51
|
Abstract
Among many things, J. B. S. Haldane is known for demonstrating how the principle of natural selection can be used to build a mathematical, and in particular quantitative, theory of evolution. However, to the end, he remained open to the idea of other evolutionary mechanisms. In his late writings, he repeatedly drew attention to situations in which natural selection did not operate, was hemmed in by constraints, or worked in a surprising manner. In this respect Haldane stands out among the architects of the Modern Synthesis.
Collapse
Affiliation(s)
- Veena Rao
- Centre for Human Genetics, BioTech Park, Electronics City (Phase I), Bengaluru 560 100, India.
| |
Collapse
|
52
|
Mohlenhoff KA, Codding BF. When does it pay to invest in a patch? The evolution of intentional niche construction. Evol Anthropol 2017; 26:218-227. [PMID: 29027331 DOI: 10.1002/evan.21534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 11/10/2022]
Abstract
Humans modify their environments in ways that significantly transform the earth's ecosystems. Recent research suggests that such niche-constructing behaviors are not passive human responses to environmental variation, but instead should be seen as active and intentional management of the environment. Although such research is useful in highlighting the interactive dynamics between humans and their natural world, the niche-construction framework, as currently applied, fails to explain why people would decide to modify their environments in the first place. To help resolve this problem, we use a model of technological intensification to analyze the cost-benefit trade-offs associated with niche construction as a form of patch investment. We use this model to assess the costs and benefits of three paradigmatic cases of intentional niche construction in Western North America: the application of fire in acorn groves, the manufacture of fishing weirs, and the adoption of maize agriculture. Intensification models predict that investing in patch modification (niche construction) only provides a net benefit when the amount of resources needed crosses a critical threshold that makes the initial investment worthwhile. From this, it follows that low-cost investments, such as burning in oak groves, should be quite common, while more costly investments, such as maize agriculture, should be less common and depend on the alternatives available in the local environment. We examine how patterns of mobility, risk management, territoriality, and private property also co-evolve with the costs and benefits of niche construction. This approach illustrates that explaining niche-constructing behavior requires understanding the economic trade-offs involved in patch investment. Integrating concepts from niche construction and technological intensification models within a behavioral ecological framework provides insights into the coevolution and active feedback between adaptive behaviors and environmental change across human history.
Collapse
|
53
|
Abstract
Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.
Collapse
Affiliation(s)
- Douglas J. Futuyma
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
54
|
Abstract
One of the challenges in evaluating arguments for extending the conceptual framework of evolutionary biology involves the identification of a tractable model system that allows for an assessment of the core assumptions of the extended evolutionary synthesis (EES). The domestication of plants and animals by humans provides one such case study opportunity. Here, I consider domestication as a model system for exploring major tenets of the EES. First I discuss the novel insights that niche construction theory (NCT, one of the pillars of the EES) provides into the domestication processes, particularly as they relate to five key areas: coevolution, evolvability, ecological inheritance, cooperation and the pace of evolutionary change. This discussion is next used to frame testable predictions about initial domestication of plants and animals that contrast with those grounded in standard evolutionary theory, demonstrating how these predictions might be tested in multiple regions where initial domestication took place. I then turn to a broader consideration of how domestication provides a model case study consideration of the different ways in which the core assumptions of the EES strengthen and expand our understanding of evolution, including reciprocal causation, developmental processes as drivers of evolutionary change, inclusive inheritance, and the tempo and rate of evolutionary change.
Collapse
Affiliation(s)
- Melinda A. Zeder
- Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, Washington, DC 20560, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
55
|
The spatial dynamics of ecosystem engineers. Math Biosci 2017; 292:76-85. [DOI: 10.1016/j.mbs.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/11/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
|
56
|
Schwab DB, Casasa S, Moczek AP. Evidence of developmental niche construction in dung beetles: effects on growth, scaling and reproductive success. Ecol Lett 2017; 20:1353-1363. [PMID: 28942603 DOI: 10.1111/ele.12830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 11/28/2022]
Abstract
Niche construction occurs when organisms modify their environments and alter selective conditions through their physiology and behaviours. Such modifications can bias phenotypic variation and enhance organism-environment fit. Yet few studies exist that experimentally assess the degree to which environmental modifications shape developmental and fitness outcomes, how their influences may differ among species and identify the underlying proximate mechanisms. Here, we experimentally eliminate environmental modifications from the developmental environment of Onthophagus dung beetles. We show that these modifications (1) differentially influence growth among species, (2) consistently shape scaling relationships in fitness-related traits, (3) are necessary for the maintenance of sexual dimorphism, (4) influence reproductive success among females of at least one species and (5) implicate larval cultivation of an external rumen as a possible mechanism for environmental modification. Our results present evidence that Onthophagus larvae engage in niche construction, and that this is a fundamental component of beetle development and fitness.
Collapse
Affiliation(s)
- Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
57
|
Vromen J. Ultimate and proximate explanations of strong reciprocity. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:25. [PMID: 28840517 PMCID: PMC5570808 DOI: 10.1007/s40656-017-0151-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Strong reciprocity (SR) has recently been subject to heated debate. In this debate, the "West camp" (West et al. in Evol Hum Behav 32(4):231-262, 2011), which is critical of the case for SR, and the "Laland camp" (Laland et al. in Science, 334(6062):1512-1516, 2011, Biol Philos 28(5):719-745, 2013), which is sympathetic to the case of SR, seem to take diametrically opposed positions. The West camp criticizes advocates of SR for conflating proximate and ultimate causation. SR is said to be a proximate mechanism that is put forward by its advocates as an ultimate explanation of human cooperation. The West camp thus accuses advocates of SR for not heeding Mayr's original distinction between ultimate and proximate causation. The Laland camp praises advocates of SR for revising Mayr's distinction. Advocates of SR are said to replace Mayr's uni-directional view on the relation between ultimate and proximate causes by the bi-directional one of reciprocal causation. The paper argues that both the West camp and the Laland camp misrepresent what advocates of SR are up to. The West camp is right that SR is a proximate cause of human cooperation. But rather than putting forward SR as an ultimate explanation, as the West camp argues, advocates of SR believe that SR itself is in need of ultimate explanation. Advocates of SR tend to take gene-culture co-evolutionary theory as the correct meta-theoretical framework for advancing ultimate explanations of SR. Appearances notwithstanding, gene-culture coevolutionary theory does not imply Laland et al.'s notion of reciprocal causation. "Reciprocal causation" suggests that proximate and ultimate causes interact simultaneously, while advocates of SR assume that they interact sequentially. I end by arguing that the best way to understand the debate is by disambiguating Mayr's ultimate-proximate distinction. I propose to reserve "ultimate" and "proximate" for different sorts of explanations, and to use other terms for distinguishing different kinds of causes and different parts of the total causal chain producing behavior.
Collapse
Affiliation(s)
- Jack Vromen
- Faculty of Philosophy, Erasmus School of Economics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.
| |
Collapse
|
58
|
Abstract
The concept of a 'human nature' or 'human natures' retains a central role in theorizing about the human experience. In Homo sapiens it is clear that we have a suite of capacities generated via our evolutionary past, and present, and a flexible capacity to create and sustain particular kinds of cultures and to be shaped by them. Regardless of whether we label these capacities 'human natures' or not, humans occupy a distinctive niche and an evolutionary approach to examining it is critical. At present we are faced with a few different narratives as to exactly what such an evolutionary approach entails. There is a need for a robust and dynamic theoretical toolkit in order to develop a richer, and more nuanced, understanding of the cognitively sophisticated genus Homo and the diverse sorts of niches humans constructed and occupied across the Pleistocene, Holocene, and into the Anthropocene. Here I review current evolutionary approaches to 'human nature', arguing that we benefit from re-framing our investigations via the concept of the human niche and in the context of the extended evolutionary synthesis (EES). While not a replacement of standard evolutionary approaches, this is an expansion and enhancement of our toolkit. I offer brief examples from human evolution in support of these assertions.
Collapse
Affiliation(s)
- Agustin Fuentes
- Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
59
|
Laland K, Odling-Smee J, Endler J. Niche construction, sources of selection and trait coevolution. Interface Focus 2017; 7:20160147. [PMID: 28839920 DOI: 10.1098/rsfs.2016.0147] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Organisms modify and choose components of their local environments. This 'niche construction' can alter ecological processes, modify natural selection and contribute to inheritance through ecological legacies. Here, we propose that niche construction initiates and modifies the selection directly affecting the constructor, and on other species, in an orderly, directed and sustained manner. By dependably generating specific environmental states, niche construction co-directs adaptive evolution by imposing a consistent statistical bias on selection. We illustrate how niche construction can generate this evolutionary bias by comparing it with artificial selection. We suggest that it occupies the middle ground between artificial and natural selection. We show how the perspective leads to testable predictions related to: (i) reduced variance in measures of responses to natural selection in the wild; (ii) multiple trait coevolution, including the evolution of sequences of traits and patterns of parallel evolution; and (iii) a positive association between niche construction and biodiversity. More generally, we submit that evolutionary biology would benefit from greater attention to the diverse properties of all sources of selection.
Collapse
Affiliation(s)
- Kevin Laland
- Centre for Biological Diversity, School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK
| | | | - John Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
60
|
Abstract
The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children's learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission-the cornerstone of human cultural diversity.
Collapse
|
61
|
The evolution of cognitive mechanisms in response to cultural innovations. Proc Natl Acad Sci U S A 2017; 114:7915-7922. [PMID: 28739938 DOI: 10.1073/pnas.1620742114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When humans and other animals make cultural innovations, they also change their environment, thereby imposing new selective pressures that can modify their biological traits. For example, there is evidence that dairy farming by humans favored alleles for adult lactose tolerance. Similarly, the invention of cooking possibly affected the evolution of jaw and tooth morphology. However, when it comes to cognitive traits and learning mechanisms, it is much more difficult to determine whether and how their evolution was affected by culture or by their use in cultural transmission. Here we argue that, excluding very recent cultural innovations, the assumption that culture shaped the evolution of cognition is both more parsimonious and more productive than assuming the opposite. In considering how culture shapes cognition, we suggest that a process-level model of cognitive evolution is necessary and offer such a model. The model employs relatively simple coevolving mechanisms of learning and data acquisition that jointly construct a complex network of a type previously shown to be capable of supporting a range of cognitive abilities. The evolution of cognition, and thus the effect of culture on cognitive evolution, is captured through small modifications of these coevolving learning and data-acquisition mechanisms, whose coordinated action is critical for building an effective network. We use the model to show how these mechanisms are likely to evolve in response to cultural phenomena, such as language and tool-making, which are associated with major changes in data patterns and with new computational and statistical challenges.
Collapse
|
62
|
Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. Proc Natl Acad Sci U S A 2017; 114:6429-6437. [PMID: 28576881 DOI: 10.1073/pnas.1703658114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000-10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues.
Collapse
|
63
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
64
|
Werfel J, Ingber DE, Bar-Yam Y. Theory and associated phenomenology for intrinsic mortality arising from natural selection. PLoS One 2017; 12:e0173677. [PMID: 28355288 PMCID: PMC5371302 DOI: 10.1371/journal.pone.0173677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
Standard evolutionary theories of aging and mortality, implicitly based on assumptions of spatial averaging, hold that natural selection cannot favor shorter lifespan without direct compensating benefit to individual reproductive success. However, a number of empirical observations appear as exceptions to or are difficult to reconcile with this view, suggesting explicit lifespan control or programmed death mechanisms inconsistent with the classic understanding. Moreover, evolutionary models that take into account the spatial distributions of populations have been shown to exhibit a variety of self-limiting behaviors, maintained through environmental feedback. Here we extend recent work on spatial modeling of lifespan evolution, showing that both theory and phenomenology are consistent with programmed death. Spatial models show that self-limited lifespan robustly results in long-term benefit to a lineage; longer-lived variants may have a reproductive advantage for many generations, but shorter lifespan ultimately confers long-term reproductive advantage through environmental feedback acting on much longer time scales. Numerous model variations produce the same qualitative result, demonstrating insensitivity to detailed assumptions; the key conditions under which self-limited lifespan is favored are spatial extent and locally exhaustible resources. Factors including lower resource availability, higher consumption, and lower dispersal range are associated with evolution of shorter lifespan. A variety of empirical observations can parsimoniously be explained in terms of long-term selective advantage for intrinsic mortality. Classically anomalous empirical data on natural lifespans and intrinsic mortality, including observations of longer lifespan associated with increased predation, and evidence of programmed death in both unicellular and multicellular organisms, are consistent with specific model predictions. The generic nature of the spatial model conditions under which intrinsic mortality is favored suggests a firm theoretical basis for the idea that evolution can quite generally select for shorter lifespan directly.
Collapse
Affiliation(s)
- Justin Werfel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- New England Complex Systems Institute, Cambridge, Massachusetts, United States of America
- Harvard Medical School and Children’s Hospital, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Medical School and Children’s Hospital, Boston, Massachusetts, United States of America
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yaneer Bar-Yam
- New England Complex Systems Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
65
|
Tikhonov M, Monasson R. Collective Phase in Resource Competition in a Highly Diverse Ecosystem. PHYSICAL REVIEW LETTERS 2017; 118:048103. [PMID: 28186794 DOI: 10.1103/physrevlett.118.048103] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Organisms shape their own environment, which in turn affects their survival. This feedback becomes especially important for communities containing a large number of species; however, few existing approaches allow studying this regime, except in simulations. Here, we use methods of statistical physics to analytically solve a classic ecological model of resource competition introduced by MacArthur in 1969. We show that the nonintuitive phenomenology of highly diverse ecosystems includes a phase where the environment constructed by the community becomes fully decoupled from the outside world.
Collapse
Affiliation(s)
- Mikhail Tikhonov
- Harvard John A. Paulson School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Remi Monasson
- Laboratoire de Physique Théorique de l'École Normale Supérieure-UMR 8549, CNRS and PSL Research, Sorbonne Université UPMC, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
66
|
Betini GS, Avgar T, Fryxell JM. Why are we not evaluating multiple competing hypotheses in ecology and evolution? ROYAL SOCIETY OPEN SCIENCE 2017; 4:160756. [PMID: 28280578 PMCID: PMC5319344 DOI: 10.1098/rsos.160756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/05/2016] [Indexed: 05/23/2023]
Abstract
The use of multiple working hypotheses to gain strong inference is widely promoted as a means to enhance the effectiveness of scientific investigation. Only 21 of 100 randomly selected studies from the ecological and evolutionary literature tested more than one hypothesis and only eight tested more than two hypotheses. The surprising rarity of application of multiple working hypotheses suggests that this gap between theory and practice might reflect some fundamental issues. Here, we identify several intellectual and practical barriers that discourage us from using multiple hypotheses in our scientific investigation. While scientists have developed a number of ways to avoid biases, such as the use of double-blind controls, we suspect that few scientists are fully aware of the potential influence of cognitive bias on their decisions and they have not yet adopted many techniques available to overcome intellectual and practical barriers in order to improve scientific investigation.
Collapse
Affiliation(s)
- Gustavo S. Betini
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Tal Avgar
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
- Department of Biological Sciences, University of Alberta, Alberta, Edmonton, Canada T6G 2E9
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| |
Collapse
|
67
|
Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction. Proc Natl Acad Sci U S A 2016; 113:14938-14943. [PMID: 27980030 DOI: 10.1073/pnas.1613169114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erickson [Erickson CL (2000) Nature 408 (6809):190-193] interpreted features in seasonal floodplains in Bolivia's Beni savannas as vestiges of pre-European earthen fish weirs, postulating that they supported a productive, sustainable fishery that warranted cooperation in the construction and maintenance of perennial structures. His inferences were bold, because no close ethnographic analogues were known. A similar present-day Zambian fishery, documented here, appears strikingly convergent. The Zambian fishery supports Erickson's key inferences about the pre-European fishery: It allows sustained high harvest levels; weir construction and operation require cooperation; and weirs are inherited across generations. However, our comparison suggests that the pre-European system may not have entailed intensive management, as Erickson postulated. The Zambian fishery's sustainability is based on exploiting an assemblage dominated by species with life histories combining high fecundity, multiple reproductive cycles, and seasonal use of floodplains. As water rises, adults migrate from permanent watercourses into floodplains, through gaps in weirs, to feed and spawn. Juveniles grow and then migrate back to dry-season refuges as water falls. At that moment fishermen set traps in the gaps, harvesting large numbers of fish, mostly juveniles. In nature, most juveniles die during the first dry season, so that their harvest just before migration has limited impact on future populations, facilitating sustainability and the adoption of a fishery based on inherited perennial structures. South American floodplain fishes with similar life histories were the likely targets of the pre-European fishery. Convergence in floodplain fish strategies in these two regions in turn drove convergence in cultural niche construction.
Collapse
|
68
|
Weitzel EM, Codding BF. Population growth as a driver of initial domestication in Eastern North America. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160319. [PMID: 27853610 PMCID: PMC5108960 DOI: 10.1098/rsos.160319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The transition to agriculture is one of the most significant events in human prehistory; yet, explaining why people initially domesticated plants and animals remains a contentious research problem in archaeology. Two competing hypotheses dominate current debates. The first draws on niche construction theory to emphasize how intentional management of wild resources should lead to domestication regardless of Malthusian population-resource imbalances. The second relies on models from behavioural ecology (BE) to highlight how individuals should only exert selective pressure on wild resources during times of population-resource imbalance. We examine these hypotheses to explain the domestication event which occurred in Eastern North America approximately 5000 years ago. Using radiocarbon date density and site counts as proxies for human population, we find that populations increased significantly in the 1000 years prior to initial domestication. We therefore suggest that high populations prior to 5000 cal BP may have experienced competition for and possibly overexploitation of resources, altering the selective pressures on wild plants thereby producing domesticates. These findings support the BE hypothesis of domestication occurring in the context of population-resource imbalances. Such deficits, driven either by increased populations or decreased resource abundance, are predicted to characterize domestication events elsewhere.
Collapse
|
69
|
Fisher DN, Rodríguez-Muñoz R, Tregenza T. Wild cricket social networks show stability across generations. BMC Evol Biol 2016; 16:151. [PMID: 27464504 PMCID: PMC4964091 DOI: 10.1186/s12862-016-0726-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. RESULTS Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. CONCLUSIONS Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Collapse
Affiliation(s)
- David N. Fisher
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
- Department for Integrative Biology, Summerlee Science Complex, University of Guelph, Guelph, N1G 2W1 ON Canada
| | - Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
| | - Tom Tregenza
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
| |
Collapse
|
70
|
Abstract
Recent work draws attention to community-community encounters ('coalescence') as likely an important factor shaping natural ecosystems. This work builds on MacArthur's classic model of competitive coexistence to investigate such community-level competition in a minimal theoretical setting. It is shown that the ability of a species to survive a coalescence event is best predicted by a community-level 'fitness' of its native community rather than the intrinsic performance of the species itself. The model presented here allows formalizing a macroscopic perspective whereby a community harboring organisms at varying abundances becomes equivalent to a single organism expressing genes at different levels. While most natural communities do not satisfy the strict criteria of multicellularity developed by multi-level selection theory, the effective cohesion described here is a generic consequence of resource partitioning, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems.
Collapse
Affiliation(s)
- Mikhail Tikhonov
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, United States
- Harvard John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| |
Collapse
|
71
|
Downey G. Being Human in Cities: Phenotypic Bias from Urban Niche Construction. CURRENT ANTHROPOLOGY 2016. [DOI: 10.1086/685710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
72
|
Torday JS. The Cell as the First Niche Construction. BIOLOGY 2016; 5:biology5020019. [PMID: 27136594 PMCID: PMC4929533 DOI: 10.3390/biology5020019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
Niche construction nominally describes how organisms can form their own environments, increasing their capacity to adapt to their surroundings. It is hypothesized that the formation of the first cell as 'internal' Niche Construction was the foundation for life, and that subsequent niche constructions were iterative exaptations of that event. The first instantation of niche construction has been faithfully adhered to by returning to the unicellular state, suggesting that the life cycle is zygote to zygote, not adult to adult as is commonly held. The consequent interactions between niche construction and epigenetic inheritance provide a highly robust, interactive, mechanistic way of thinking about evolution being determined by initial conditions rather than merely by chance mutation and selection. This novel perspective offers an opportunity to reappraise the processes involved in evolution mechanistically, allowing for scientifically testable hypotheses rather than relying on metaphors, dogma, teleology and tautology.
Collapse
Affiliation(s)
- John S Torday
- Evolutionary Medicine, UCLA, Westwood, CA 90502, USA.
| |
Collapse
|
73
|
McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0298. [PMID: 26150664 PMCID: PMC4528496 DOI: 10.1098/rstb.2014.0298] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbes collectively shape their environment in remarkable ways via the products of their metabolism. The diverse environmental impacts of macro-organisms have been collated and reviewed under the banner of ‘niche construction’. Here, we identify and review a series of broad and overlapping classes of bacterial niche construction, ranging from biofilm production to detoxification or release of toxins, enzymes, metabolites and viruses, and review their role in shaping microbiome composition, human health and disease. Some bacterial niche-constructing traits can be seen as extended phenotypes, where individuals actively tailor their environment to their benefit (and potentially to the benefit of others, generating social dilemmas). Other modifications can be viewed as non-adaptive by-products from a producer perspective, yet they may lead to remarkable within-host environmental changes. We illustrate how social evolution and niche construction perspectives offer complementary insights into the dynamics and consequences of these traits across distinct timescales. This review highlights that by understanding the coupled bacterial and biochemical dynamics in human health and disease we can better manage host health.
Collapse
Affiliation(s)
- Luke McNally
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sam P Brown
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
74
|
Turner JS. Homeostasis and the physiological dimension of niche construction theory in ecology and evolution. Evol Ecol 2016. [DOI: 10.1007/s10682-015-9795-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
75
|
|
76
|
Laland K, Matthews B, Feldman MW. An introduction to niche construction theory. Evol Ecol 2016; 30:191-202. [PMID: 27429507 PMCID: PMC4922671 DOI: 10.1007/s10682-016-9821-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/20/2016] [Indexed: 11/04/2022]
Abstract
Niche construction refers to the modification of selective environments by organisms. Theoretical and empirical studies of niche construction are increasing in importance as foci in evolutionary ecology. This special edition presents theoretical and empirical research that illustrates the significance of niche construction to the field. Here we set the scene for the following papers by (1) discussing the history of niche construction research, (2) providing clear definitions that distinguish niche construction from related concepts such as ecosystem engineering and the extended phenotype, (3) providing a brief summary of the findings of niche construction research, (4) discussing the contribution of niche construction and ecological inheritance to (a) expanded notions of inheritance, and (b) the extended evolutionary synthesis, and (5) briefly touching on some of the issues that underlie the controversies over niche construction.
Collapse
Affiliation(s)
- Kevin Laland
- />School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TF UK
| | - Blake Matthews
- />Aquatic Ecology Department, Center for Ecology, Evolution and Biogeochemistry, Eawag, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Marcus W. Feldman
- />Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
77
|
Montinaro F, Davies J, Capelli C. Group membership, geography and shared ancestry: Genetic variation in the Basotho of Lesotho. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:156-61. [PMID: 26779678 DOI: 10.1002/ajpa.22933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The investigation of the evolution of cultural and genetic traits and how they interact represents a vibrant area of research in evolutionary genetics, whose dynamics are particularly relevant for our species. One of the key assumptions of the "gene-culture coevolution" framework is the coinheritance of cultural and genetic traits. A corollary of the model is that culturally defined groups with a unique (or a limited number of) common origin(s) whose membership is inherited only through the male or female line are expected to show a relatively low intragroup variation for genetic markers similarly transmitted. Across human societies this is expected to be the case for cultural toponymies and family names within patrilineal and matrilineal groups considered in association with the nonrecombining region of the Y chromosome (NRY) and the mitochondrial DNA (mtDNA) portion of the genome, respectively. This study aims at exploring the degree of correlation between culture and genetics by investigating the genetic variation of culturally and geographically defined groups. METHODS We analyzed the genetic variation at NRY and mtDNA in 181 individuals from the Basotho, a Southern African patrilineal population from Lesotho, in combination with information about group membership and geographic origin. RESULTS Our results show that (a) the genetic distance between individuals belonging to the same culturally defined group is lower than the population as a whole when NRY markers are considered; (b) cultural traits have a bigger impact than geography for the within-group variation of Y chromosome, but not mtDNA; and (c) within-group genetic variation is compatible with a more homogeneous origin for less common groups. CONCLUSIONS Our results provided additional evidence for the relevance of the dual inheritance model (culture and genetics) in understanding the patterns of human genetic variation, as implied by gene-culture coevolution theory.
Collapse
Affiliation(s)
- Francesco Montinaro
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| | - Joseph Davies
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| | - Cristian Capelli
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| |
Collapse
|
78
|
Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci 2015; 282:20151019. [PMID: 26246559 PMCID: PMC4632619 DOI: 10.1098/rspb.2015.1019] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022] Open
Abstract
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the 'extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism-environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.
Collapse
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK Department of Biology, University of Lund, Lund, Sweden
| | - Marcus W Feldman
- Department of Biology, Stanford University, Herrin Hall, Stanford, CA 94305, USA
| | - Kim Sterelny
- School of Philosophy, Australian National University, Canberra, Australia School of History, Philosophy, Political Science and International Relations, Victoria University of Wellington, Wellington, New Zealand
| | - Gerd B Müller
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Armin Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405-7107, USA
| | - Eva Jablonka
- Cohn Institute for the History of Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
79
|
|
80
|
|
81
|
Klinke DJ. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling. Mol Cell Oncol 2015; 3:e1029061. [PMID: 27308541 DOI: 10.1080/23723556.2015.1029061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center; West Virginia University, Morgantown, WV USA; Department of Microbiology, Immunology, & Cell Biology; West Virginia University, Morgantown, WV USA
| |
Collapse
|
82
|
Waggoner MR, Uller T. Epigenetic Determinism in Science and Society. NEW GENETICS AND SOCIETY 2015; 34:177-195. [PMID: 26217167 PMCID: PMC4513352 DOI: 10.1080/14636778.2015.1033052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 03/18/2015] [Indexed: 05/20/2023]
Abstract
The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.
Collapse
|
83
|
Lymbery AJ. Niche construction: evolutionary implications for parasites and hosts. Trends Parasitol 2015; 31:134-41. [DOI: 10.1016/j.pt.2015.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
|
84
|
Vuojala-Magga T, Turunen MT. Sámi reindeer herders' perspective on herbivory of subarctic mountain birch forests by geometrid moths and reindeer: a case study from northernmost Finland. SPRINGERPLUS 2015; 4:134. [PMID: 25825690 PMCID: PMC4374085 DOI: 10.1186/s40064-015-0921-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2015] [Indexed: 12/04/2022]
Abstract
Introduction Geometrid moths and semi-domesticated reindeer are both herbivores which feed on birch leaves in the subarctic mountain birch forests in northern Fennoscandia. The caterpillars of autumnal and winter moths have episodic outbreaks, which can occasionally lead to extensive defoliation of birch forests. Earlier studies have shown that reindeer have a negative effect on the regeneration of defoliated birches by grazing and browsing their seedlings and sprouts. Case description We interviewed 15 reindeer herders in the Kaldoaivi and Paistunturi herding co-operative in northernmost Finland in order to analyse their past, present and future views on the behaviour of moths and the growth of mountain birches. We investigate the behaviour of the two herbivores by combining the indigenous knowledge (IK) of Sámi herders with the results of relevant studies in biology and anthropology, applying niche construction theory (NCT) in doing so. Discussion and evaluation In the first stage, the niche constructors (moths, reindeer, herders, mountain birch and other organisms) are looked upon as “equal constructors” of a shared niche. As changes unfold in their niche, their role changes from that of constructor to key constructor. The role and importance of niche constructors were different when nomadic pasture rotation was used than they are today under the herding co-operative system. Niche construction faced its most radical and permanent negative changes during the border closures that took place over the latter half of the 19th century. The large-scale nomadic life among the Sámi herders, who migrated between Finland and Norway, came to an end. This phase was followed by stationary herding, which diminished the possibilities of reindeer to look for various environmental affordances. Difficult snow conditions or birch defoliation caused by moth outbreaks made the situation worse than before. Eventually reindeer became key constructors, together with moth larvae, leading to negative ecological inheritance that forced herders to use new, adaptive herding practices. Conclusions Both the scientific data and the IK of herders highlight the roles of reindeer and herders as continuous key constructors of the focal niche, one which stands to be modified in more heterogenic ways than earlier due to global warming and hence will result in new ecological inheritance.
Collapse
Affiliation(s)
| | - Minna T Turunen
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland
| |
Collapse
|
85
|
Heyer E, Brandenburg JT, Leonardi M, Toupance B, Balaresque P, Hegay T, Aldashev A, Austerlitz F. Patrilineal populations show more male transmission of reproductive success than cognatic populations in Central Asia, which reduces their genetic diversity. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:537-43. [PMID: 25821184 DOI: 10.1002/ajpa.22739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The extent to which social organization of human societies impacts the patterns of genetic diversity remains an open question. Here, we investigate the transmission of reproductive success in patrilineal and cognatic populations from Central Asia using a coalescent approach. METHODS We performed a study on the mitochondrial DNA (mtDNA) and Y chromosome polymorphism of patrilineal and cognatic populations from Central Asia. We reconstructed the gene genealogies in each population for both kind of markers and inferred the imbalance level of these genealogies, a parameter directly related to the level of transmission of reproductive success. RESULTS This imbalance level appeared much stronger for the Y chromosome in patrilineal populations than in cognatic populations, while no difference was found for mtDNA. Furthermore, we showed that this imbalance level correlates negatively with Y-chromosomal, mtDNA, and autosomal genetic diversity. CONCLUSIONS This shows that patrilineality might be one of the factors explaining the male transmission of reproductive success, which, in turn, lead to a reduction of genetic diversity. Thus, notwithstanding the fact that our population genetic approach clearly shows that there is a strong male-biased transmission of reproductive success in patrilineal societies, it also highlights the fact that a social process such as cultural transmission of reproductive success could play an important role in shaping human genetic diversity, although we cannot formally exclude that this transmission has also a genetic component.
Collapse
Affiliation(s)
- Evelyne Heyer
- Museum National D'histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie Et Ethnobiologie (UMR7206), Paris, France
| | - Jean-Tristan Brandenburg
- Museum National D'histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie Et Ethnobiologie (UMR7206), Paris, France.,INRA, UMR 0320/UMR 8120 Génétique Végétale, Ferme Du Moulon, Gif-sur-Yvette, 91190, France
| | - Michela Leonardi
- Museum National D'histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie Et Ethnobiologie (UMR7206), Paris, France.,Human Evolutionary Anthropology Group, Department of Anthropology, University College London, UK
| | - Bruno Toupance
- Museum National D'histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie Et Ethnobiologie (UMR7206), Paris, France
| | - Patricia Balaresque
- Laboratoire Anthropologie Moléculaire Et Imagerie De Synthèse, Unité Mixte De Recherche 5288 Centre National De La Recherche Scientifique-Université Paul Sabatier, Toulouse, 31073, France
| | - Tanya Hegay
- Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Almaz Aldashev
- National Academy of Sciences of Kyrgyzstan, Bishkek, Kyrgyz Republic
| | | |
Collapse
|
86
|
|
87
|
Callahan BJ, Fukami T, Fisher DS. Rapid evolution of adaptive niche construction in experimental microbial populations. Evolution 2014; 68:3307-16. [PMID: 25138718 DOI: 10.1111/evo.12512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Abstract
Many species engage in adaptive niche construction: modification of the local environment that increases the modifying organism's competitive fitness. Adaptive niche construction provides an alternative pathway to higher fitness, shaping the environment rather than conforming to it. Yet, experimental evidence for the evolutionary emergence of adaptive niche construction is lacking, leaving its role in evolution uncertain. Here we report a direct observation of the de novo evolution of adaptive niche construction in populations of the bacteria Pseudomonas fluorescens. In a laboratory experiment, we allowed several bacterial populations to adapt to a novel environment and assessed whether niche construction evolved over time. We found that adaptive niche construction emerged rapidly, within approximately 100 generations, and became ubiquitous after approximately 400 generations. The large fitness effect of this niche construction was dominated by the low fitness of evolved strains in the ancestrally modified environment: evolved niche constructors were highly dependent on their specific environmental modifications. Populations were subjected to frequent resetting of environmental conditions and severe reduction of spatial habitat structure, both of which are thought to make adaptive niche construction difficult to evolve. Our finding that adaptive niche construction nevertheless evolved repeatably suggests that it may play a more important role in evolution than generally thought.
Collapse
Affiliation(s)
- Benjamin J Callahan
- Department of Applied Physics, Stanford University, Stanford, California, 94305.
| | | | | |
Collapse
|
88
|
Hamblin SR, White PA, Tanaka MM. Viral niche construction alters hosts and ecosystems at multiple scales. Trends Ecol Evol 2014; 29:594-9. [PMID: 25237032 DOI: 10.1016/j.tree.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
Abstract
The classical picture of viruses focuses on pathogenic viruses damaging the host's cells and physiology and host-pathogen immune coevolution. However, a broader picture of viruses is emerging that includes weakly pathogenic, commensal, or even mutualistic viruses and includes gross behavioural manipulations and viral effects on ecosystems. In this paper, we argue for niche construction as a unifying perspective on viral evolution. As obligate intracellular parasites, viruses are always modifying their environment, and these modifications drive evolutionary feedback between the virus and its environment across multiple scales from cells to ecosystems. We argue that niche construction will provide new insights into viral evolution, and that virology is a powerful source of empirical tests for niche construction.
Collapse
Affiliation(s)
- Steven R Hamblin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
89
|
Romero GQ, Gonçalves-Souza T, Vieira C, Koricheva J. Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis. Biol Rev Camb Philos Soc 2014; 90:877-90. [PMID: 25174581 DOI: 10.1111/brv.12138] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 01/22/2023]
Abstract
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.
Collapse
Affiliation(s)
- Gustavo Q Romero
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Thiago Gonçalves-Souza
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Camila Vieira
- Graduate Course in Ecology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Julia Koricheva
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, U.K
| |
Collapse
|
90
|
Laland KN. On evolutionary causes and evolutionary processes. Behav Processes 2014; 117:97-104. [PMID: 24932898 DOI: 10.1016/j.beproc.2014.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/07/2023]
Abstract
In this essay I consider how biologists understand 'causation' and 'evolutionary process', drawing attention to some idiosyncrasies in the use of these terms. I suggest that research within the evolutionary sciences has been channeled in certain directions and not others by scientific conventions, many of which have now become counterproductive. These include the views (i) that evolutionary processes are restricted to those phenomena that directly change gene frequencies, (ii) that understanding the causes of both ecological change and ontogeny is beyond the remit of evolutionary biology, and (iii) that biological causation can be understood by a dichotomous proximate-ultimate distinction, with developmental processes perceived as solely relevant to proximate causation. I argue that the notion of evolutionary process needs to be broadened to accommodate phenomena such as developmental bias and niche construction that bias the course of evolution, but do not directly change gene frequencies, and that causation in biological systems is fundamentally reciprocal in nature. This article is part of a Special Issue entitled: In Honor of Jerry Hogan.
Collapse
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St Andrews, United Kingdom.
| |
Collapse
|
91
|
Laland K, Odling-Smee J, Turner S. The role of internal and external constructive processes in evolution. J Physiol 2014; 592:2413-22. [PMID: 24591574 DOI: 10.1113/jphysiol.2014.272070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The architects of the Modern Synthesis viewed development as an unfolding of a form already latent in the genes. However, developing organisms play a far more active, constructive role in both their own development and their evolution than the Modern Synthesis proclaims. Here we outline what is meant by constructive processes in development and evolution, emphasizing how constructive development is a shared feature of many of the research developments central to the developing Extended Evolutionary Synthesis. Our article draws out the parallels between constructive physiological processes expressed internally and in the external environment (niche construction), showing how in each case they play important and not fully recognized evolutionary roles by modifying and biasing natural selection.
Collapse
Affiliation(s)
| | | | - Scott Turner
- Department of Biology, State University of New York (SUNY), Syracuse, NY, USA
| |
Collapse
|