Kjelgaard DB, Linnet KM, Hao Q, Uldall P, Frangu M, Tommerup N, Baig SM, Abdullah U, Born AP, Gellert P, Nikanorova M, Olofsson K, Jepsen B, Marjanovic D, Al-Zehhawi LIK, Peñalva SJ, Krag-Olsen B, Brusgaard K, Hjalgrim H, Rubboli G, Pal DK, Dahl HA. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies. Mol Syndromol 2016; 7:210-219. [PMID: 27781031 DOI: 10.1159/000448369] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis of a wide spectrum of epilepsies with age of onset spanning from the neonatal period to adulthood. A gene panel targeting 46 epilepsy genes was used on a cohort of 216 patients consecutively referred for panel testing. The patients had a range of different epilepsies from benign neonatal seizures to epileptic encephalopathies (EEs). Potentially causative variants were evaluated by literature and database searches, submitted to bioinformatic prediction algorithms, and validated by Sanger sequencing. If possible, parents were included for segregation analysis. We identified a presumed disease-causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared to 17% among patients with generalized epilepsies and 16% in patients with focal or multifocal epilepsies. By the use of a gene panel consisting of 46 epilepsy genes, we were able to find a disease-causing genetic variation in 23% of the analyzed patients. The highest yield was found among patients with neonatal-onset epilepsies and EEs.
Collapse
Affiliation(s)
- Rikke S Møller
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | | | - Katrine M Johannesen
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Inga Talvik
- Tallinn Children's Hospital, Tallinn, Estonia; Tartu University Hospital, Children's Clinic, Tartu, Estonia
| | - Tiina Talvik
- Tartu University Hospital, Children's Clinic, Tartu, Estonia; Department of Paediatrics, University of Tartu, Tartu, Estonia
| | - Ulvi Vaher
- Tartu University Hospital, Children's Clinic, Tartu, Estonia; Department of Paediatrics, University of Tartu, Tartu, Estonia
| | - Maria J Miranda
- Department of Pediatrics, Pediatric Neurology, Herlev University Hospital, Copenhagen University, Herlev, Denmark
| | - Muhammad Farooq
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Jens E K Nielsen
- Department of Clinical Medicine, Section of Gynaecology, Obstetrics and Paediatrics, Roskilde Hospital, Roskilde, Denmark
| | | | | | - Karen M Linnet
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Qin Hao
- Amplexa Genetics, Odense, Denmark
| | - Peter Uldall
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Mimoza Frangu
- Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Uzma Abdullah
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS, Faisalabad, Pakistan
| | - Alfred P Born
- Department of Paediatrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pia Gellert
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Marina Nikanorova
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Kern Olofsson
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | - Birgit Jepsen
- Danish Epilepsy Centre, University of Southern Denmark, Denmark
| | | | - Lana I K Al-Zehhawi
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bente Krag-Olsen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Helle Hjalgrim
- Danish Epilepsy Centre, University of Southern Denmark, Denmark; Institute for Regional Health Services, University of Southern Denmark, Denmark
| | - Guido Rubboli
- Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | |
Collapse
|
69
|
Manohar S, Dahar K, Adler HJ, Dalian D, Salvi R. Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Mol Cell Neurosci 2016; 75:101-12. [PMID: 27473923 DOI: 10.1016/j.mcn.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1β. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| | - Kimberly Dahar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Henry J Adler
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Ding Dalian
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
70
|
Maljevic S, Vejzovic S, Bernhard MK, Bertsche A, Weise S, Döcker M, Lerche H, Lemke JR, Merkenschlager A, Syrbe S. Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures. Mol Syndromol 2016; 7:189-196. [PMID: 27781029 DOI: 10.1159/000447461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Benign familial neonatal seizures (BFNS) present a rare familial epilepsy syndrome caused by genetic alterations in the voltage-gated potassium channels Kv7.2 and Kv7.3, encoded by KCNQ2 and KCNQ3. While most BFNS families carry alterations in KCNQ2, mutations in KCNQ3 appear to be less common. Here, we describe a family with 6 individuals presenting with neonatal focal and generalized seizures. Genetic testing revealed a novel KCNQ3 variant, c.835G>T, cosegregating with seizures in 4 tested individuals. This variant results in a substitution of the highly conserved amino acid valine localized within the pore-forming transmembrane segment S5 (p.V279F). Functional investigations in Xenopus laevis oocytes revealed a loss of function, which supports p.V279F as a pathogenic mutation. When p.V279F was coexpressed with the wild-type (WT) Kv7.2 subunits, the resulting potassium currents were about 10-fold reduced compared to the WT Kv7.3 and Kv7.2 coexpression. Genotype-phenotype correlation shows an incomplete penetrance of p.V279F. Response to antiepileptic treatment was variable, but evaluation of treatment response remained challenging due to the self-limiting character of the disease. The identification of the pathogenic variant helped to avoid unnecessary investigations in affected family members and allowed guided therapy.
Collapse
Affiliation(s)
- Snezana Maljevic
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Heidelberg, Germany; The Florey Institute of Neuroscience and Mental Health, Melbourne, Vic., Australia
| | - Sabina Vejzovic
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Heidelberg, Germany
| | - Matthias K Bernhard
- Department of Women and Child Health, Hospital for Children and Adolescents, Heidelberg, Germany
| | - Astrid Bertsche
- Department of Women and Child Health, Hospital for Children and Adolescents, Heidelberg, Germany
| | - Sebastian Weise
- Department of Women and Child Health, Hospital for Children and Adolescents, Heidelberg, Germany
| | - Miriam Döcker
- CeGaT GmbH, Tübingen, University Hospital Heidelberg, Heidelberg, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Heidelberg, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Andreas Merkenschlager
- Department of Women and Child Health, Hospital for Children and Adolescents, Heidelberg, Germany
| | - Steffen Syrbe
- Department of Women and Child Health, Hospital for Children and Adolescents, Heidelberg, Germany; Division of Child Neurology and Inherited Metabolic Diseases, Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
71
|
Che XQ, Sun ZF, Mao X, Xia K, Yan XX, Jiang H, Shen L, Li N, Tang BS. Mutation screening of the PRRT2 gene for benign epilepsy with centrotemporal spikes in Chinese mainland population. Int J Neurosci 2016; 127:10-13. [PMID: 26954261 DOI: 10.3109/00207454.2015.1136886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proline-rich transmembrane protein 2 gene (PRRT2) mutations are reported to cause common paroxysmal neurological disorders and show a remarkable pleiotropy. Benign epilepsy with centrotemporal spikes (BECTS) is considered to be the most common epilepsy syndrome in childhood. It is placed among the idiopathic localization related epilepsies. Recently, it was reported that a girl with a PRRT2 mutation c.649_650insC developed infantile focal epilepsy with bilateral spikes which resembled the rolandic spikes. Hereby we performed a comprehensive genetic mutation screening of PRRT2 gene in a cohort of 53 sporadic BECTS patients. None of the 53 sporadic BECTS patients and other 250 controls carried mutations including c.649_650insC in PRRT2. Our data indicated that the PRRT2 mutations might most likely not be associated with BECTS in Chinese mainland population.
Collapse
Affiliation(s)
- Xiang-Qian Che
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Zhan-Fang Sun
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Xiao Mao
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China
| | - Kun Xia
- b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China
| | - Xin-Xiang Yan
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Hong Jiang
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Lu Shen
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Nan Li
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| | - Bei-Sha Tang
- a 1 The Department of Neurology, Xiangya Hospital , Central South University , Changsha , Hunan , People's Republic of China.,b 2 The Department of State Key Laboratory of Medical Genetics , Central South University , Changsha , Hunan , People's Republic of China.,c 3 The Department of Neurodegenerative Disorders Research Center , Central South University , Changsha , Hunan , People's Republic of China
| |
Collapse
|
72
|
Villa C, Combi R. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci 2016; 10:81. [PMID: 27064559 PMCID: PMC4811893 DOI: 10.3389/fncel.2016.00081] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| |
Collapse
|
73
|
Liu XR, Huang D, Wang J, Wang YF, Sun H, Tang B, Li W, Lai JX, He N, Wu M, Su T, Meng H, Shi YW, Li BM, Tang BS, Liao WP. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. NEUROLOGY-GENETICS 2016; 2:e66. [PMID: 27123484 PMCID: PMC4830198 DOI: 10.1212/nxg.0000000000000066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
Abstract
Objective: To explore the potential causative genes of paroxysmal hypnogenic dyskinesia (PHD), which was initially considered a subtype of paroxysmal dyskinesia and has been recently considered a form of nocturnal frontal lobe epilepsy (NFLE). Methods: Eleven patients with PHD were recruited. Mutations in proline-rich region transmembrane protein-2 (PRRT2), myofibrillogenesis regulator 1 (MR-1), solute carrier family 2, member 1 (SLC2A1), calcium-activated potassium channel alpha subunit (KCNMA1), cholinergic receptor, nicotinic, alpha 4 (CHRNA4), cholinergic receptor, nicotinic, beta 2 (CHRNB2), cholinergic receptor, nicotinic, alpha 2 (CHRNA2), and potassium channel subfamily T member 1 (KCNT1) were screened by direct sequencing. Results: Two PRRT2 mutations were identified in patients with typical PHD. A mutation of c.649dupC (p.Arg217ProfsX8) was identified in a patient with PHD and his father who was diagnosed with paroxysmal kinesigenic dyskinesia. An additional mutation of c.640G>C (p.Ala214Pro) was identified in a sporadic patient and his asymptomatic mother. No mutations were found in the other screened genes. Conclusions: The present study identified PRRT2 mutations in PHD, extending the phenotypic spectrum of PRRT2 and supporting the classification of PHD as a subtype of paroxysmal dyskinesia but not NFLE. Based on the results of this study, screening for the PRRT2 mutation is recommended in patients with PHD.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Dan Huang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Fan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Hui Sun
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Wen Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Xing Lai
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Na He
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Heng Meng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Wu Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bing-Mei Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China (X.-R.L., D.H., J.W., Y.-F.W., H.S., B.T., W.L., J.-X.L., N.H., M.W., T.S., H.M., Y.-W.S., B.-M.L., W.-P.L.), Guangzhou, China; and Department of Neurology (B.-S.T.), Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
74
|
Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LHG, Eiberg H, Nothnagel M, Thiele H, Altmüller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nürnberg P, Mang Y, Bakke Møller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016; 79:428-36. [PMID: 26677014 DOI: 10.1002/ana.24580] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.
Collapse
Affiliation(s)
- Elena Gardella
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Hans Eiberg
- RC-LINK, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Steffen Syrbe
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Andreas Merkenschlager
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Yuan Mang
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Gellert
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Saskia Biskup
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hjalgrim
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sándor Beniczky
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
75
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
76
|
Bosch DGM, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, Gilissen C, Jhangiani S, Lupski JR, Cremers FPM, de Vries BBA. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 2015; 24:660-5. [PMID: 26350515 DOI: 10.1038/ejhg.2015.186] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%) were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B, KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process.
Collapse
Affiliation(s)
- Daniëlle G M Bosch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - F Nienke Boonstra
- Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Centre Utrecht, CancerGenomics.nl, Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
77
|
Ream MA, Patel AD. Obtaining genetic testing in pediatric epilepsy. Epilepsia 2015; 56:1505-14. [DOI: 10.1111/epi.13122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Margie A. Ream
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| | - Anup D. Patel
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| |
Collapse
|
78
|
Zhang LM, An Y, Pan G, Ding YF, Zhou YF, Yao YH, Wu BL, Zhou SZ. Reduced Penetrance of PRRT2 Mutation in a Chinese Family With Infantile Convulsion and Choreoathetosis Syndrome. J Child Neurol 2015; 30:1263-9. [PMID: 25403460 DOI: 10.1177/0883073814556887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
Paroxysmal kinesigenic dyskinesia is a rare episodic movement disorder that can be isolated or associated with benign infantile seizures as part of choreoathetosis syndrome. Mutations in the PRRT2 gene have been recently identified as a cause of paroxysmal kinesigenic dyskinesia and infantile convulsion and choreoathetosis (ICCA). We reported a PRRT2 heterozygous mutation (c.604-607delTCAC, p.S202Hfs*25) in a 3-generation Chinese family with infantile convulsion and choreoathetosis and paroxysmal kinesigenic dyskinesia. The mutation was present in 5 family members, of which 4 were clinically affected and 1 was an obligate carrier with reduced penetrance of PRRT2. The affected carriers of this mutation presented with a similar type of infantile convulsion during early childhood and developed additional paroxysmal kinesigenic dyskinesia symptoms later in life. In addition, they all had a dramatic clinical response to oxcarbazepine/phenytoin therapy. Reduced penetrance of the PRRT2 mutation in this family could warrant genetic counseling.
Collapse
Affiliation(s)
- L M Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y An
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - G Pan
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y F Ding
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y F Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y H Yao
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - B L Wu
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - S Z Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
79
|
Grinton BE, Heron SE, Pelekanos JT, Zuberi SM, Kivity S, Afawi Z, Williams TC, Casalaz DM, Yendle S, Linder I, Lev D, Lerman-Sagie T, Malone S, Bassan H, Goldberg-Stern H, Stanley T, Hayman M, Calvert S, Korczyn AD, Shevell M, Scheffer IE, Mulley JC, Berkovic SF. Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia 2015; 56:1071-80. [PMID: 25982755 DOI: 10.1111/epi.13020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We evaluated seizure outcome in a large cohort of familial neonatal seizures (FNS), and examined phenotypic overlap with different molecular lesions. METHODS Detailed clinical data were collected from 36 families comprising two or more individuals with neonatal seizures. The seizure course and occurrence of seizures later in life were analyzed. Families were screened for KCNQ2, KCNQ3, SCN2A, and PRRT2 mutations, and linkage studies were performed in mutation-negative families to exclude known loci. RESULTS Thirty-three families fulfilled clinical criteria for benign familial neonatal epilepsy (BFNE); 27 of these families had KCNQ2 mutations, one had a KCNQ3 mutation, and two had SCN2A mutations. Seizures persisting after age 6 months were reported in 31% of individuals with KCNQ2 mutations; later seizures were associated with frequent neonatal seizures. Linkage mapping in two mutation-negative BFNE families excluded linkage to KCNQ2, KCNQ3, and SCN2A, but linkage to KCNQ2 could not be excluded in the third mutation-negative BFNE family. The three remaining families did not fulfill criteria of BFNE due to developmental delay or intellectual disability; a molecular lesion was identified in two; the other family remains unsolved. SIGNIFICANCE Most families in our cohort of familial neonatal seizures fulfill criteria for BFNE; the molecular cause was identified in 91%. Most had KCNQ2 mutations, but two families had SCN2A mutations, which are normally associated with a mixed picture of neonatal and infantile onset seizures. Seizures later in life are more common in BFNE than previously reported and are associated with a greater number of seizures in the neonatal period. Linkage studies in two families excluded known loci, suggesting a further gene is involved in BFNE.
Collapse
Affiliation(s)
- Bronwyn E Grinton
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - James T Pelekanos
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Glasgow, United Kingdom
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Zaid Afawi
- Tel-Aviv University Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Tristiana C Williams
- Department of Genetic Medicine, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Dan M Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Simone Yendle
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Ilan Linder
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - Dorit Lev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel.,Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | - Stephen Malone
- Department of Neurosciences, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Haim Bassan
- Pediatric Neurology and Development Unit, Tel Aviv Sourasky Medical Center, Dana Children's Hospital, Tel-Aviv, Israel
| | | | - Thorsten Stanley
- Department of Paediatrics, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Michael Hayman
- Department of Neurology, Royal Children's Hospital, Flemington, Victoria, Australia.,Department of Paediatrics, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sophie Calvert
- Department of Neurosciences, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Amos D Korczyn
- Department of Neurology, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Shevell
- Department of Pediatrics & Neurology, McGill University, Montreal, Quebec, Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Flemington, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - John C Mulley
- Department of Genetic Medicine, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
80
|
Wang J, Li Y, Hui Z, Cao M, Shi R, Zhang W, Geng L, Zhou X. Functional analysis of potassium channels in Kv7.2 G271V mutant causing early onset familial epilepsy. Brain Res 2015; 1616:112-22. [PMID: 25960349 DOI: 10.1016/j.brainres.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 01/23/2023]
Abstract
Kv7 (KCNQ) channels underlying a class of voltage-gated K+ current are best known for regulating neuronal excitability. The first glycine (G) residue in the pore helix of Kv7.2 (KCNQ2) subunit is highly conserved among different classes of Kv7 channel family. A missense mutation causing the replacement of the corresponding G residues with a valine (p.G271V) in Kv7.2 was found in a large, four-generation pedigree. Here, we set out to examine the molecular pathomechanism of G271V mutants using patch clamp technology combined with biochemical and immunocytochemical techniques in transiently transfected human embryonic kidney (HEK) 293 cells. The expression of Kv7.2 protein had the same intensity for both wild type (WT) and G271V. In transfected HEK cells, G271V mutants induced large depolarizing shifts of the conductance-voltage relationships and marked slowing of current activation kinetics compared to WT. In addition, G271V mutants abolished currents in homomeric channels, and resulted in about 50% reduction of current in Kv7.2/G271V/Kv7.3 heteromultimeric condition, indicating a more severe functional defect. To test for G271V mutant channel expression in surface membrane, we performed fluorescence confocal microscopy imaging, which revealed no differences between the mutant and WT, suggesting that G271V channels fail to open in response to depolarization even though they are present in the membrane. Furthermore, pharmacologic intervention experiments revealed that upon specific incubation of transfected HEK 293 cells expressing G271V heteromultimeric channels in presence of Kv7 channel enhancer retigabine (ezogabine), the potassium currents increased significantly, suggesting the potential of retigabine as gene-specific therapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuan Li
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Zhiyan Hui
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Min Cao
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Ruiming Shi
- Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Wei Zhang
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Limeng Geng
- Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xihui Zhou
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
81
|
Trivisano M, Terracciano A, Milano T, Cappelletti S, Pietrafusa N, Bertini ES, Vigevano F, Specchio N. Mutation ofCHRNA2in a family with benign familial infantile seizures: Potential role of nicotinic acetylcholine receptor in various phenotypes of epilepsy. Epilepsia 2015; 56:e53-7. [DOI: 10.1111/epi.12967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Marina Trivisano
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Alessandra Terracciano
- Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Teresa Milano
- Department of Biochemical Science “Rossi Fanelli”; Sapienza University of Rome; Rome Italy
| | - Simona Cappelletti
- Unit of Clinical Psychology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Nicola Pietrafusa
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
- Department of Basic Medical Sciences, Neurosciences and Sense Organs; University of Bari; Bari Italy
| | - Enrico Silvio Bertini
- Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Federico Vigevano
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - Nicola Specchio
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| |
Collapse
|
82
|
Miceli F, Striano P, Soldovieri MV, Fontana A, Nardello R, Robbiano A, Bellini G, Elia M, Zara F, Taglialatela M, Mangano S. A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia 2014; 56:e15-20. [PMID: 25524373 DOI: 10.1111/epi.12887] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological studies in mammalian cells revealed that incorporation of KCNQ3 R330L mutant subunits impaired channel function, suggesting a pathogenetic role for such mutation. The degree of functional impairment of channels incorporating KCNQ3 R330L subunits was larger than that of channels carrying another KCNQ3 mutation affecting the same codon but leading to a different amino acid substitution (p.R330C), previously identified in two families with typical BFNS. These data suggest that mutations in KCNQ3, similarly to KCNQ2, can be found in patients with more severe phenotypes including intellectual disability, and that the degree of the functional impairment caused by mutations at position 330 in KCNQ3 may contribute to clinical disease severity.
Collapse
Affiliation(s)
- Francesco Miceli
- Unit of Pharmacology, Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Guerrero-López R, Ortega-Moreno L, Giráldez BG, Alarcón-Morcillo C, Sánchez-Martín G, Nieto-Barrera M, Gutiérrez-Delicado E, Gómez-Garre P, Martínez-Bermejo A, García-Peñas JJ, Serratosa JM. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene. Epilepsy Res 2014; 108:1274-8. [DOI: 10.1016/j.eplepsyres.2014.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/16/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
|
84
|
Verrotti A, Moavero R, Vigevano F, Cantonetti L, Guerra A, Spezia E, Tricarico A, Nanni G, Agostinelli S, Chiarelli F, Parisi P, Capovilla G, Beccaria F, Spalice A, Coppola G, Franzoni E, Gentile V, Casellato S, Veggiotti P, Malgesini S, Crichiutti G, Balestri P, Grosso S, Zamponi N, Incorpora G, Savasta S, Costa P, Pruna D, Cusmai R. Long-term follow-up in children with benign convulsions associated with gastroenteritis. Eur J Paediatr Neurol 2014; 18:572-7. [PMID: 24780603 DOI: 10.1016/j.ejpn.2014.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The outcome of benign convulsions associated with gastroenteritis (CwG) has generally been reported as being excellent. However, these data need to be confirmed in studies with longer follow-up evaluations. AIM To assess the long-term neurological outcome of a large sample of children presenting with CwG. METHODS We reviewed clinical features of 81 subjects presenting with CwG (1994-2010) from three different Italian centers with a follow-up period of at least 3 years. RESULTS Follow-up period ranged from 39 months to 15 years (mean 9.8 years). Neurological examination and cognitive level at the last evaluation were normal in all the patients. A mild attention deficit was detected in three cases (3.7%). Fourteen children (17.3%) received chronic anti-epileptic therapy. Interictal EEG abnormalities detected at onset in 20 patients (24.7%) reverted to normal. Transient EEG epileptiform abnormalities were detected in other three cases (3.7%), and a transient photosensitivity in one (1.2%). No recurrence of CwG was observed. Three patients (3.7%) presented with a febrile seizure and two (2.5%) with an unprovoked seizure, but none developed epilepsy. CONCLUSIONS The long-term evaluation of children with CwG confirms the excellent prognosis of this condition, with normal psychomotor development and low risk of relapse and of subsequent epilepsy.
Collapse
Affiliation(s)
- Alberto Verrotti
- Department of Pediatrics, University of Perugia, Perugia, Italy.
| | - Romina Moavero
- Systems Medicine Department, Child Neurology Unit, Tor Vergata University Hospital of Rome, Italy
| | - Federico Vigevano
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cantonetti
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Azzurra Guerra
- Pediatric Neurology, Azienda Policlinico Modena, Modena, Italy
| | | | | | - Giuliana Nanni
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Pasquale Parisi
- Chair of Pediatrics, II Faculty of Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Capovilla
- Epilepsy Center, Department of Child Neuropsychiatry, C. Poma Hospital, Mantova, Italy
| | - Francesca Beccaria
- Epilepsy Center, Department of Child Neuropsychiatry, C. Poma Hospital, Mantova, Italy
| | - Alberto Spalice
- Department of Pediatrics, "La Sapienza" University of Rome, Italy
| | | | - Emilio Franzoni
- Department of Child Neuropsychiatry, University of Bologna, Bologna, Italy
| | - Valentina Gentile
- Department of Child Neuropsychiatry, University of Bologna, Bologna, Italy
| | | | - Pierangelo Veggiotti
- Department of Child Neuropsychiatry, Child EEG Unit, Foundation C. Mondino Institute of Neurology, Pavia, Italy
| | - Sara Malgesini
- Department of Child Neuropsychiatry, Child EEG Unit, Foundation C. Mondino Institute of Neurology, Pavia, Italy
| | | | | | | | - Nelia Zamponi
- Department of Child Neuropsychiatry, University of Ancona, Italy
| | | | | | - Paola Costa
- Department of Child Neuropsychiatry, IRCCS Burlo Garofalo, Trieste, Italy
| | - Dario Pruna
- Division of Child Neurology and Psychiatry, Azienda Ospedaliero-Universitaria Cagliari, Italy
| | - Raffaella Cusmai
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
85
|
Allen NM, Mannion M, Conroy J, Lynch SA, Shahwan A, Lynch B, King MD. The variable phenotypes of KCNQ-related epilepsy. Epilepsia 2014; 55:e99-105. [DOI: 10.1111/epi.12715] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas M. Allen
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Maria Mannion
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Judith Conroy
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
| | - Sally A. Lynch
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
- Department of Clinical Genetics; Children's University Hospital; Temple St. Dublin Ireland
| | - Amre Shahwan
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Bryan Lynch
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Mary D. King
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
| |
Collapse
|
86
|
Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 2014; 29:1108-16. [PMID: 24963779 DOI: 10.1002/mds.25933] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal movement disorders are a heterogeneous group of conditions manifesting as episodic dyskinesia with sudden onset and lasting a variable duration. Based on the difference of precipitating factors, three forms are clearly recognized, namely, paroxysmal kinesigenic (PKD), non-kinesigenic (PNKD), and exercise induced (PED). The elucidation of the genetic cause of various forms of paroxysmal dyskinesia has led to better clinical definitions based on genotype-phenotype correlations in the familial forms. However, it has been increasingly recognized that (1) there is a marked pleiotropy of mutations in such genes with still expanding clinical spectra; and (2) not all patients clinically presenting with either PKD, PNKD, or PED have mutations in these genes. We aimed to review the clinical features of 500 genetically proven cases published to date. Based on our results, it is clear that there is not a complete phenotypic-genotypic correlation, and therefore we suggest an algorithm to lead the genetic analyses. Given the fact that the reliability of current clinical categorization is not entirely valid, we further propose a novel classification for paroxysmal dyskinesias, which takes into account the recent genetic discoveries in this field.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, United Kingdom
| | | | | |
Collapse
|
87
|
Guerrini R, Marini C, Mantegazza M. Genetic epilepsy syndromes without structural brain abnormalities: clinical features and experimental models. Neurotherapeutics 2014; 11:269-85. [PMID: 24664660 PMCID: PMC3996114 DOI: 10.1007/s13311-014-0267-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research in genetics of epilepsy represents an area of great interest both for clinical purposes and for understanding the basic mechanisms of epilepsy. Most mutations in epilepsies without structural brain abnormalities have been identified in ion channel genes, but an increasing number of genes involved in a diversity of functional and developmental processes are being recognized through whole exome or genome sequencing. Targeted molecular diagnosis is now available for different forms of epilepsy. The identification of epileptogenic mutations in patients before epilepsy onset and the possibility of developing therapeutic strategies tested in experimental models may facilitate experimental approaches that prevent epilepsy or decrease its severity. Functional analysis is essential for better understanding pathogenic mechanisms and gene interactions. In vitro experimental systems are either cells that usually do not express the protein of interest or neurons in primary cultures. In vivo/ex vivo systems are organisms or preparations obtained from them (e.g., brain slices), which should better model the complexity of brain circuits and actual pathophysiological conditions. Neurons differentiated from induced pluripotent stem cells generated from the skin fibroblasts of patients have recently allowed the study of mutations in human neurons having the genetic background of a given patient. However, there is remarkable complexity underlying epileptogenesis in the clinical dimension, as reflected by the fact that experimental models have not provided yet results having clinical translation and that, with a few exceptions concerning rare conditions, no new curative treatment has emerged from any genetic finding in epilepsy.
Collapse
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy,
| | | | | |
Collapse
|
88
|
Baasch AL, Hüning I, Gilissen C, Klepper J, Veltman JA, Gillessen-Kaesbach G, Hoischen A, Lohmann K. Exome sequencing identifies a de novoSCN2Amutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities. Epilepsia 2014; 55:e25-9. [DOI: 10.1111/epi.12554] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Anna-Lena Baasch
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Irina Hüning
- Institut für Humangenetik; Universität zu Lübeck; Lübeck Germany
| | - Christian Gilissen
- Department of Human Genetics; Nijmegen Center for Molecular Life Sciences; Institute for Genetic and Metabolic Disease; Radboud University Medical Center; Nijmegen The Netherlands
| | - Joerg Klepper
- Children's Hospital Aschaffenburg; Aschaffenburg Germany
| | - Joris A. Veltman
- Department of Human Genetics; Nijmegen Center for Molecular Life Sciences; Institute for Genetic and Metabolic Disease; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Alexander Hoischen
- Department of Human Genetics; Nijmegen Center for Molecular Life Sciences; Institute for Genetic and Metabolic Disease; Radboud University Medical Center; Nijmegen The Netherlands
| | - Katja Lohmann
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| |
Collapse
|
89
|
Soldovieri MV, Boutry-Kryza N, Milh M, Doummar D, Heron B, Bourel E, Ambrosino P, Miceli F, De Maria M, Dorison N, Auvin S, Echenne B, Oertel J, Riquet A, Lambert L, Gerard M, Roubergue A, Calender A, Mignot C, Taglialatela M, Lesca G. NovelKCNQ2andKCNQ3Mutations in a Large Cohort of Families with Benign Neonatal Epilepsy: First Evidence for an Altered Channel Regulation by Syntaxin-1A. Hum Mutat 2014; 35:356-67. [DOI: 10.1002/humu.22500] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/12/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Nadia Boutry-Kryza
- Department of Medical Genetics; Hospices Civils de Lyon; France
- Claude Bernard Lyon I University; Lyon France
- CRNL, CNRS UMR 5292, INSERM U1028; Lyon France
| | - Mathieu Milh
- INSERM, UMR_S910; Marseille France
- Department of Neuropediatrics; CHU Timone, APHM; Marseille France
| | - Diane Doummar
- Department of Neuropediatrics; Armand Trousseau Hospital; APHP Paris France
| | - Benedicte Heron
- Department of Neuropediatrics; Armand Trousseau Hospital; APHP Paris France
| | - Emilie Bourel
- Department of Neuropediatrics; Hôpital Nord, CHU d'Amiens; Amiens France
| | - Paolo Ambrosino
- Department of Medicine and Health Science; University of Molise; Campobasso Italy
| | - Francesco Miceli
- Department of Neuroscience; University of Naples Federico II; Naples Italy
| | - Michela De Maria
- Department of Medicine and Health Science; University of Molise; Campobasso Italy
| | - Nathalie Dorison
- Department of Neuropediatrics; Armand Trousseau Hospital; APHP Paris France
| | - Stephane Auvin
- Department of Neuropediatrics; Robert Debré Hospital; APHP Paris France
- INSERM U676; Paris France
| | - Bernard Echenne
- Department of Neuropediatrics; Gui de Chauliac Hospital, CHU de Montpellier; Montpellier France
| | - Julie Oertel
- Department of Medical Genetics; Hopital de l'Archet 2, CHU de Nice; Nice France
| | - Audrey Riquet
- Department of Neuropediatrics; Roger Salengro Hospital; Lille France
| | - Laetitia Lambert
- Department of Medical Genetics; Maternité de Nancy and CHU de Nancy; Nancy France
- INSERM UMR954, Vandoeuvre-les-Nancy; France
| | - Marion Gerard
- Department of Medical Genetics; CHU de Caen; Caen France
| | - Anne Roubergue
- Department of Neuropediatrics; Armand Trousseau Hospital; APHP Paris France
| | - Alain Calender
- Department of Medical Genetics; Hospices Civils de Lyon; France
- Claude Bernard Lyon I University; Lyon France
| | - Cyril Mignot
- Department of Genetics; Clinical Genetics Unit, Hôpital de la Pitié-Salpêtrière; APHP Paris France
- Centre de Référence des Déficiences Intellectuelles de Causes Rares; APHP Paris France
| | - Maurizio Taglialatela
- Department of Medicine and Health Science; University of Molise; Campobasso Italy
- Department of Neuroscience; University of Naples Federico II; Naples Italy
- Unidad de Biofísica; Consejo Superior de Investigaciones Cientificas - Universidad del Pais Vasco; Leioa Spain
| | - Gaetan Lesca
- Department of Medical Genetics; Hospices Civils de Lyon; France
- Claude Bernard Lyon I University; Lyon France
- CRNL, CNRS UMR 5292, INSERM U1028; Lyon France
| |
Collapse
|
90
|
Maljevic S, Lerche H. Potassium channel genes and benign familial neonatal epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 213:17-53. [DOI: 10.1016/b978-0-444-63326-2.00002-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
How Can Advances in Epilepsy Genetics Lead to Better Treatments and Cures? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:309-17. [DOI: 10.1007/978-94-017-8914-1_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Yang X, Zhang Y, Xu X, Wang S, Yang Z, Wu Y, Liu X, Wu X. Phenotypes and PRRT2 mutations in Chinese families with benign familial infantile epilepsy and infantile convulsions with paroxysmal choreoathetosis. BMC Neurol 2013; 13:209. [PMID: 24370076 PMCID: PMC3897939 DOI: 10.1186/1471-2377-13-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in the PRRT2 gene have been identified as the major cause of benign familial infantile epilepsy (BFIE), paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with paroxysmal choreoathetosis/dyskinesias (ICCA). Here, we analyzed the phenotypes and PRRT2 mutations in Chinese families with BFIE and ICCA. Methods Clinical data were collected from 22 families with BFIE and eight families with ICCA. PRRT2 mutations were screened using PCR and direct sequencing. Results Ninety-five family members were clinically affected in the 22 BFIE families. During follow-up, two probands had one seizure induced by diarrhea at the age of two years. Thirty-one family members were affected in the eight ICCA families, including 11 individuals with benign infantile epilepsy, nine with PKD, and 11 with benign infantile epilepsy followed by PKD. Two individuals in one ICCA family had PKD or ICCA co-existing with migraine. One affected member in another ICCA family had experienced a fever-induced seizure at 7 years old. PRRT2 mutations were detected in 13 of the 22 BFIE families. The mutation c.649_650insC (p.R217PfsX8) was found in nine families. The mutations c.649delC (p.R217EfsX12) and c.904_905insG (p.D302GfsX39) were identified in three families and one family, respectively. PRRT2 mutations were identified in all eight ICCA families, including c.649_650insC (p.R217PfsX8), c.649delC (p.R217EfsX12), c.514_517delTCTG (p.S172RfsX3) and c.1023A > T (X341C). c.1023A > T is a novel mutation predicted to elongate the C-terminus of the protein by 28 residues. Conclusions Our data demonstrated that PRRT2 is the major causative gene of BFIE and ICCA in Chinese families. Site c.649 is a mutation hotspot: c.649_650insC is the most common mutation, and c.649delC is the second most common mutation in Chinese families with BFIE and ICCA. As far as we know, c.1023A > T is the first reported mutation in exon 4 of PRRT2. c.649delC was previously reported in PKD, ICCA and hemiplegic migraine families, but we further detected it in BFIE-only families. c.904_905insG was reported in an ICCA family, but we identified it in a BFIE family. c.514_517delTCTG was previously reported in a PKD family, but we identified it in an ICCA family. Migraine and febrile seizures plus could co-exist in ICCA families.
Collapse
Affiliation(s)
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No, 1 of Xian Men Street, , Beijing, Xicheng District 100034, China.
| | | | | | | | | | | | | |
Collapse
|
93
|
Weckhuysen S, Ivanovic V, Hendrickx R, Van Coster R, Hjalgrim H, Møller RS, Grønborg S, Schoonjans AS, Ceulemans B, Heavin SB, Eltze C, Horvath R, Casara G, Pisano T, Giordano L, Rostasy K, Haberlandt E, Albrecht B, Bevot A, Benkel I, Syrbe S, Sheidley B, Guerrini R, Poduri A, Lemke JR, Mandelstam S, Scheffer I, Angriman M, Striano P, Marini C, Suls A, De Jonghe P. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 2013; 81:1697-703. [PMID: 24107868 DOI: 10.1212/01.wnl.0000435296.72400.a1] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To determine the frequency of KCNQ2 mutations in patients with neonatal epileptic encephalopathy (NEE), and to expand the phenotypic spectrum of KCNQ2 epileptic encephalopathy. METHODS Eighty-four patients with unexplained NEE were screened for KCNQ2 mutations using classic Sanger sequencing. Clinical data of 6 additional patients with KCNQ2 mutations detected by gene panel were collected. Detailed phenotyping was performed with particular attention to seizure frequency, cognitive outcome, and video-EEG. RESULTS In the cohort, we identified 9 different heterozygous de novo KCNQ2 missense mutations in 11 of 84 patients (13%). Two of 6 missense mutations detected by gene panel were recurrent and present in patients of the cohort. Seizures at onset typically consisted of tonic posturing often associated with focal clonic jerking, and were accompanied by apnea with desaturation. One patient diagnosed by gene panel had seizure onset at the age of 5 months. Based on seizure frequency at onset and cognitive outcome, we delineated 3 clinical subgroups, expanding the spectrum of KCNQ2 encephalopathy to patients with moderate intellectual disability and/or infrequent seizures at onset. Recurrent mutations lead to relatively homogenous phenotypes. One patient responded favorably to retigabine; 5 patients had a good response to carbamazepine. In 6 patients, seizures with bradycardia were recorded. One patient died of probable sudden unexpected death in epilepsy. CONCLUSION KCNQ2 mutations cause approximately 13% of unexplained NEE. Patients present with a wide spectrum of severity and, although rare, infantile epilepsy onset is possible.
Collapse
Affiliation(s)
- Sarah Weckhuysen
- From the Neurogenetics Group (S.W., R.H., A.S., P.D.J.), Department of Molecular Genetics, VIB, Antwerp; Laboratory of Neurogenetics (S.W., R.H., A.S., P.D.J.), Institute Born-Bunge, University of Antwerp, Belgium; Epilepsy Centre Kempenhaeghe (S.W.), Oosterhout, the Netherlands; Department of Paediatrics (V.I.), University Hospital Centre Zagreb, Croatia; Division of Pediatric Neurology and Metabolism (R.V.C.), Department of Pediatrics, University Hospital Ghent, Belgium; Danish Epilepsy Centre (H.H., R.S.M.), Dianalund; Institute for Regional Health Research (H.H.), University of Southern Denmark, Odense; Department of Child Neurology (S.G.), Juliane Marie Center, Rigshospital, Copenhagen, Denmark; Pediatric Neurology (A.-S.S., B.C.), Department of Neurology (A.-S.S., B.C., P.D.J.), Antwerp University Hospital, Antwerp University, Antwerp, Belgium; Epilepsy Research Centre (S.B.H., S.M., I.S.), Department of Medicine, University of Melbourne, Austin Health, Australia; Great Ormond Street Hospital (C.E.), London; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Child Neurology and Neurorehabilitation Unit (G.C., M.A.), Department of Pediatrics, Central Hospital of Bolzano; Neurology Unit and laboratories (T.P., R.G., C.M.), A. Meyer Children's Hospital, Florence; Child Neuropsychiatry Unit (L.G.), Spedali Civili, Brescia, Italy; Pädiatrie I (K.R., E.H.), Division of Pediatric Neurology, University Hospital Innsbruck, Austria; University Hospital Essen (B.A.), University Duisburg-Essen; Department of Paediatric Neurology and Developmental Medicine (A.B.), University Children's Hospital Tübingen, Eberhard Karls University of Tübingen; Center for Child Neurology (I.B.), Sana Krankenhaus Gerresheim, Düsseldorf; Department of Neuropediatrics (S.S.), Hospital for Children and Adolescents, University of Leipzig, Germany; Department of Neurology (B.S., A.P.), Boston Children's Hospital, Harvard School of Medicine; Department of Biology (B.S.), Brandeis U
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Deng H, Xiu X, Song Z. The molecular biology of genetic-based epilepsies. Mol Neurobiol 2013; 49:352-67. [PMID: 23934645 DOI: 10.1007/s12035-013-8523-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Abstract
Epilepsy is one of the most common neurological disorders characterized by abnormal electrical activity in the central nervous system. The clinical features of this disorder are recurrent seizures, difference in age onset, type, and frequency, leading to motor, sensory, cognitive, psychic, or autonomic disturbances. Since the discovery of the first monogenic gene mutation in 1995, it is proposed that genetic factor plays an important role in the mechanism of epilepsy. Genes discovered in idiopathic epilepsies encode for ion channel or neurotransmitter receptor proteins, whereas syndromes with epilepsy as a main feature are caused by genes that are involved in functions such as cortical development, mitochondrial function, and cell metabolism. The identification of these monogenic epilepsy-causing genes provides new insight into the pathogenesis of epilepsies. Although most of the identified gene mutations present a monogenic inheritance, most of idiopathic epilepsies are complex genetic diseases exhibiting a polygenic or oligogenic inheritance. This article reviews recent genetic and molecular progresses in exploring the pathogenesis of epilepsy, with special emphasis on monogenic epilepsy-causing genes, including voltage-gated channels (Na(+), K(+), Ca(2+), Cl(-), and HCN), ligand-gated channels (nicotinic acetylcholine and GABAA receptors), non-ion channel genes as well as the mitochondrial DNA genes. These progresses have improved our understanding of the complex neurological disorder.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan, 410013, People's Republic of China,
| | | | | |
Collapse
|
95
|
Millichap JG. Genetics of Benign Familial Infantile Epilepsies. Pediatr Neurol Briefs 2013. [DOI: 10.15844/pedneurbriefs-27-4-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|