51
|
Hoja-Łukowicz D, Przybyło M, Duda M, Pocheć E, Bubka M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta Gen Subj 2016; 1861:3237-3257. [PMID: 27565356 DOI: 10.1016/j.bbagen.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
Changes in the profile of protein glycosylation are a hallmark of ongoing neoplastic transformation. A unique set of tumor-associated carbohydrate antigens expressed on the surface of malignant cells may serve as powerful diagnostic and therapeutic targets. Cell-surface proteins with altered glycosylation affect the growth, proliferation and survival of those cells, and contribute to their acquisition of the ability to migrate and invade. They may also facilitate tumor-induced immunosuppression and the formation of distant metastases. Deciphering the information encoded in these particular glycan portions of glycoconjugates may shed light on the mechanisms of cancer progression and metastasis. A majority of the related review papers have focused on overall changes in the patterns of cell-surface glycans in various cancers, without pinpointing the molecular carriers of these glycan structures. The present review highlights the ways in which particular tumor-associated glycan(s) coupled with a given membrane-bound protein influence neoplastic cell behavior during the development and progression of cancer. We focus on altered glycosylated cell-adhesion molecules belonging to the cadherin, integrin and immunoglobulin-like superfamilies, examined in the context of molecular interactions.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| |
Collapse
|
52
|
García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius HJ. Chicken GRIFIN: A homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 2016; 128-129:34-47. [PMID: 27296808 DOI: 10.1016/j.biochi.2016.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
Occurrence of the adhesion/growth-regulatory galectins as family sets the challenge to achieve a complete network analysis. Along this route taken for a well-suited model organism (chicken), we fill the remaining gap to characterize its seventh member known from rat as galectin-related inter-fiber protein (GRIFIN) in the lens. Its single-copy gene is common to vertebrates, with one or more deviations from the so-called signature sequence for ligand (lactose) contact. The chicken protein is a homodimeric agglutinin with capacity to bind β-galactosides, especially the histo-blood group B tetrasaccharide, shown by solid-phase/cell assays and a glycan microarray. Mass spectrometric identification of two lactose-binding peptides after tryptic on-bead fragmentation suggests an interaction at the canonical region despite a sequence change from Arg to Val at the site, which impairs reactivity of human galectin-1. RT-PCR and Western blot analyses of specimen from adult chicken organs reveal restriction of expression to the lens, here immunohistochemically throughout its main body. This report sets the stage for detailed structure-activity studies to define factors relevant for affinity beyond the signature sequence and to perform the first complete network analysis of the galectin family in developing and adult organs of a vertebrate.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Nadezhda Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow, Russia
| | - Michelle Yegres
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Martina Schnölzer
- Genomics and Proteomics Core Facility, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow, Russia
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
53
|
Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016; 21:molecules21050629. [PMID: 27187342 PMCID: PMC6274006 DOI: 10.3390/molecules21050629] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Glycan recognition by sugar receptors (lectins) is intimately involved in many aspects of cell physiology. However, the factors explaining the exquisite selectivity of their functional pairing are not yet fully understood. Studies toward this aim will also help appraise the potential for lectin-directed drug design. With the network of adhesion/growth-regulatory galectins as therapeutic targets, the strategy to recruit synthetic chemistry to systematically elucidate structure-activity relationships is outlined, from monovalent compounds to glyco-clusters and glycodendrimers to biomimetic surfaces. The versatility of the synthetic procedures enables to take examining structural and spatial parameters, alone and in combination, to its limits, for example with the aim to produce inhibitors for distinct galectin(s) that exhibit minimal reactivity to other members of this group. Shaping spatial architectures similar to glycoconjugate aggregates, microdomains or vesicles provides attractive tools to disclose the often still hidden significance of nanometric aspects of the different modes of lectin design (sequence divergence at the lectin site, differences of spatial type of lectin-site presentation). Of note, testing the effectors alone or in combination simulating (patho)physiological conditions, is sure to bring about new insights into the cooperation between lectins and the regulation of their activity.
Collapse
|
54
|
Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73:1989-2016. [PMID: 26956894 PMCID: PMC11108359 DOI: 10.1007/s00018-016-2163-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany.
| | - J C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - J Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - H Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539, Munich, Germany
| |
Collapse
|
55
|
Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius HJ. Galectin-1 Couples Glycobiology to Inflammation in Osteoarthritis through the Activation of an NF-κB-Regulated Gene Network. THE JOURNAL OF IMMUNOLOGY 2016; 196:1910-21. [PMID: 26792806 DOI: 10.4049/jimmunol.1501165] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease that ranks among the leading causes of adult disability. Mechanisms underlying osteoarthritis pathogenesis are not yet fully elucidated, putting limits to current disease management and treatment. Based on the phenomenological evidence for dysregulation within the glycome of chondrocytes and the network of a family of adhesion/growth-regulatory lectins, that is, galectins, we tested the hypothesis that Galectin-1 is relevant for causing degeneration. Immunohistochemical analysis substantiated that Galectin-1 upregulation is associated with osteoarthritic cartilage and subchondral bone histopathology and severity of degeneration (p < 0.0001, n = 29 patients). In vitro, the lectin was secreted and it bound to osteoarthritic chondrocytes inhibitable by cognate sugar. Glycan-dependent Galectin-1 binding induced a set of disease markers, including matrix metalloproteinases and activated NF-κB, hereby switching on an inflammatory gene signature (p < 10(-16)). Inhibition of distinct components of the NF-κB pathway using dedicated inhibitors led to dose-dependent impairment of Galectin-1-mediated transcriptional activation. Enhanced secretion of effectors of degeneration such as three matrix metalloproteinases underscores the data's pathophysiological relevance. This study thus identifies Galectin-1 as a master regulator of clinically relevant inflammatory-response genes, working via NF-κB. Because inflammation is critical to cartilage degeneration in osteoarthritis, this report reveals an intimate relation of glycobiology to osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Catharina Chiari
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Krall
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, 1090 Vienna, Austria; and
| | | | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| |
Collapse
|
56
|
Wu G, Lu ZH, André S, Gabius HJ, Ledeen RW. Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca²⁺ influx. J Neurochem 2015; 136:550-63. [PMID: 26526326 PMCID: PMC4720552 DOI: 10.1111/jnc.13418] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 12/04/2022]
Abstract
Axon‐like neuritogenesis in neuroblastoma (NG108‐15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin‐1 (Gal‐1), a homobivalent endogenous lectin, is an effector by cross‐linking the ganglioside and its associated glycoprotein α5β1‐integrin. The thereby triggered signaling cascade involves autophosphorylation of focal adhesion kinase and activation of phospholipase Cγ and phosphoinositide‐3 kinase. This leads to a transient increase in the intracellular Ca2+ concentration by opening of TRPC5 channels, which belong to the signal transduction‐gated cation channels. Controls with GM1‐defective cells (NG‐CR72 and neurons from ganglio‐series KO mice) were retarded in axonal growth, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1. The lectin's presence was detected in the NG108‐15 cells, suggesting an autocrine mechanism of action, and in astrocytes in situ. Gal‐1, as cross‐linking lectin, can thus translate metabolic conversion of ganglioside GD1a to GM1 by neuraminidase action into axon growth.
Galectin‐1 (Gal‐1) was shown an effector of axonogenesis in cerebellar granule neurons (CGNs) and NG108‐15 cells by cross‐linking GM1 ganglioside and its associated glycoprotein α5β1‐integrin. The resulting signaling led to a transient increase in intracellular Ca2+ by opening TRPC5 channels. CGNs deficient in GM1 showed retarded axonogenesis, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1 in this process. This Gal‐1/GM1‐induced signaling was manifest only at the earliest, initiating stage of axon development.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany
| | - Robert W Ledeen
- Department of Pharmacology, Physiology & Neurosciences, Rutgers-The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
57
|
Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells. Sci Rep 2015; 5:17342. [PMID: 26611489 PMCID: PMC4661525 DOI: 10.1038/srep17342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.
Collapse
|
58
|
Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context. Histochem Cell Biol 2015; 145:185-99. [PMID: 26553286 DOI: 10.1007/s00418-015-1383-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Recognition of glycans by lectins leads to cell adhesion and growth regulation. The specificity and selectivity of this process are determined by carbohydrate structure (sequence and shape) and topology of its presentation. The synthesis of (neo)glycoconjugates with bi- to oligo-valency (glycoclusters) affords tools to delineate structure-activity relationships by blocking lectin binding to an artificial matrix, often a glycoprotein, or cultured cell lines. The drawback of these assays is that glycan presentation is different from that in tissues. In order to approach the natural context, we here introduce lectin histochemistry on fixed tissue sections to determine the susceptibility of binding of two plant lectins, i.e., GSA-II and WGA, to a series of 10 glycoclusters. Besides valency, this panel covers changes in the anomeric position (α/β) and the atom at the glycosidic linkage (O/S). Flanked by cell and solid-phase assays with human tumor lines and two mucins, respectively, staining (intensity and profile) was analyzed in sections of murine jejunum, stomach and epididymis as a function of glycocluster presence. The marked and differential sensitivity of signal generation to structural aspects of the glycoclusters proves the applicability of this method. This enables comparisons between data sets obtained by using (neo)glycoconjugates, cells and the tissue context as platforms. The special advantage of processing tissue sections is the monitoring of interference with lectin association at sites that are relevant for functionality. Testing glycoclusters in lectin histochemistry will especially be attractive in cases of multi-target recognition (glycans, proteins and lipids) by a tissue lectin.
Collapse
|
59
|
Abstract
The Golgi apparatus-complex is a highly dynamic organelle which is considered the "heart" of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the "black reaction," and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
60
|
Kaltner H, Singh T, Manning JC, Raschta AS, André S, Sinowatz F, Gabius HJ. Network monitoring of adhesion/growth-regulatory galectins: localization of the five canonical chicken proteins in embryonic and maturing bone and cartilage and their introduction as histochemical tools. Anat Rec (Hoboken) 2015; 298:2051-70. [PMID: 26340709 DOI: 10.1002/ar.23265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 01/15/2023]
Abstract
Divergence from an ancestral gene leads to a family of homologous proteins. Whether they are physiologically distinct, similar, or even redundant is an open question in each case. Defining profiles of tissue localization is a step toward giving diversity a functional meaning. Due to the significance of endogenous sugar receptors (lectins) as effectors for a wide range of cellular activities we have focused on galectins. The comparatively low level of network complexity constituted by only five canonical proteins makes chicken galectins (CGs) an attractive choice to perform comprehensive analysis, here studied on bone/cartilage as organ system. Galectin expression was monitored by Western blotting and immunohistochemistry using non-cross-reactive antibodies. Overall, three galectins (CG-1B, CG-3, CG-8) were present with individual expression patterns, one was found exclusively in the mesenchyme (CG-1A), the fifth (CG-2) not being detectable. The documented extents of separation are a sign for functional divergence; in cases with overlapping stainings, as for example in the osteoprogenitor layer or periosteum, cooperation may also be possible. Recombinant production enabled the introduction of the endogenous lectins as tools for binding-site localization. Their testing revealed developmental regulation and cell-type-specific staining. Of relevance for research on mammalian galectins, this study illustrates that certain cell types can express more than one galectin, letting functional interrelationships appear likely. Thus, complete network analysis irrespective of its degree of complexity is mandatory.
Collapse
Affiliation(s)
- Herbert Kaltner
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Tanuja Singh
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Joachim C Manning
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Anne-Sarah Raschta
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Sabine André
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Fred Sinowatz
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| |
Collapse
|
61
|
Peržeľová V, Sabol F, Vasilenko T, Novotný M, Kováč I, Slezák M, Ďurkáč J, Hollý M, Pilátová M, Szabo P, Varinská L, Čriepoková Z, Kučera T, Kaltner H, André S, Gabius HJ, Mučaji P, Smetana K, Gál P. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med 2015; 37:21-8. [PMID: 26397183 PMCID: PMC4687436 DOI: 10.3892/ijmm.2015.2351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/12/2015] [Indexed: 11/05/2022] Open
Abstract
Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re‑epithelialization through estrogen receptor (ER)‑β, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)‑trisphenol (PPT), ER‑α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER‑β agonist] affect the expression of basic proliferation and differentiation markers (Ki‑67, keratin‑10, ‑14 and ‑19, galectin‑1 and Sox‑2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER‑α and ‑β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER‑α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki‑67 being observed. However, the activation of ER‑β led to an increase in cell proliferation and keratin‑19 expression, as well as a decrease in galectin‑1 expression. Fittingly, in rat wounds treated with the ER‑β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing.
Collapse
Affiliation(s)
- Vlasta Peržeľová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - František Sabol
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases and Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Tomáš Vasilenko
- Department of Surgery, Košice‑Šaca Hospital and Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Martin Novotný
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Ivan Kováč
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martin Slezák
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Ján Ďurkáč
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martin Hollý
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martina Pilátová
- Department of Pathological Anatomy and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Varinská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Zuzana Čriepoková
- Department of Pathological Anatomy and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| |
Collapse
|
62
|
Smorodinova N, Kaltner H, Jirsová K, Hrdličková-Cela E, André S, Kučera T, Smetana K, Gabius HJ. Regulatory Impact of Amniotic Membrane Transplantation on Presence of Adhesion/Growth-Regulatory Galectins-1 and -7 in Corneal Explants from Acanthamoeba Keratitis Patients: Clinical Note. Curr Eye Res 2015; 41:740-6. [PMID: 26338079 DOI: 10.3109/02713683.2015.1061022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the impact of Acanthamoeba keratitis (AK) and amniotic membrane transplantation (AMT) in corneal explants on presence of two multifunctional endogenous lectins, i.e. galectins-1 and -7. METHODS Ten corneal explants from AK patients (five with previous AMT and five controls without this treatment) and seven specimens of disease-free control cornea were processed by indirect fluorescent immunohistochemistry. RESULTS Immunostaining for both galectins was obtained in the epithelium, stroma and the endothelial layer of all controls, with the strongest positivity in the epithelium. Significantly decreased intensity for galectin-1 was recorded in the epithelium of corneal explants from patients with AK and AMT. The signal for galectin-7 was significantly decreased in the epithelium of AK patients and normalized after AMT. CONCLUSIONS AMT has a marked impact on presence of the two galectins in opposite directions, encouraging complete profiling for this family of endogenous effectors.
Collapse
Affiliation(s)
- Natalia Smorodinova
- a First Faculty of Medicine, Institute of Histology and Embryology, Charles University in Prague , Albertov , Prague , Czech Republic
| | - Herbert Kaltner
- b Faculty of Veterinary Medicine , Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich , Veterinärstrasse, Munich , Germany
| | - Katerina Jirsová
- c Laboratory of the Biology and Pathology of the Eye , Department of Inherited Metabolic Disorders, First Faculty of Medicine and General Teaching Hospital, Charles University in Prague , Ke Karlovu , Prague , Czech Republic
| | - Enkela Hrdličková-Cela
- d Department of Ophthalmology , First Faculty of Medicine, Charles University in Prague , U Nemocnice , Prague .,e Lexum European Eye Clinic , Antala Staška, Prague , Czech Republic and
| | - Sabine André
- b Faculty of Veterinary Medicine , Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich , Veterinärstrasse, Munich , Germany
| | - Tomáš Kučera
- a First Faculty of Medicine, Institute of Histology and Embryology, Charles University in Prague , Albertov , Prague , Czech Republic
| | - Karel Smetana
- f First Faculty of Medicine, Institute of Anatomy, Charles University in Prague , U Nemocnice , Prague , Czech Republic
| | - Hans-Joachim Gabius
- b Faculty of Veterinary Medicine , Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich , Veterinärstrasse, Munich , Germany
| |
Collapse
|
63
|
Rodriguez MC, Yegorova S, Pitteloud JP, Chavaroche AE, André S, Ardá A, Minond D, Jiménez-Barbero J, Gabius HJ, Cudic M. Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides. Biochemistry 2015; 54:4462-74. [PMID: 26129647 PMCID: PMC4520625 DOI: 10.1021/acs.biochem.5b00555] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A shift
to short-chain glycans is an observed change in mucin-type
O-glycosylation in premalignant and malignant epithelia. Given the
evidence that human galectin-3 can interact with mucins and also weakly
with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176),
the study of its interaction with MUC1 (glyco)peptides is of biomedical
relevance. Glycosylated MUC1 fragments that carry the TF antigen attached
through either Thr or Ser side chains were synthesized using standard
Fmoc-based automated solid-phase peptide chemistry. The dissociation
constants (Kd) for interaction of galectin-3
and the glycosylated MUC1 fragments measured by isothermal titration
calorimetry decreased up to 10 times in comparison to that of the
free TF disaccharide. No binding was observed for the nonglycosylated
control version of the MUC1 peptide. The most notable feature of the
binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable
enthalpy to an entropy-driven binding process. The comparatively diminished
enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. 1H–15N heteronuclear single-quantum coherence
spectroscopy nuclear magnetic resonance data reveal contact at the
canonical site mainly by the glycan moiety of the MUC1 glycopeptide.
Ligand-dependent differences in binding affinities were also confirmed
by a novel assay for screening of low-affinity glycan–lectin
interactions based on AlphaScreen technology. Another key finding
is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent
manner in cell-based assays revealing selectivity among human galectins.
Thus, the presentation of this tumor-associated carbohydrate ligand
by the natural peptide scaffold enhances its affinity, highlighting
the significance of model studies of human lectins with synthetic
glycopeptides.
Collapse
Affiliation(s)
- Maria C Rodriguez
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Svetlana Yegorova
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jean-Philippe Pitteloud
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Anais E Chavaroche
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Sabine André
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Ana Ardá
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain
| | - Dimitriy Minond
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jesús Jiménez-Barbero
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain.,⊥Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013 Bilbao, Spain
| | - Hans-Joachim Gabius
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Mare Cudic
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
64
|
Bao L, Ding L, Yang M, Ju H. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition. Sci Rep 2015; 5:10947. [PMID: 26046317 PMCID: PMC4456940 DOI: 10.1038/srep10947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022] Open
Abstract
To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracellular ST activity and tracing of sialylation process. The system uses tetramethylrhodamine isothiocyanate labeled asialofetuin (TRITC-AF) as a ST substrate and fluorescein isothiocyanate labeled 3-aminophenylboronic acid (FITC-APBA) as the chemoselective recognition probe of sialylation product, both of which are encapsulated in a liposome vesicle for cellular delivery. The recognition of FITC-APBA to sialylated TRITC-AF leads to the FRET signal that is analyzed by FRET efficiency images. This strategy has been used to evaluate the correlation of ST activity with malignancy and cell surface sialylation, and the sialylation inhibition activity of inhibitors. This work provides a powerful noninvasive tool for glycan biosynthesis mechanism research, cancer diagnostics and drug development.
Collapse
Affiliation(s)
- Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Min Yang
- Department of Pharmaceutical &Biological Chemistry, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
65
|
Gabius HJ, Kaltner H, Kopitz J, André S. The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 2015; 40:360-76. [PMID: 25981696 DOI: 10.1016/j.tibs.2015.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
The profile of cell surface molecules, the biochemical platform for cellular communication, can be likened to a molecular fingerprint. Historically, raising monoclonal antibodies by immunization with cells has been instrumental in obtaining tools suited for phenotyping and functional analysis. Initially for leukocyte antigens, the resulting cluster of differentiation (CD) nomenclature has become a popular system for classification. Glycans presented on proteins or lipids and receptors for carbohydrate structures (lectins) are part of the CD list. Our review presents biochemical and biomedical highlights of the respective CD entries.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany
| |
Collapse
|
66
|
Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci U S A 2015; 112:5585-90. [PMID: 25902539 DOI: 10.1073/pnas.1506220112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms.
Collapse
|
67
|
Ippel H, Miller MC, Berbís MA, Suylen D, André S, Hackeng TM, Cañada FJ, Weber C, Gabius HJ, Jiménez-Barbero J, Mayo KH. (1)H, (13)C, and (15)N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29 kDa human chimera-type galectin-3. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:59-63. [PMID: 24504927 DOI: 10.1007/s12104-014-9545-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Galectin-3, an adhesion/growth regulatory lectin, has a unique trimodular design consisting of the canonical carbohydrate recognition domain, a collagen-like tandem-repeat section, and an N-terminal peptide with two sites for Ser phosphorylation. Structural characterization of the full length protein with its non-lectin part (115 of 250 residues total) will help understand the multi functionality of this potent cellular effector. Here, we report (1)H, (13)C, and (15)N chemical shift assignments as determined by heteronuclear NMR spectroscopy .
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry and CARIM, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Vértesy S, Michalak M, Miller MC, Schnölzer M, André S, Kopitz J, Mayo KH, Gabius HJ. Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence. Protein Eng Des Sel 2015; 28:199-210. [PMID: 25796447 DOI: 10.1093/protein/gzv014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/11/2015] [Indexed: 11/13/2022] Open
Abstract
Lectins translate information encoded in glycan chains of cellular glycoconjugates into bioeffects. The topological presentation of contact sites for cognate sugar binding is a crucial factor toward this end. To dissect the significance of such phylogenetically conserved properties, the design and engineering of non-natural variants are attractive approaches. Here, a homodimeric human lectin, i.e. adhesion/growth-regulatory galectin-1, is converted into a tandem-repeat display by introducing the 33-amino-acid linker of another family member (i.e. galectin-8). The yield of variant was reduced by about a third. This protein had ∼10-fold higher activity in hemagglutination. Nearly complete sequence determination by mass-spectrometric in-source decay and fingerprinting excluded the presence of any modifications. When (1)H-(15)N heteronuclear single-quantum coherence data on the (15)N-labeled variant and wild-type protein were compared, changes in chemical shifts, signal intensities and resonance multiplicities revealed reduction of stability of interfacial contacts between the lectin domains and an increase in inter-domain flexibility. When both binding sites in the variant were loaded with ligand, association of the two carbohydrate recognition domains was enhanced, corroborated by gel filtration. Dynamic changes in the spatial presentation of the two lectin domains in the context of a tandem-repeat display can alter counterreceptor targeting relative to the fixed positions found in the proto-type galectin homodimer.
Collapse
Affiliation(s)
- Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Malwina Michalak
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Martina Schnölzer
- Funktionelle Proteomanalyse, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| | - Jürgen Kopitz
- Abteilung für Angewandte Tumorbiologie, Pathologisches Institut, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Str., Minneapolis, MN 55455, USA
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians Universität, Veterinär-straße 13, 80539 München, Germany
| |
Collapse
|
69
|
Sialic acids: biomarkers in endocrinal cancers. Glycoconj J 2015; 32:79-85. [PMID: 25777812 DOI: 10.1007/s10719-015-9577-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Sialylations are post translational modification of proteins and lipids that play important role in recognition, signaling, immunological response and cell-cell interaction. Improper sialylations due to altered sialyl transferases, sialidases, gene structure and expression, sialic acid metabolism however lead to diseases and thus sialic acids form an important biomarker in disease. In the endocrinal biology such improper sialylations including altered expression of sialylated moieties have been shown to be associated with disorders. Cancer still remains to be the major cause of global death and the cancer of the endocrine organs suffer from the dearth of appropriate markers for disease prediction at the early stage and monitoring. This review is aimed at evaluating the role of sialic acids as markers in endocrinal disorders with special reference to cancer of the endocrine organs. The current study is summarized under the following headings of altered sialylations in endocrinal cancer of the (i) ovary (ii) pancreas (iii) thyroid (iv) adrenal and (v) pituitary gland. Studies in expression of sialic acid in testis cancer are limited. The future scope of this review remains in the targeting of endocrinal cancer by targeting altered sialylation which is a common expression associated with endocrinal cancer.
Collapse
|
70
|
André S, O'Sullivan S, Koller C, Murphy PV, Gabius HJ. Bi- to tetravalent glycoclusters presenting GlcNAc/GalNAc as inhibitors: from plant agglutinins to human macrophage galactose-type lectin (CD301) and galectins. Org Biomol Chem 2015; 13:4190-203. [PMID: 25721929 DOI: 10.1039/c5ob00048c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging insights into the functional spectrum of tissue lectins leads to identification of new targets for the custom-made design of potent inhibitors, providing a challenge for synthetic chemistry. The affinity and selectivity of a carbohydrate ligand for a lectin may immensely be increased by a number of approaches, which includes varying geometrical or topological features. This perspective leads to the design and synthesis of glycoclusters and their testing using assays of physiological relevance. Herein, hydroquinone, resorcinol, benzene-1,3,5-triol and tetra(4-hydroxyphenyl)ethene have been employed as scaffolds and propargyl derivatives obtained. The triazole-containing linker to the α/β-O/S-glycosides of GlcNAc/GalNAc presented on these scaffolds was generated by copper-catalysed azide-alkyne cycloaddition. This strategy was used to give a panel of nine glycoclusters with bi-, tri- and tetravalency. Maintained activity for lectin binding after conjugation was ascertained for both sugars in solid-phase assays with the plant agglutinins WGA (GlcNAc) and DBA (GalNAc). Absence of cross-reactivity excluded any carbohydrate-independent reactivity of the bivalent compounds, allowing us to proceed to further testing with a biomedically relevant lectin specific for GalNAc. Macrophage galactose(-binding C)-type lectin, involved in immune defence by dendritic cells and in virus uptake, was produced as a soluble protein without/with its α-helical coiled-coil stalk region. Binding to ligands presented on a matrix and on cell surfaces was highly susceptible to the presence of the tetravalent inhibitor derived from the tetraphenylethene-containing scaffold, and presentation of GalNAc with an α-thioglycosidic linkage proved favorable. Cross-reactivity of this glycocluster to human galectins-3 and -4, which interact with Tn-antigen-presenting mucins, was rather small. Evidently, the valency and spatial display of α-GalNAc residues is a key factor to design potent and selective inhibitors for this lectin.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
71
|
Rapoport EM, Matveeva VK, Kaltner H, André S, Vokhmyanina OA, Pazynina GV, Severov VV, Ryzhov IM, Korchagina EY, Belyanchikov IM, Gabius HJ, Bovin NV. Comparative lectinology: Delineating glycan-specificity profiles of the chicken galectins using neoglycoconjugates in a cell assay. Glycobiology 2015; 25:726-34. [PMID: 25681326 DOI: 10.1093/glycob/cwv012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
A major aspect of carbohydrate-dependent galectin functionality is their cross-linking capacity. Using a cell surface as biorelevant platform for galectin binding and a panel of 40 glycans as sensor part of a fluorescent polyacrylamide neoglycopolymer for profiling galectin reactivity, properties of related proteins can be comparatively analyzed. The group of the chicken galectins (CGs) is an especially suited system toward this end due to its relatively small size, compared with mammalian galectins. The experiments reveal particularly strong reactivity toward N-acetyllactosamine repeats for all tested CGs and shared reactivity of CG-1A and CG-2 to histo-blood group ABH determinants. In cross-species comparison, CG-1B's properties closely resembled those of human galectin-1, as was the case for the galectin-2 (but not galectin-3) ortholog pair. Although binding-site architectures are rather similar, reactivity patterns can well differ.
Collapse
Affiliation(s)
- Eugenia M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Varvara K Matveeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Olga A Vokhmyanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Galina V Pazynina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Vyacheslav V Severov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Ivan M Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Elena Yu Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Ivan M Belyanchikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| | - Hans-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, Munich 80539, Germany
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, ul. Miklukho-Maklaya16/10, Moscow, Russia
| |
Collapse
|
72
|
Flores-Ibarra A, Ruiz FM, Vértesy S, André S, Gabius HJ, Romero A. Preliminary X-ray crystallographic analysis of an engineered variant of human chimera-type galectin-3 with a shortened N-terminal domain. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:184-8. [PMID: 25664793 DOI: 10.1107/s2053230x15000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/01/2015] [Indexed: 11/10/2022]
Abstract
How lectins translate sugar-encoded information into cellular effects not only depends on glycan recognition. Other domains of the protein can contribute to the functional profile of a lectin. Human galectin-3 (Gal-3), an adhesion/growth-regulatory galectin, is composed of three different domains and is thus called a chimera-type protein. In addition to the carbohydrate-recognition domain, this lectin encompasses an N-terminal domain consisting of a peptide harbouring two phosphorylation sites and nine non-triple-helical collagen-like repeats. This region plays an as yet structurally undefined role in Gal-3 aggregation and ligand recognition. To date, crystallization of full-length Gal-3 has not been achieved. With the aim of providing structural insights into this modular organization, a Gal-3 variant was crystallized maintaining the terminal peptide and three of the nine collagen-like repeats. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 94.04, b = 97.96, c = 236.20 Å, and diffracted to a resolution of 3.3 Å.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Federico M Ruiz
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 München, Germany
| | - Antonio Romero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
73
|
Büll C, Boltje TJ, van Dinther EAW, Peters T, de Graaf AMA, Leusen JHW, Kreutz M, Figdor CG, den Brok MH, Adema GJ. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS NANO 2015; 9:733-45. [PMID: 25575241 DOI: 10.1021/nn5061964] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sialic acid sugars are overexpressed by cancer cells and contribute to the metastatic cascade at multiple levels. Therapeutic interference of sialic acids, however, has been difficult to pursue because of the absence of dedicated tools. Here we show that a rationally designed sialic acid-blocking glycomimetic (P-3F(ax)-Neu5Ac) successfully prevents cancer metastasis. Formulation of P-3F(ax)--Neu5Ac into poly(lactic-co-glycolic acid nanoparticles coated with antityrosinase-related protein-1 antibodies allowed targeted delivery of P-3F(ax)--Neu5Ac into melanoma cells, slow release, and long-term sialic acid blockade. Most importantly, intravenous injections of melanoma-targeting P-3F(ax)--Neu5Ac nanoparticles prevented metastasis formation in a murine lung metastasis model. These findings stress the importance of sialoglycans in cancer metastasis and advocate that sialic acid blockade using rationally designed glycomimetics targeted to cancer cells can effectively prevent cancer metastases. This targeting strategy to interfere with sialic acid-dependent processes is broadly applicable not only for different types of cancer but also in infection and inflammation.
Collapse
Affiliation(s)
- Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lectins: getting familiar with translators of the sugar code. Molecules 2015; 20:1788-823. [PMID: 25621423 PMCID: PMC6272290 DOI: 10.3390/molecules20021788] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022] Open
Abstract
The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these “code words” can be “read” (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry.
Collapse
|
75
|
Thio- and selenoglycosides as ligands for biomedically relevant lectins: valency-activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg Med Chem Lett 2014; 25:931-5. [PMID: 25599835 DOI: 10.1016/j.bmcl.2014.12.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/26/2023]
Abstract
Substitution of the oxygen atom in the glycosidic linkage by a disulfide bond or by selenium makes the resulting glycoside resistant to hydrolysis. To clarify the consequences for affinity to lectins we prepared benzene-based mono- to trivalent dithiogalactosides. Inhibitory capacity increased with valency for a plant toxin, the synthetic compounds potently blocking its binding to a lactose-presenting matrix and to cells. Human galectins were much less sensitive to the disulfides than the toxin. This differential response constitutes a beneficial effect to avoid cross-reactivity in vivo. Symmetrical selenodigalactoside and diselenodigalactoside were prepared and similarly tested. Both compounds proved rather equally bioactive for the toxin, graded activity was measured for human galectins. This result directs attention to further studies to relate Se-dependent alterations in bond angle and length as well as van der Waals radius to binding properties of selenoglycosides to biomedically relevant lectins.
Collapse
|
76
|
Rauthu SR, Shiao TC, André S, Miller MC, Madej É, Mayo KH, Gabius HJ, Roy R. Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem 2014; 16:126-39. [DOI: 10.1002/cbic.201402474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 12/28/2022]
|
77
|
Marcelo F, Garcia-Martin F, Matsushita T, Sardinha J, Coelho H, Oude-Vrielink A, Koller C, André S, Cabrita EJ, Gabius HJ, Nishimura SI, Jiménez-Barbero J, Cañada FJ. Delineating Binding Modes of Gal/GalNAc and Structural Elements of the Molecular Recognition of Tumor-Associated Mucin Glycopeptides by the Human Macrophage Galactose-Type Lectin. Chemistry 2014; 20:16147-55. [DOI: 10.1002/chem.201404566] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 01/05/2023]
|
78
|
Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 2014; 142:373-88. [DOI: 10.1007/s00418-014-1234-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
|
79
|
Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ. Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie 2014; 104:90-9. [PMID: 24909114 DOI: 10.1016/j.biochi.2014.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
Abstract
Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin.
Collapse
Affiliation(s)
- Jürgen Kopitz
- Abteilung für Angewandte Tumorbiologie, Zentrum Pathologie, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany.
| | - Sabine Vértesy
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 München, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 München, Germany
| | - Sabine Fiedler
- Funktionelle Proteomanalyse, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- Funktionelle Proteomanalyse, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 München, Germany
| |
Collapse
|
80
|
Canales Á, Mallagaray Á, Berbís MÁ, Navarro-Vázquez A, Domínguez G, Cañada FJ, André S, Gabius HJ, Pérez-Castells J, Jiménez-Barbero J. Lanthanide-Chelating Carbohydrate Conjugates Are Useful Tools To Characterize Carbohydrate Conformation in Solution and Sensitive Sensors to Detect Carbohydrate–Protein Interactions. J Am Chem Soc 2014; 136:8011-7. [DOI: 10.1021/ja502406x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ángeles Canales
- Department
of Química Orgánica I, Fac. C.C. Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n 28040, Madrid, Spain
| | - Álvaro Mallagaray
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - M. Álvaro Berbís
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Armando Navarro-Vázquez
- Department
of Química Orgánica, Universidade de Vigo, Campus Universitario
Vigo, 36310, Pontevedra, Spain
| | - Gema Domínguez
- Faculty
of De Farmacia, Department of Química, Universidad CEU San Pablo, Urb. Montepríncipe, ctra. Boadilla del Monte, 28668, Madrid, Spain
| | - F. Javier Cañada
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539, Munich, Germany
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539, Munich, Germany
| | - Javier Pérez-Castells
- Faculty
of De Farmacia, Department of Química, Universidad CEU San Pablo, Urb. Montepríncipe, ctra. Boadilla del Monte, 28668, Madrid, Spain
| | - Jesús Jiménez-Barbero
- Department
of De Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| |
Collapse
|
81
|
Mifková A, Kodet O, Szabo P, Kučera J, Dvořánková B, André S, Koripelly G, Gabius HJ, Lehn JM, Smetana K. Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem 2014; 15:1465-70. [PMID: 24867251 DOI: 10.1002/cbic.201402087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a role in the progression of malignant tumors. They are formed by conversion of fibroblasts to smooth muscle α-actin-positive (SMA-positive) myofibroblasts. Polyamines are known to change the arrangement of the actin cytoskeleton by binding to the anionic actin. We tested the effect of the synthetic polyamine BPA-C8 on the transition of human dermal fibroblasts to myofibroblasts induced either by TGF-β1 alone or by TGF-β1 together with adhesion/growth-regulatory galectin-1. Pre-existing CAFs, myofibroblasts from pancreatitis, and rat smooth muscle cells were also exposed to BPA-C8. BPA-C8 impaired myofibroblast formation from activated fibroblasts, but it had no effect on cells already expressing SMA. BPA-C8 also reduced the occurrence of an extracellular matrix around the activated fibroblasts. The reported data thus extend current insights into polyamine activity, adding interference with tumor progression to the tumor-promoting processes warranting study.
Collapse
Affiliation(s)
- Alžběta Mifková
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00 Prague (Czech Republic); Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1st Faculty of Medicine, V Úvalu 5, 150 00 Prague (Czech Republic)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Duray A, De Maesschalck T, Decaestecker C, Remmelink M, Chantrain G, Neiveyans J, Horoi M, Leroy X, Gabius HJ, Saussez S. Galectin fingerprinting in naso-sinusal diseases. Oncol Rep 2014; 32:23-32. [PMID: 24859692 PMCID: PMC4067427 DOI: 10.3892/or.2014.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022] Open
Abstract
Galectins, a family of endogenous lectins, are multifunctional effectors that act at various sites and can be used in immunohistochemical localization studies of diseased states. Since they form a potentially cooperative and antagonistic network, we tested the hypothesis that histopathological fingerprinting of galectins could refine the molecular understanding of naso-sinusal pathologies. Using non-cross-reactive antibodies against galectin-1, -3, -4, -7, -8 and -9, we characterized the galectin profiles in chronic rhinosinusitis, nasal polyposis, inverted papillomas and squamous cell carcinomas. The expression, signal location and quantitative parameters describing the percentage of positive cells and labeling intensity were assessed for various cases. We discovered that inverted papillomas showed a distinct galectin immunohistochemical profile. Indeed, epithelial overexpression of galectin-3 (P=0.0002), galectin-4 (P<10−6), galectin-7 (P<10−6) and galectin-9 (P<10−6) was observed in inverted papillomas compared to non-malignant diseases. Regarding carcinomas, we observed increased expression of galectin-9 (P<10−6) in epithelial cells compared to non-tumor pathologies. Our results suggest that galectin-3, -4, -7 and -9 could be involved in the biology of inverted papillomas. In addition, we observed that the expression of galectin in naso-sinusal diseases seems to be affected by tumor progression and not inflammatory or allergic phenomena.
Collapse
Affiliation(s)
- Anaëlle Duray
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Thibault De Maesschalck
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- Laboratory of Image, Signal Processing and Acoustics (LISA), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Chantrain
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Jennifer Neiveyans
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Mihaela Horoi
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Leroy
- Department of Pathology, Faculty of Medicine, Hôpital Claude Huriez and Centre de Biologie-Pathologie, CHRU, Lille, France
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sven Saussez
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
83
|
Abstract
Over four decades ago, specific tumor characteristics were ascribed to the increased expression of sialic acid sugars on the surface of cancer cells, and this led to the definition of sialic acids as potential therapeutic targets. Recent advances in glycobiology and cancer research have defined the key processes underlying aberrant expression of sialic acids in cancer, and its consequences, more precisely. These consequences include effects on tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. Collectively, these novel insights provide further rationale for the design and development of therapeutic approaches that interfere with excessively high expression of sialic acids in cancer cells. Strategies to target aberrant sialylation in cancer, however, have evolved comparatively slowly. Here, we review recent findings that emphasize the detrimental effects of hypersialylation on multiple aspects of tumor growth and behavior. We also discuss novel therapeutic strategies.
Collapse
Affiliation(s)
- Christian Büll
- Authors' Affiliation: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marieke A Stoel
- Authors' Affiliation: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn H den Brok
- Authors' Affiliation: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Authors' Affiliation: Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
84
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
85
|
Ruiz FM, Scholz BA, Buzamet E, Kopitz J, André S, Menéndez M, Romero A, Solís D, Gabius HJ. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells. FEBS J 2014; 281:1446-1464. [DOI: 10.1111/febs.12716] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Federico M. Ruiz
- Departamento de Biología Físico-Química; Centro de Investigaciones Biológicas; Madrid Spain
| | - Barbara A. Scholz
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| | - Eliza Buzamet
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Jürgen Kopitz
- Abteilung Angewandte Tumorbiologie; Universitätsklinikum Heidelberg; Germany
| | - Sabine André
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| | - Margarita Menéndez
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Antonio Romero
- Departamento de Biología Físico-Química; Centro de Investigaciones Biológicas; Madrid Spain
| | - Dolores Solís
- Departamento de Química-Física Biológica; Instituto de Química Física Rocasolano; CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Germany
| |
Collapse
|
86
|
Gabius HJ, Kayser K. Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol 2014; 9:4. [PMID: 24443956 PMCID: PMC4029355 DOI: 10.1186/1746-1596-9-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 01/13/2023] Open
Abstract
Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1670639891114983. Analyzing the flow of biological information is a fundamental challenge for basic sciences. The emerging results will then lend themselves to the development of new approaches for medical applications. Toward this end, the products of protein/lipid glycosylation deserve special attention. The covalent attachment of sugars to these carriers means much more than just a change of the carriers’ physicochemical properties. In principle, the ubiquitous presence of glycoconjugates and the close inspection of the particular structural ‘talents’ of carbohydrates provide suggestive evidence for information coding by sugars. In fact, the theoretical number of ‘words’ (oligomers) formed by ‘letters’ (monosaccharides) is by far higher than by using nucleotides or amino acids. In other words, glycans harbor an unsurpassed coding capacity. The cyto- and histochemical detection of dynamic changes in the profile of cellular glycans (glycome, the equivalent of the proteome) by sugar receptors such as antibodies used as tools underscores the suitability of carbohydrates for such a task. The resulting staining patterns can be likened to a molecular fingerprint. By acting as ligand (counterreceptor) for endogenous receptors (tissue lectins), glycan epitopes become partners in a specific recognition pair, and the sugar-encoded information can then be translated into effects, e.g. in growth regulation. Of note, expression of both sides of such a pair, i.e. lectin and cognate glycan, can physiologically be orchestrated for optimal efficiency. Indeed, examples how to prevent autoimmune diseases by regulatory T cells and restrict carcinoma growth by a tumor suppressor attest occurrence of co-regulation. In consequence, these glycans have potential to establish a new class of functional biomarkers, and mapping presence of their receptors is warranted. In this review, the cyto- and histochemical methods, which contribute to explore information storage and transfer within the sugar code, are described. This introduction to the toolbox is flanked by illustrating the application of each type of tool in histopathology, with focus on adhesion/growth-regulating galectins. Together with an introduction to fundamental principles of the sugar code, the review is designed to guide into this field and to inspire respective research efforts.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr 13, D-80539, Munich, Germany.
| | | |
Collapse
|
87
|
André S, Wang GN, Gabius HJ, Murphy PV. Combining glycocluster synthesis with protein engineering: an approach to probe into the significance of linker length in a tandem-repeat-type lectin (galectin-4). Carbohydr Res 2014; 389:25-38. [PMID: 24698724 DOI: 10.1016/j.carres.2013.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 11/24/2022]
Abstract
Complementarity in lectin-glycan interactions in situ is assumed to involve spatial features in both the lectin and the glycan, giving a functional meaning to structural aspects of the lectin beyond its carbohydrate-binding site. In combining protein engineering with glycocluster synthesis, it is shown that the natural linker length of a tandem-repeat-type human lectin (galectin-4) determines binding properties in two binding assays (using surface-presented glycoprotein and cell surface assays). The types of glycocluster tested included bivalent lactosides based on tertiary amides of terephthalic, isophthalic, 2,6-naphthalic and oxalic acids as well as bivalent H(type 2) trisaccharides grafted on secondary/tertiary terephthalamides and two triazole-linker-containing cores. The presented data reveal a marked change in susceptibility to the test compounds when turning the tandem-repeat-type to a proto-type-like display. The testing of glycoclusters is suggested as a general strategy to help to delineate the significance of distinct structural features of lectins beyond their contact sites to the glycan.
Collapse
Affiliation(s)
- Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Guan-Nan Wang
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
88
|
André S, Singh T, Lacal JC, Smetana K, Gabius HJ. Rho GTPase Rac1: molecular switch within the galectin network and for N-glycan α2,6-sialylation/O-glycan core 1 sialylation in colon cancer in vitro. Folia Biol (Praha) 2014; 60:95-107. [PMID: 25056432 DOI: 10.14712/fb2014060030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Rho GTPase Rac1 is a multifunctional protein working through different effector pathways. The emerging physiological significance of glycanlectin recognition gives reason to testing the possibility for an influence of modulation of Rac1 expression on these molecular aspects. Using human colon adenocarcinoma (SW620) cells genetically engineered for its up- and down-regulation (Rac1+ and Rac1- cells) along with wild-type and mock-transfected control cells, the questions are addressed whether the presence of adhesion/growth-regulatory galectins and distinct aspects of cell surface glycosylation are affected. Proceeding from RT-PCR data to Western blotting after two-dimensional gel electrophoresis and flow cytofluorimetry with non-crossreactive antibodies against six members of this lectin family (i.e. galectins-1, -3, -4, -7, -8 and -9), a reduced extent of the presence of galectins-1, -7 and -9 was revealed in the case of Rac1 cells. Application of these six galectins as probes to determination of cell reactivity for human lectins yielded relative increases in surface labelling of Rac1- cells with galectins-1, -3 and -7. Examining distinct aspects of cell surface glycosylation with a panel of 14 plant/fungal lectins disclosed a decrease in α2,6-sialylation of N-glycans and an increase in PNA-reactive sites (i.e. non-sialylated core 1 O-glycans), two alterations known to favour reactivity for galectins-1 and -3. Thus, manipulation of Rac1 expression selectively affects the expression pattern within the galectin network at the level of proteins and distinct aspects of cell surface glycosylation.
Collapse
Affiliation(s)
- S André
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| | - T Singh
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| | - J C Lacal
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | - K Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - H-J Gabius
- Ludwig-Maximilians-University Munich, Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Munich, Germany
| |
Collapse
|
89
|
Fík Z, Dvořánková B, Kodet O, Bouček J, Betka JA, Betka J, André S, Gabius HJ, Šnajdr P, Smetana K, Chovanec M. Towards dissecting molecular routes of intercellular communication in the tumour microenvironment: phenotypic plasticity of stem cell-associated markers in co-culture (carcinoma cell/fibroblast) systems. Folia Biol (Praha) 2014; 60:205-12. [PMID: 25863037 DOI: 10.14712/fb2014060050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Increasing evidence attributes tumour fates to a small population of cells (cancer stem cells) capable of surviving therapeutic interventions. Investigation of their characteristics, especially in cross-talk with other cell types of the tumour microenvironment, can pave the way to innovative therapeutic concepts. The central issue of this study was to evaluate the impact of stroma on tumour cells with stem cell-like features in a squamous cell carcinoma model (FaDu). Six different types of experimental conditions were tested using distinct compositions of the culture system, and both morphologic and molecular features of the tumour cells were analysed. In detail, FaDu cells alone were used as a control, compared to tumour cells from co-culture, with squamous cell cancer-derived stromal fibroblasts or normal skin human fibroblasts, both in the direct and indirect (insert) systems, adding analysis of side population cells of FaDu culture. Measurements were taken on days 2, 7 and 9 of culture and immediately after preparation in the case of the side population. A panel of antibodies against keratins 8, 10, 19, stem cell markers CD29, CD44, CD133, as well as biotinylated adhesion/growth-regulatory galectin 1 served as a toolbox for phenotypic characterization. Co-culture with fibroblasts prepared from tumour stroma and with dermal fibroblasts affected marker presentation, maintaining an undifferentiated stage phenotypically related to stem cells. Side-population cells showed close relationship to cancer stem cells in these characteristics. In conclusion, normal and tumour stromal fibroblasts are capable of shifting the marker expression profile of FaDu cells to a stem cell-like phenotypic pattern in co-culture.
Collapse
Affiliation(s)
- Z Fík
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - B Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - O Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - J Bouček
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine and University Hospital Motol, Charles University in Prague, Czech Republic
| | - J A Betka
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine and University Hospital Motol, Charles University in Prague, Czech Republic
| | - J Betka
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine and University Hospital Motol, Charles University in Prague, Czech Republic
| | - S André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - P Šnajdr
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - K Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - M Chovanec
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
90
|
Kübler D, Seidler J, André S, Kumar S, Schwartz-Albiez R, Lehmann WD, Gabius HJ. Phosphorylation of multifunctional galectins by protein kinases CK1, CK2, and PKA. Anal Biochem 2013; 449:109-17. [PMID: 24333252 DOI: 10.1016/j.ab.2013.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
Phosphorylation is known to have a strong impact on protein functions. We analyzed members of the lectin family of multifunctional galectins as targets of the protein kinases CK1, CK2, and PKA. Galectins are potent growth regulators able to bind both glycan and peptide motifs at intra- and extracellular sites. Performing in vitro kinase assays, galectin phosphorylation was detected by phosphoprotein staining and autoradiography. The insertion of phosphoryl groups varied to a large extent depending on the type of kinase applied and the respective galectin substrate. Sites of phosphorylation observed in the recombinant galectins were determined by a strategic combination of phosphopeptide enrichment and nano-ultra-performance liquid chromatography tandem mass spectrometry (nanoUPLC-MS/MS). By in silico modeling, phosphorylation sites were visualized three-dimensionally. Our results reveal galectin-type-specific Ser-/Thr-dependent phosphorylation beyond the known example of galectin-3. These data are the basis for functional studies and also illustrate the analytical sensitivity of the applied methods for further work on human lectins.
Collapse
Affiliation(s)
- Dieter Kübler
- Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, 80539 Munich, Germany
| | - Sonu Kumar
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | - Wolf-Dieter Lehmann
- Core Facility Molecular Structural Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, 80539 Munich, Germany
| |
Collapse
|
91
|
Canales A, Mallagaray A, Pérez-Castells J, Boos I, Unverzagt C, André S, Gabius HJ, Cañada FJ, Jiménez-Barbero J. Breaking Pseudo-Symmetry in Multiantennary Complex N-Glycans Using Lanthanide-Binding Tags and NMR Pseudo-Contact Shifts. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
92
|
Canales A, Mallagaray A, Pérez-Castells J, Boos I, Unverzagt C, André S, Gabius HJ, Cañada FJ, Jiménez-Barbero J. Breaking Pseudo-Symmetry in Multiantennary Complex N-Glycans Using Lanthanide-Binding Tags and NMR Pseudo-Contact Shifts. Angew Chem Int Ed Engl 2013; 52:13789-93. [DOI: 10.1002/anie.201307845] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 01/24/2023]
|
93
|
Ishihara T, Kakiya K, Takahashi K, Miwa H, Rokushima M, Yoshinaga T, Tanaka Y, Ito T, Togame H, Takemoto H, Amano M, Iwasaki N, Minami A, Nishimura SI. Discovery of novel differentiation markers in the early stage of chondrogenesis by glycoform-focused reverse proteomics and genomics. Biochim Biophys Acta Gen Subj 2013; 1840:645-55. [PMID: 24161698 DOI: 10.1016/j.bbagen.2013.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. METHODS To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. RESULTS Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. CONCLUSION The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. GENERAL SIGNIFICANCE These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents.
Collapse
Affiliation(s)
- Takeshi Ishihara
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co. Ltd., Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Toegel S, Bieder D, André S, Altmann F, Walzer SM, Kaltner H, Hofstaetter JG, Windhager R, Gabius HJ. Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Res Ther 2013; 15:R147. [PMID: 24289744 PMCID: PMC3978707 DOI: 10.1186/ar4330] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to characterize the glycophenotype of osteoarthritic cartilage and human chondrocytes. METHODS Articular knee cartilage was obtained from nine osteoarthritis (OA) patients. mRNA levels for 27 glycosyltransferases were analyzed in OA chondrocytes using RT-qPCR. Additionally, N- and O-glycans were quantified using mass-spectrometry. Histologically, two cartilage areas with Mankin scores (MS) either ≤ 4 or ≥ 9 were selected from each patient representing areas of mild and severe OA, respectively. Tissue sections were stained with (1) a selected panel of plant lectins for probing into the OA glycophenotype, (2) the human lectins galectins-1 and -3, and (3) the glycoprotein asialofetuin (ASF) for visualizing β-galactoside-specific endogenous lectins. RESULTS We found that OA chondrocytes expressed oligomannosidic structures as well as non-, mono- and disialylated complex-type N-glycans, and core 2 O-glycans. Reflecting B4GALNT3 mRNA presence in OA chondrocytes, LacdiNAc-terminated structures were detected. Staining profiles for plant and human lectins were dependent on the grade of cartilage degeneration, and ASF-positive cells were observed in significantly higher rates in areas of severe degeneration. CONCLUSIONS In summary, distinct aspects of the glycome in OA cartilage are altered with progressing degeneration. In particular, the alterations measured by galectin-3 and the pan-galectin sensor ASF encourage detailed studies of galectin functionality in OA.
Collapse
|
95
|
Knirel YA, Gabius HJ, Blixt O, Rapoport EM, Khasbiullina NR, Shilova NV, Bovin NV. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides. Glycoconj J 2013; 31:7-12. [DOI: 10.1007/s10719-013-9497-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/10/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022]
|
96
|
Conformational Selection in Glycomimetics: Human Galectin-1 Only Recognizessyn-Ψ-Type Conformations of β-1,3-Linked Lactose and ItsC-Glycosyl Derivative. Chemistry 2013; 19:14581-90. [DOI: 10.1002/chem.201301244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/24/2013] [Indexed: 01/09/2023]
|
97
|
Büll C, Boltje TJ, Wassink M, de Graaf AMA, van Delft FL, den Brok MH, Adema GJ. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther 2013; 12:1935-46. [PMID: 23974695 DOI: 10.1158/1535-7163.mct-13-0279] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells decorate their surface with a dense layer of sialylated glycans by upregulating the expression of sialyltransferases and other glycogenes. Although sialic acids play a vital role in many biologic processes, hypersialylation in particular has been shown to contribute to cancer cell progression and metastasis. Accordingly, selective strategies to interfere with sialic acid synthesis might offer a powerful approach in cancer therapy. In the present study, we assessed the potential of a recently developed fluorinated sialic acid analogue (P-3F(ax)-Neu5Ac) to block the synthesis of sialoglycans in murine melanoma cells and the consequences on cell adhesion, migration, and in vivo growth. The results showed that P-3F(ax)-Neu5Ac readily caused depletion of α2,3-/α2,6-linked sialic acids in B16F10 cells for several days. Long-term inhibition of sialylation for 28 days was feasible without affecting cell viability or proliferation. Moreover, P-3F(ax)-Neu5Ac proved to be a highly potent inhibitor of sialylation even at high concentrations of competing sialyltransferase substrates. P-3F(ax)-Neu5Ac-treated cancer cells exhibited impaired binding to poly-l-lysine, type I collagen, and fibronectin and diminished migratory capacity. Finally, blocking sialylation of B16F10 tumor cells with this novel sialic acid analogue reduced their growth in vivo. These results indicate that P-3F(ax)-Neu5Ac is a powerful glycomimetic capable of inhibiting aberrant sialylation that can potentially be used for anticancer therapy.
Collapse
Affiliation(s)
- Christian Büll
- Corresponding Author: Gosse J. Adema, 278 Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre P.O. Box 9101, Nijmegen 6500 HB, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
98
|
Ruiz FM, Fernández IS, López-Merino L, Lagartera L, Kaltner H, Menéndez M, André S, Solís D, Gabius HJ, Romero A. Fine-tuning of prototype chicken galectins: structure of CG-2 and structure-activity correlations. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1665-76. [PMID: 23999290 DOI: 10.1107/s0907444913011773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/30/2013] [Indexed: 11/11/2022]
Abstract
The comparatively small number of members of the family of adhesion/growth-regulatory galectins in chicken predestines this system as an attractive model to study the divergence of these lectins after gene duplication. Expression profiling of the three homodimeric (prototype) chicken galectins (CG-1A, CG-1B and CG-2) has raised evidence of distinct functionalities, explaining the interest in a detailed crystallographic analysis of CG-2. As revealed here, marked differences are found in the ligand-binding site and in the contact pattern within the homodimer interface, underlying a characteristic orientation of the two subunits. Notably, a distinctive trimer of dimers that is unique in all galectin crystal structures reported to date forms the core unit of the crystallographic assembly. Combination with spectroscopic and thermodynamic measurements, and comparisons with CG-1A and CG-1B, identify differential changes in the circular-dichroism spectra in the presence of lactose, reflecting the far-reaching impact of the ligand on hydrodynamic behaviour, and inter-galectin differences in both the entropy and the enthalpy of binding. This structural information is a salient step to complete the analysis of the full set of galectins from this model organism.
Collapse
Affiliation(s)
- Federico M Ruiz
- Departamento de Biología Físico-Química, Centro de Investigaciones Biológicas - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kaltner H, Raschta AS, Manning JC, Gabius HJ. Copy-number variation of functional galectin genes: studying animal galectin-7 (p53-induced gene 1 in man) and tandem-repeat-type galectins-4 and -9. Glycobiology 2013; 23:1152-63. [PMID: 23840039 DOI: 10.1093/glycob/cwt052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Galectins are potent adhesion/growth-regulatory effectors with characteristic expression profiles. Understanding the molecular basis of gene regulation in each case requires detailed information on copy number of genes and sequence(s) of their promoter(s). Our report reveals plasticity in this respect between galectins and species. We here describe occurrence of a two-gene constellation for human galectin (Gal)-7 and define current extent of promoter-sequence divergence. Interestingly, cross-species genome analyses also detected single-copy display. Because the regulatory potential will then be different, extrapolations of expression profiles are precluded between respective species pairs. Gal-4 coding in chromosomal vicinity was found to be confined to one gene, whereas copy-number variation also applied to Gal-9. The example of rat Gal-9 teaches the lesson that the presence of multiple bands in Southern blotting despite a single-copy gene constellation is attributable to two pseudogenes. The documented copy-number variability should thus be taken into consideration when studying regulation of galectin genes, in a species and in comparison between species.
Collapse
Affiliation(s)
- Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany
| | | | | | | |
Collapse
|
100
|
Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 2013; 135:9055-77. [PMID: 23692629 DOI: 10.1021/ja403323y] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|