51
|
Choi BK, Kim SH, Kim YH, Kwon BS. Cancer immunotherapy using tumor antigen-reactive T cells. Immunotherapy 2018; 10:235-245. [DOI: 10.2217/imt-2017-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies over the last 30 years have shown the promise of cancer immunotherapy using T cells. In particular, since the report by Rosenberg and colleagues in 2002 that adoptive T-cell therapy (ACT) under lymphopenic conditions substantially increased response rates in melanoma patients, ACT has become a promising immunotherapeutic route to cancer treatment. Here we provide a brief history of ACT and review the characteristics of T-cell therapeutics that are specific to this approach. Since every T-cell treatment has its own unique properties in terms of number and type of target antigens, and number of epitopes and type of T cells, we review the main strategies for designing ACT: how Ag specificity is determined, how is it standardized and the need for lymphodepletion to induce epitope spreading. We also briefly consider the next generation of ACT.
Collapse
Affiliation(s)
- Beom K. Choi
- Biomedicine Production Branch, National Cancer Center, Goyang, Korea
| | - Seon-Hee Kim
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Korea 10408
| | - Young H. Kim
- Biomedicine Production Branch, National Cancer Center, Goyang, Korea
- Eutilex, Suite 1401 Daeryung Technotown 17, Gasan Digital 1-ro 25, Geumcheon-gu, Seoul, Korea 08594
| | - Byoung S. Kwon
- Eutilex, Suite 1401 Daeryung Technotown 17, Gasan Digital 1-ro 25, Geumcheon-gu, Seoul, Korea 08594
| |
Collapse
|
52
|
Xu XJ, Song DG, Poussin M, Ye Q, Sharma P, Rodríguez-García A, Tang YM, Powell DJ. Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function ex vivo and in vivo. Oncotarget 2018; 7:82354-82368. [PMID: 27409425 PMCID: PMC5347696 DOI: 10.18632/oncotarget.10510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/22/2016] [Indexed: 11/25/2022] Open
Abstract
Exogenous cytokines are widely applied to enhance the anti-tumor ability of immune cells. However, systematic comparative studies of their effects on chimeric antigen receptor (CAR)-engineered T (CART) cells are lacking. In this study, CART cells targeting folate receptor-alpha were generated and expanded ex vivo in the presence of different cytokines (IL-2, IL-7, IL-15, IL-18, and IL-21), and their expansion, phenotype and cytotoxic capacity were evaluated, in vitro and in vivo. Moreover, the effect of the administration of these cytokines along with CART cells in vivo was also studied. IL-2, IL-7, and IL-15 favored the ex vivo expansion of CART cells compared to other cytokines or no cytokine treatment. IL-7 induced the highest proportion of memory stem cell-like CART cells in the final product, and IL-21 supported the expansion of CART cells with a younger phenotype, while IL-2 induced more differentiated CART cells. IL-2 and IL-15-exposed CART cells secreted more proinflammatory cytokines and presented stronger tumor-lysis ability in vitro. However, when tested in vivo, CART cells exposed to IL-2 ex vivo showed the least anti-tumor effect. In contrast, the administration of IL-15 and IL-21 in combination with CART cells in vivo increased their tumor killing capacity. According to our results, IL-7 and IL-15 show promise to promote ex vivo expansion of CART cells, while IL-15 and IL-21 seem better suited for in vivo administration after CART cell infusion. Collectively, these results may have a profound impact on the efficacy of CART cells in both hematologic and solid cancers.
Collapse
Affiliation(s)
- Xiao-Jun Xu
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Hematology Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qunrui Ye
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prannda Sharma
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alba Rodríguez-García
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong-Min Tang
- Department of Hematology Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
53
|
Piscopo NJ, Mueller KP, Das A, Hematti P, Murphy WL, Palecek SP, Capitini CM, Saha K. Bioengineering Solutions for Manufacturing Challenges in CAR T Cells. Biotechnol J 2018; 13:10.1002/biot.201700095. [PMID: 28840981 PMCID: PMC5796845 DOI: 10.1002/biot.201700095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed "living drugs" for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control.
Collapse
Affiliation(s)
- Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Amritava Das
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Christian M Capitini
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
54
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
55
|
De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, Kerre T, Abken H, Vandekerckhove B. Nanobody Based Dual Specific CARs. Int J Mol Sci 2018; 19:ijms19020403. [PMID: 29385713 PMCID: PMC5855625 DOI: 10.3390/ijms19020403] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.
Collapse
MESH Headings
- Humans
- Jurkat Cells
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Transduction, Genetic
Collapse
Affiliation(s)
- Stijn De Munter
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Joline Ingels
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Sarah Bonte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Melissa Pille
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Departement of Internal Medicine, University of Cologne, 50923 Cologne, Germany.
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
56
|
He S, Liu Y, Meng L, Sun H, Wang Y, Ji Y, Purushe J, Chen P, Li C, Madzo J, Issa JP, Soboloff J, Reshef R, Moore B, Gattinoni L, Zhang Y. Ezh2 phosphorylation state determines its capacity to maintain CD8 + T memory precursors for antitumor immunity. Nat Commun 2017; 8:2125. [PMID: 29242551 PMCID: PMC5730609 DOI: 10.1038/s41467-017-02187-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8+ T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies. During an immune response naive CD8+ T cells can differentiate into either effector or memory T cells. Here the authors show that Akt-mediated phosphorylation of the epigenetic regulator Ezh2 is critical for the generation of an anti-tumor CD8 T cell response and promotes the expansion of memory-precursors.
Collapse
Affiliation(s)
- Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA.
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Janaki Purushe
- Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA
| | - Pan Chen
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changhong Li
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ran Reshef
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bethany Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA. .,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
57
|
Shen H, Sun T, Hoang HH, Burchfield JS, Hamilton GF, Mittendorf EA, Ferrari M. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin Immunol 2017; 34:114-122. [PMID: 28947107 PMCID: PMC5705528 DOI: 10.1016/j.smim.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies.
Collapse
Affiliation(s)
- Haifa Shen
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tong Sun
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Hanh H Hoang
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Jana S Burchfield
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Gillian F Hamilton
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mauro Ferrari
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
58
|
Anderson J. Unleashing the immune response against childhood solid cancers. Pediatr Blood Cancer 2017; 64. [PMID: 28383769 DOI: 10.1002/pbc.26548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Abstract
Tumor immunotherapy has come to the fore fuelled by impressive clinical responses to checkpoint inhibitor antibodies in a range of adult malignancies and by the success of chimeric antigen receptor T cells targeting adult and pediatric B-cell malignancies. Clearly, if appropriately fine-tuned, the immune system has the capability to seek out and destroy cancer. Studies in pediatric solid cancers so far have not shown the therapeutic potential checkpoint inhibitors described in adult cancers and this may reflect fewer tumor-associated antigens or different immune evasion mechanisms. One potential approach to overcome these limitations will be to combine interventions to undermine immune evasion mechanisms with engineered T-cell adoptive transfer.
Collapse
Affiliation(s)
- John Anderson
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
59
|
Abdeen AA, Saha K. Manufacturing Cell Therapies Using Engineered Biomaterials. Trends Biotechnol 2017; 35:971-982. [PMID: 28711155 PMCID: PMC5621598 DOI: 10.1016/j.tibtech.2017.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing.
Collapse
Affiliation(s)
- Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical History and Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
60
|
Abstract
Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.
Collapse
|
61
|
Klampatsa A, Haas AR, Moon EK, Albelda SM. Chimeric Antigen Receptor (CAR) T Cell Therapy for Malignant Pleural Mesothelioma (MPM). Cancers (Basel) 2017; 9:cancers9090115. [PMID: 28862644 PMCID: PMC5615330 DOI: 10.3390/cancers9090115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapy has now become a recognized approach to treating cancers. In addition to checkpoint blockade, adoptive T cell transfer (ACT) using chimeric antigen receptors (CARs) has shown impressive clinical outcomes in leukemias and is now being explored in solid tumors. CARs are engineered receptors, stably or transiently transduced into T cells, that aim to enhance T cell effector function by recognizing and binding to a specific tumor-associated antigen. In this review, we provide a summary of CAR T cell preclinical studies and clinical trials for malignant pleural mesothelioma (MPM), a rare, locally invasive pleural cancer with poor prognosis. We list other attractive potential targets for CAR T cell therapy for MPM, and discuss augmentation strategies of CAR T cell therapy with other forms of immunotherapy in this disease.
Collapse
Affiliation(s)
- Astero Klampatsa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew R Haas
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
62
|
Zeltsman M, Dozier J, McGee E, Ngai D, Adusumilli PS. CAR T-cell therapy for lung cancer and malignant pleural mesothelioma. Transl Res 2017; 187:1-10. [PMID: 28502785 PMCID: PMC5581988 DOI: 10.1016/j.trsl.2017.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Immunotherapy is a promising field that harnesses the power of the immune system as a therapeutic agent for cancer treatment. Beneficial outcomes shown in patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM) with relatively higher tumor-infiltrating T cells, combined with impressive responses obtained in a cohort of patients with NSCLC following checkpoint blockade therapy, lays a strong foundation to promote effector immune responses in these patients. One such approach being investigated is administration of tumor antigen-targeted T cells with transduction of a chimeric antigen receptor (CAR). CARs are synthetic receptors that enhance T-cell antitumor effector function and have gained momentum to investigate in solid tumors based on recent successes of clinical trials treating patients with B-cell hematologic malignancies. This review summarizes target antigens for CAR T-cell therapy that are being investigated in preclinical studies and clinical trials for both NSCLC and MPM patients. We discuss the rationale for combination immunotherapies for NSCLC and MPM patients. Additionally, we have highlighted the challenges and strategies for overcoming the obstacles facing translation of CAR T-cell therapy to solid tumors.
Collapse
Affiliation(s)
- Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jordan Dozier
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Erin McGee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Ngai
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
63
|
Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017; 85:141-152. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.
Collapse
Affiliation(s)
- Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy.
| | - Chiara F Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| |
Collapse
|
64
|
Li K, Lan Y, Wang J, Liu L. Chimeric antigen receptor-engineered T cells for liver cancers, progress and obstacles. Tumour Biol 2017; 39:1010428317692229. [PMID: 28347250 DOI: 10.1177/1010428317692229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor-engineered T cells therapy has become the hottest topic of immunotherapy, as its great successes achieved in treating refractory hematological malignancies. These successes also paved the road to novel strategies of treating various solid tumors including liver cancer. Many specific proteins can be expressed aberrantly in liver cancers; therefore, a series of experimental and clinical researches exploring chimeric antigen receptor-engineered T cells and liver cancer are in progress, acquiring obvious antitumor effect and revealing its feasibility in treating liver cancer. However, lots of challenges and obstacles are emerging simultaneously, such as low infiltration, side effects, safety of chimeric antigen receptor-engineered T cells, and limited data of studies or clinical trials. Researchers have been working out many innovative ways to directly stroke these obstacles, theoretically or practically. This review focuses more on the progress and obstacles from chimeric antigen receptor-engineered T cells therapy to treat liver cancer, summarizing new breakthroughs in shooting those obstacles, meanwhile, hoping to provide enlightenment to this promising immunotherapeutic method.
Collapse
Affiliation(s)
- Keyu Li
- 1 Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaliang Lan
- 1 Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabei Wang
- 1 Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- 1 Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,2 Division of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
65
|
Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia 2017; 31:2191-2199. [PMID: 28202953 PMCID: PMC5608623 DOI: 10.1038/leu.2017.57] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022]
Abstract
Impressive results have been achieved by adoptively transferring T-cells expressing CD19-specific CARs with binding domains from murine mAbs to treat B-cell malignancies. T-cell mediated immune responses specific for peptides from the murine scFv antigen-binding domain of the CAR can develop in patients and result in premature elimination of CAR T-cells increasing the risk of tumor relapse. As fully human scFv might reduce immunogenicity, we generated CD19-specific human scFvs with similar binding characteristics as the murine FMC63-derived scFv using human Ab/DNA libraries. CARs were constructed in various formats from several scFvs and used to transduce primary human T-cells. The resulting CD19-CAR T-cells were specifically activated by CD19-positive tumor cell lines and primary chronic lymphocytic leukemia cells, and eliminated human lymphoma xenografts in immunodeficient mice. Certain fully human CAR constructs were superior to the FMC63-CAR, which is widely used in clinical trials. Imaging of cell surface distribution of the human CARs revealed no evidence of clustering without target cell engagement, and tonic signaling was not observed. To further reduce potential immunogenicity of the CARs, we also modified the fusion sites between different CAR components. The described fully human CARs for a validated clinical target may reduce immune rejection compared with murine-based CARs.
Collapse
|
66
|
Larson SM, Truscott LC, Chiou TT, Patel A, Kao R, Tu A, Tyagi T, Lu X, Elashoff D, De Oliveira SN. Pre-clinical development of gene modification of haematopoietic stem cells with chimeric antigen receptors for cancer immunotherapy. Hum Vaccin Immunother 2017; 13:1094-1104. [PMID: 28059624 DOI: 10.1080/21645515.2016.1268745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Patients with refractory or recurrent B-lineage hematologic malignancies have less than 50% of chance of cure despite intensive therapy and innovative approaches are needed. We hypothesize that gene modification of haematopoietic stem cells (HSC) with an anti-CD19 chimeric antigen receptor (CAR) will produce a multi-lineage, persistent immunotherapy against B-lineage malignancies that can be controlled by the HSVsr39TK suicide gene. High-titer third-generation self-inactivating lentiviral constructs were developed to deliver a second-generation CD19-specific CAR and the herpes simplex virus thymidine kinase HSVsr39TK to provide a suicide gene to allow ablation of gene-modified cells if necessary. Human HSC were transduced with such lentiviral vectors and evaluated for function of both CAR and HSVsr39TK. Satisfactory transduction efficiency was achieved; the addition of the suicide gene did not impair CAR expression or antigen-specific cytotoxicity, and determined marked cytotoxicity to ganciclovir. NSG mice transplanted with gene-modified human HSC showed CAR expression not significantly different between transduced cells with or without HSVsr39TK, and expression of anti-CD19 CAR conferred anti-tumor survival advantage. Treatment with ganciclovir led to significant ablation of gene-modified cells in mouse tissues. Haematopoietic stem cell transplantation is frequently part of the standard of care for patients with relapsed and refractory B cell malignancies; following HSC collection, a portion of the cells could be modified to express the CD19-specific CAR and give rise to a persistent, multi-cell lineage, HLA-independent immunotherapy, enhancing the graft-versus-malignancy activity.
Collapse
Affiliation(s)
- Sarah M Larson
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Laurel C Truscott
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Tzu-Ting Chiou
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Amie Patel
- c Western University of Health Sciences , Pomona , CA , USA
| | - Roy Kao
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Andy Tu
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Tulika Tyagi
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Xiang Lu
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA.,d Clinical Translational Science Institute (CTSI), David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - David Elashoff
- a Department of Internal Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA.,d Clinical Translational Science Institute (CTSI), David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Satiro N De Oliveira
- b Department of Pediatrics , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| |
Collapse
|
67
|
|
68
|
Inoo K, Inagaki R, Fujiwara K, Sasawatari S, Kamigaki T, Nakagawa S, Okada N. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16024. [PMID: 27909701 PMCID: PMC5111575 DOI: 10.1038/mto.2016.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.
Collapse
Affiliation(s)
- Kanako Inoo
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Ryo Inagaki
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kento Fujiwara
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | | | - Takashi Kamigaki
- MEDINET Co., Ltd., Kanagawa, Japan; Seta Clinic Group, Tokyo, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Naoki Okada
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| |
Collapse
|
69
|
Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE, Rooney CM, Brenner MK, Leen AM, Vera JF. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 2016; 5:e1253656. [PMID: 28180032 DOI: 10.1080/2162402x.2016.1253656] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022] Open
Abstract
The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Salma Ansari
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital , Houston, Texas, USA
| |
Collapse
|
70
|
Paszkiewicz PJ, Fräßle SP, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, Sadelain M, Liu L, Jensen MC, Riddell SR, Busch DH. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 2016; 126:4262-4272. [PMID: 27760047 DOI: 10.1172/jci84813] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/08/2016] [Indexed: 12/12/2022] Open
Abstract
The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.
Collapse
|
71
|
[Chimeric antigen receptors T cells in treatment of a relapsed pediatric acute lymphoblastic leukemia, relapse after allogenetic hematopoietic stem cell transplantation: case report and review of literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:115-8. [PMID: 27014980 PMCID: PMC7348202 DOI: 10.3760/cma.j.issn.0253-2727.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
目的 探讨嵌合抗原受体(CAR) T细胞技术治疗儿童急性B淋巴细胞白血病(B-ALL)的临床疗效和不良反应。 方法 报道1例CAR-T细胞治疗儿童B-ALL异基因造血干细胞移植(allo-HSCT)后复发患者,并复习相关文献。 结果 1例伴TEL-AML1融合基因阳性11岁B-ALL患儿,规律化疗后早期复发,于第2次完全缓解(CR)期给予allo-HSCT。治疗后骨髓微小残留病(MRD)反复阳性,化疗以及供者淋巴细胞输注(DLI)治疗无明显疗效,故给予供者来源的抗CD19的CAR-T细胞输注。该患儿经输注CAR-T细胞1×106/kg后骨髓MRD转阴,后又反复输注3次CAR-T细胞[(0.83~1.65)×106/kg],患儿持续无病生存达10个月,随后输注CAR-T细胞2次,监测外周血TEL-AML1融合基因拷贝持续升高,最终骨髓复发,因脑出血死亡。输注CAR-T细胞的主要不良反应为细胞因子释放综合征。 结论 抗CD19的CAR-T细胞技术治疗复发B-ALL安全有效,为复发及难治性B-ALL患儿提供了新的治疗手段。
Collapse
|
72
|
June CH, Levine BL. T cell engineering as therapy for cancer and HIV: our synthetic future. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140374. [PMID: 26416683 DOI: 10.1098/rstb.2014.0374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this overview. Various chimeric antigen receptor designs, manufacturing processes and study populations, among other variables, have been tested and reported in recent clinical trials. Many questions remain in the field of engineered T cells, but the encouraging response rates pave a wide road for future investigation into fields as diverse as cancer and chronic infections.
Collapse
Affiliation(s)
- Carl H June
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| |
Collapse
|
73
|
Künkele A, Taraseviciute A, Finn LS, Johnson AJ, Berger C, Finney O, Chang CA, Rolczynski LS, Brown C, Mgebroff S, Berger M, Park JR, Jensen MC. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility. Clin Cancer Res 2016; 23:466-477. [PMID: 27390347 DOI: 10.1158/1078-0432.ccr-16-0354] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The identification and vetting of cell surface tumor-restricted epitopes for chimeric antigen receptor (CAR)-redirected T-cell immunotherapy is the subject of intensive investigation. We have focused on CD171 (L1-CAM), an abundant cell surface molecule on neuroblastomas and, specifically, on the glycosylation-dependent tumor-specific epitope recognized by the CE7 monoclonal antibody. EXPERIMENTAL DESIGN CD171 expression was assessed by IHC using CE7 mAb in tumor microarrays of primary, metastatic, and recurrent neuroblastoma, as well as human and rhesus macaque tissue arrays. The safety of targeting the CE7 epitope of CD171 with CE7-CAR T cells was evaluated in a preclinical rhesus macaque trial on the basis of CD171 homology and CE7 cross reactivity. The feasibility of generating bioactive CAR T cells from heavily pretreated pediatric patients with recurrent/refractory disease was assessed. RESULTS CD171 is uniformly and abundantly expressed by neuroblastoma tumor specimens obtained at diagnoses and relapse independent of patient clinical risk group. CD171 expression in normal tissues is similar in humans and rhesus macaques. Infusion of up to 1 × 108/kg CE7-CAR+ CTLs in rhesus macaques revealed no signs of specific on-target off-tumor toxicity. Manufacturing of lentivirally transduced CD4+ and CD8+ CE7-CAR T-cell products under GMP was successful in 4 out of 5 consecutively enrolled neuroblastoma patients in a phase I study. All four CE7-CAR T-cell products demonstrated in vitro and in vivo antitumor activity. CONCLUSIONS Our preclinical assessment of the CE7 epitope on CD171 supports its utility and safety as a CAR T-cell target for neuroblastoma immunotherapy. Clin Cancer Res; 23(2); 466-77. ©2016 AACR.
Collapse
Affiliation(s)
- Annette Künkele
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Agne Taraseviciute
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Fred Hutchinson Cancer Research Center, Seattle, Washington.,Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Laura S Finn
- Seattle Children's Hospital, Department of Pathology, University of Washington, Seattle, Washington
| | - Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carolina Berger
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Olivia Finney
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Lisa S Rolczynski
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher Brown
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Stephanie Mgebroff
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Michael Berger
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julie R Park
- Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. .,Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington.,University of Washington, Department of Bioengineering, Seattle, Washington
| |
Collapse
|
74
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|
75
|
Studzinski GP, Harrison JS, Wang X, Sarkar S, Kalia V, Danilenko M. Vitamin D Control of Hematopoietic Cell Differentiation and Leukemia. J Cell Biochem 2016; 116:1500-12. [PMID: 25694395 DOI: 10.1002/jcb.25104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies. The reasons for the unimpressive results of most clinical studies of the therapeutic effects of VDDs in leukemia and related diseases may include the lack of a precise rationale for the conduct of these studies. Further, clinical trials to date have generally used extremely heterogeneous patient populations and, in many cases, small numbers of patients, generally without controls. Although low calcemic VDDs have been used and combined with agents that can increase the leukemia cell killing or differentiation effects in acute leukemias, the sequencing of agents used for combination therapy should to be more clearly delineated. Most importantly, it is recommended that in future clinical trials the rationale for the basis of the enhancing action of drug combinations should be clearly articulated and the effects on anticancer immunity should also be evaluated.
Collapse
Affiliation(s)
- George P Studzinski
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Jonathan S Harrison
- Department of Medicine, University of Missouri Medical School, One Hospital Drive, Columbia, Missouri 65212
| | - Xuening Wang
- Department of Pathology & Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, New Jersey 07103
| | - Surojit Sarkar
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vandana Kalia
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Danilenko
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| |
Collapse
|
76
|
Thomas S, Straathof K, Himoudi N, Anderson J, Pule M. An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers. PLoS One 2016; 11:e0152196. [PMID: 27030986 PMCID: PMC4816271 DOI: 10.1371/journal.pone.0152196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma is the commonest extra cranial solid cancer of childhood. Despite escalation of treatment regimens, a significant minority of patients die of their disease. Disialoganglioside (GD2) is consistently expressed at high-levels in neuroblastoma tumors, which have been targeted with some success using therapeutic monoclonal antibodies. GD2 is also expressed in a range of other cancer but with the exception of some peripheral nerves is largely absent from non-transformed tissues. Chimeric Antigen Receptors (CARs) are artificial type I proteins which graft the specificity of a monoclonal antibody onto a T-cell. Clinical data with early CAR designs directed against GD2 have shown some promise in Neuroblastoma. Here, we describe a GD2-targeting CAR retroviral cassette, which has been optimized for CAR T-cell persistence, efficacy and safety.
Collapse
Affiliation(s)
- Simon Thomas
- Cancer Institute, University College London, London, United Kingdom
| | - Karin Straathof
- Institute of Child Health, University College London, London, United Kingdom
| | - Nourredine Himoudi
- Institute of Child Health, University College London, London, United Kingdom
| | - John Anderson
- Institute of Child Health, University College London, London, United Kingdom
| | - Martin Pule
- Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
77
|
Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 2016; 28:28-34. [PMID: 26976826 DOI: 10.1016/j.smim.2016.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.
Collapse
Affiliation(s)
- Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; National Center for Infection Research (DZIF), Munich 81675, Germany.
| | - Simon P Fräßle
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany
| | - Daniel Sommermeyer
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany
| | - Stanley R Riddell
- Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
78
|
Kalaitsidou M, Kueberuwa G, Schütt A, Gilham DE. CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy 2016; 7:487-97. [PMID: 26065475 DOI: 10.2217/imt.14.123] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells form part of a broad wave of immunotherapies that are showing promise in early phase cancer clinical trials. This clinical delivery has been based upon preclinical efficacy testing that confirmed the proof of principle of the therapy. However, CAR T-cell therapy does not exist alone as T cells are generally given in combination with patient preconditioning, most commonly in the form of chemotherapy, and may also include systemic cytokine support, both of which are associated with toxicity. Consequently, complete CAR T-cell therapy includes elements where the toxicity profile is well known, but also includes the CAR T cell itself, for which toxicity profiles are largely unknown. With recent reports of adverse events associated with CAR T-cell therapy, there is now concern that current preclinical models may not be fit for purpose with respect to CAR T-cell toxicity profiling. Here, we explore the preclinical models used to validate CAR T-cell function and examine their potential to predict CAR T-cell driven toxicities for the future.
Collapse
Affiliation(s)
- Milena Kalaitsidou
- Clinical & Experimental Immunotherapy Group, Institute of Cancer Sciences, Academic Healthcare Science Centre, University of Manchester, Manchester Paterson Building, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| | - Gray Kueberuwa
- Clinical & Experimental Immunotherapy Group, Institute of Cancer Sciences, Academic Healthcare Science Centre, University of Manchester, Manchester Paterson Building, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| | - Antje Schütt
- Clinical & Experimental Immunotherapy Group, Institute of Cancer Sciences, Academic Healthcare Science Centre, University of Manchester, Manchester Paterson Building, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| | - David Edward Gilham
- Clinical & Experimental Immunotherapy Group, Institute of Cancer Sciences, Academic Healthcare Science Centre, University of Manchester, Manchester Paterson Building, Wilmslow Road, Withington, Manchester, M20 4BX, UK
| |
Collapse
|
79
|
Rotolo A, Caputo V, Karadimitris A. The prospects and promise of chimeric antigen receptor immunotherapy in multiple myeloma. Br J Haematol 2016; 173:350-64. [DOI: 10.1111/bjh.13976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Antonia Rotolo
- Centre for Haematology; Department of Medicine; Imperial College London; London UK
| | - Valentina Caputo
- Centre for Haematology; Department of Medicine; Imperial College London; London UK
| | - Anastasios Karadimitris
- Centre for Haematology; Department of Medicine; Imperial College London; London UK
- Department of Haematology; Hammersmith Hospital; Imperial College Healthcare NHS Trust; London UK
| |
Collapse
|
80
|
Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. SCIENCE CHINA-LIFE SCIENCES 2016; 59:386-97. [PMID: 26961900 DOI: 10.1007/s11427-016-5024-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 01/16/2016] [Indexed: 02/05/2023]
Abstract
Recent progress in chimeric antigen receptor-modified T-cell (CAR-T cell) technology in cancer therapy is extremely promising, especially in the treatment of patients with B-cell acute lymphoblastic leukemia. In contrast, due to the hostile immunosuppressive microenvironment of a solid tumor, CAR T-cell accessibility and survival continue to pose a considerable challenge, which leads to their limited therapeutic efficacy. In this study, we constructed two anti-MUC1 CAR-T cell lines. One set of CAR-T cells contained SM3 single chain variable fragment (scFv) sequence specifically targeting the MUC1 antigen and co-expressing interleukin (IL) 12 (named SM3-CAR). The other CAR-T cell line carried the SM3 scFv sequence modified to improve its binding to MUC1 antigen (named pSM3-CAR) but did not co-express IL-12. When those two types of CAR-T cells were injected intratumorally into two independent metastatic lesions of the same MUC1(+) seminal vesicle cancer patient as part of an interventional treatment strategy, the initial results indicated no side-effects of the MUC1 targeting CAR-T cell approach, and patient serum cytokines responses were positive. Further evaluation showed that pSM3-CAR effectively caused tumor necrosis, providing new options for improved CAR-T therapy in solid tumors.
Collapse
|
81
|
Cellular therapy in tuberculosis. Int J Infect Dis 2016; 32:32-8. [PMID: 25809753 DOI: 10.1016/j.ijid.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 01/04/2023] Open
Abstract
Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.
Collapse
|
82
|
Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC, Ouyang C, Ramaswamy M, Roychoudhuri R, Ji Y, Eil RL, Sukumar M, Crompton JG, Palmer DC, Borman ZA, Clever D, Thomas SK, Patel S, Yu Z, Muranski P, Liu H, Wang E, Marincola FM, Gros A, Gattinoni L, Rosenberg SA, Siegel RM, Restifo NP. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest 2016; 126:318-34. [PMID: 26657860 PMCID: PMC4701537 DOI: 10.1172/jci81217] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/26/2015] [Indexed: 12/23/2022] Open
Abstract
Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.
Collapse
Affiliation(s)
- Christopher A. Klebanoff
- Clinical Investigator Development Program and
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Christopher D. Scott
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anthony J. Leonardi
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Tori N. Yamamoto
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony C. Cruz
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Claudia Ouyang
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Madhu Ramaswamy
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
- MedImmune, Gaithersburg, Maryland, USA
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, Maryland, USA
| | - Robert L. Eil
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Madhusudhanan Sukumar
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Joseph G. Crompton
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Douglas C. Palmer
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zachary A. Borman
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - David Clever
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stacy K. Thomas
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Shashankkumar Patel
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Pawel Muranski
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- National Heart, Lung, and Blood Institute, and
| | - Hui Liu
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
- Sidra Medical and Research Centre, Doha, Qatar
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
- Sidra Medical and Research Centre, Doha, Qatar
| | - Alena Gros
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, Maryland, USA
| | - Steven A. Rosenberg
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Richard M. Siegel
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Nicholas P. Restifo
- Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
83
|
What Lies Ahead? VIRAL PATHOGENESIS 2016. [PMCID: PMC7149599 DOI: 10.1016/b978-0-12-800964-2.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viral pathogenesis is a field in rapid evolution, reflecting the dynamic development of systems biology and the continuing introduction of new or improved methodologies. Therefore, this final chapter is dedicated to “futurism,” a look at what lies ahead for this field. We have recruited a number of scientists to write short pieces where they are free to speculate on future developments in their respective areas of expertise.
Collapse
|
84
|
D'Aloia MM, Caratelli S, Palumbo C, Battella S, Arriga R, Lauro D, Palmieri G, Sconocchia G, Alimandi M. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells. Cytotherapy 2015; 18:278-90. [PMID: 26705740 DOI: 10.1016/j.jcyt.2015.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) designed for adoptive immunotherapy need to achieve two functions: antigen recognition and triggering of the lytic machinery of reprogrammed effector cells. Cytotoxic T cells have been engineered with FcγRIII (CD16) chimeric molecules to be redirected against malignant cells by monoclonal antibodies (mAbs). These cells have been proven to mediate granule-dependent cellular cytotoxicity, but it is not clear whether they can also kill malignant cells by a granule-independent mechanism of cell cytotoxicity. METHODS We engineered a CD16A-CAR equipped with the extracellular CD16A, the hinge spacer and the transmembrane region of CD8, and the ζ-chain of the T-cell receptor/CD3 complex in tandem with the CD28 co-stimulatory signal transducer module. The CD16A-CAR was expressed and functionally tested in the MD45 cell line, a murine T-cell hybridoma with a defective granular exocytosis pathway but capable of killing target cells by a Fas ligand-mediated lysis. RESULTS Our results indicate that in vitro cross-linking of CD16A-CAR on MD45 cells by the Fc fragment of mAb opsonized tumor cells induced interleukin-2 release and granule-independent cellular cytotoxicity. CONCLUSIONS We conclude that strategies aimed to implement the therapeutic functions of mAbs used in the clinic with T-dependent immune responses driven by engineered T cells expressing FcγR-CAR can boost the antitumor efficacy of mAbs used in the clinic.
Collapse
Affiliation(s)
- Maria Michela D'Aloia
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology, CNR, Rome, Italy; Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome, Italy
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Arriga
- Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Davide Lauro
- Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
85
|
Abstract
Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.
Collapse
|
86
|
Liu C, Ma X, Liu B, Chen C, Zhang H. HIV-1 functional cure: will the dream come true? BMC Med 2015; 13:284. [PMID: 26588898 PMCID: PMC4654816 DOI: 10.1186/s12916-015-0517-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
87
|
Morello A, Sadelain M, Adusumilli PS. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov 2015; 6:133-46. [PMID: 26503962 DOI: 10.1158/2159-8290.cd-15-0583] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Chimeric antigen receptors (CAR) are synthetic receptors that target T cells to cell-surface antigens and augment T-cell function and persistence. Mesothelin is a cell-surface antigen implicated in tumor invasion, which is highly expressed in mesothelioma and lung, pancreas, breast, ovarian, and other cancers. Its low-level expression in mesothelia, however, commands thoughtful therapeutic interventions. Encouragingly, recent clinical trials evaluating active immunization or immunoconjugates in patients with pancreatic adenocarcinoma or mesothelioma have shown responses without toxicity. Altogether, these findings and preclinical CAR therapy models using either systemic or regional T-cell delivery argue favorably for mesothelin CAR therapy in multiple solid tumors. SIGNIFICANCE Recent success obtained with adoptive transfer of CAR T cells targeting CD19 in patients with refractory hematologic malignancies has generated much enthusiasm for T-cell engineering and raises the prospect of implementing similar strategies for solid tumors. Mesothelin is expressed in a wide range and a high percentage of solid tumors, which we review here in detail. Mesothelin CAR therapy has the potential to treat multiple solid malignancies.
Collapse
Affiliation(s)
- Aurore Morello
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
88
|
Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, Jones DR, Sadelain M. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 2015; 6:261ra151. [PMID: 25378643 DOI: 10.1126/scitranslmed.3010162] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intrapleurally administered CAR T cells vastly outperformed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions. After intrapleural T cell administration, prompt in vivo antigen-induced T cell activation allowed robust CAR T cell expansion and effector differentiation, resulting in enhanced antitumor efficacy and functional T cell persistence for 200 days. Regional T cell administration also promoted efficient elimination of extrathoracic tumor sites. This therapeutic efficacy was dependent on early CD4(+) T cell activation associated with a higher intratumoral CD4/CD8 cell ratios and CD28-dependent CD4(+) T cell-mediated cytotoxicity. In contrast, intravenously delivered CAR T cells, even when accumulated at equivalent numbers in the pleural tumor, did not achieve comparable activation, tumor eradication, or persistence. The ability of intrapleurally administered T cells to circulate and persist supports the concept of delivering optimal CAR T cell therapy through "regional distribution centers." On the basis of these results, we are opening a phase 1 clinical trial to evaluate the safety of intrapleural administration of mesothelin-targeted CAR T cells in patients with primary or secondary pleural malignancies.
Collapse
Affiliation(s)
- Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Leonid Cherkassky
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Villena-Vargas
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christos Colovos
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elliot Servais
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Plotkin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
89
|
Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 2015; 25:R9-17. [PMID: 26450518 DOI: 10.1093/hmg/ddv420] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.
Collapse
Affiliation(s)
| | | | | | - Jeffrey S Chamberlain
- Department of Neurology and Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
90
|
Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, Riddell SR. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2015; 30:492-500. [PMID: 26369987 PMCID: PMC4746098 DOI: 10.1038/leu.2015.247] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/17/2015] [Accepted: 09/04/2015] [Indexed: 01/07/2023]
Abstract
Adoptive T-cell therapy with gene-modified T-cells expressing a tumor-reactive T-cell receptor (TCR) or chimeric antigen receptor (CAR) is a rapidly growing field of translational medicine and has shown success in the treatment of B-cell malignancies and solid tumors. In all reported trials, patients have received T-cell products comprised of random compositions of CD4+ and CD8+ naïve and memory T-cells, meaning that each patient received a different therapeutic agent. This variation might have influenced the efficacy of T-cell therapy, and complicates comparison of outcomes between different patients and across trials. We analyzed CD19 CAR-expressing effector T-cells derived from different subsets (CD4+/CD8+ naïve, central memory, effector memory). T-cells derived from each of the subsets were efficiently transduced and expanded, but showed clear differences in effector function and proliferation in vitro and in vivo. Combining the most potent CD4+ and CD8+ CAR-expressing subsets resulted in synergistic antitumor effects in vivo. We show that CAR-T-cell products generated from defined T-cell subsets can provide uniform potency compared with products derived from unselected T-cells that vary in phenotypic composition. These findings have important implications for the formulation of T-cell products for adoptive therapies.
Collapse
Affiliation(s)
- D Sommermeyer
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M Hudecek
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine II - Hematology and Medical Oncology, University of Würzburg, Würzburg, Germany
| | - P L Kosasih
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T Gogishvili
- Department of Medicine II - Hematology and Medical Oncology, University of Würzburg, Würzburg, Germany
| | - D G Maloney
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - C J Turtle
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - S R Riddell
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
91
|
Kierkels GJJ, Straetemans T, de Witte MA, Kuball J. The next step toward GMP-grade production of engineered immune cells. Oncoimmunology 2015; 5:e1076608. [PMID: 27057450 DOI: 10.1080/2162402x.2015.1076608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023] Open
Abstract
Removing less potent T cell subsets as well as poorly- or non-engineered cells can optimize effectiveness of engineered T cell therapy against cancer. We have recently described a novel, GMP-ready method for the purification of engineered immune cells that might further boost the clinical success of cancer immunotherapy.
Collapse
Affiliation(s)
- Guido J J Kierkels
- Laboratory of Translational Immunology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Moniek A de Witte
- Department of Hematology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
92
|
Abstract
It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.
Collapse
Affiliation(s)
- Pınar Ataca
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey E-mail:
| | | |
Collapse
|
93
|
Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2015; 6:1265-78. [PMID: 25524383 DOI: 10.2217/imt.14.86] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
94
|
A drive through cellular therapy for CLL in 2015: allogeneic cell transplantation and CARs. Blood 2015; 126:478-85. [DOI: 10.1182/blood-2015-03-585091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/09/2015] [Indexed: 12/13/2022] Open
Abstract
Abstract
Over the past decade the development of safer reduced-intensity conditioning regimens, expanded donor pools, advances in supportive care, and prevention/management of graft-versus-host disease have expanded stem cell transplantation (SCT) availability for chronic lymphocytic leukemia (CLL) patients. However, there are now increasingly active treatment options available for CLL patients with favorable toxicity profiles and convenient administration schedules. This raises the critical issue of whether or not attainment of cure remains a necessary goal. It is now less clear that treatment with curative intention and with significant toxicity is required for long-term survival in CLL. In addition, the demonstrated safety and activity of genetically modified chimeric antigen receptor (CAR) T cells present the opportunity of harnessing the power of the immune system to kill CLL cells without the need for SCT. We attempt to define the role of SCT in the era of targeted therapies and discuss questions that remain to be answered. Furthermore, we highlight the potential for exciting new cellular therapy using genetically modified anti-CD19 CAR T cells and discuss its potential to alter treatment paradigms for CLL.
Collapse
|
95
|
Schlößer HA, Theurich S, Shimabukuro-Vornhagen A, Holtick U, Stippel DL, von Bergwelt-Baildon M. Overcoming tumor-mediated immunosuppression. Immunotherapy 2015; 6:973-88. [PMID: 25341119 DOI: 10.2217/imt.14.58] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of tumor-mediated immunosuppression have been described for several solid and hematological tumors. Tumors inhibit immune responses by attraction of immunosuppressive lymphocytic populations, secretion of immunosuppressive cytokines or expression of surface molecules, which inhibit immune responses by induction of anergy or apoptosis in tumor-infiltrating lymphocytes. This tumor-mediated immunosuppression represents a major obstacle to many immunotherapeutic or conventional therapeutic approaches. In this review we discuss how tumor-mediated immunosuppression interferes with different immunotherapeutic approaches and then give an overview of strategies to overcome it. Particular emphasis is placed on agents or approaches already transferred into clinical settings. Finally the success of immune checkpoint inhibitors targeting CTLA-4 or the PD-1 pathway highlights the enormous therapeutic potential of an effective overcoming of tumor-mediated immunosuppression.
Collapse
|
96
|
Zhu Y, Tan Y, Ou R, Zhong Q, Zheng L, Du Y, Zhang Q, Huang J. Anti-CD19 chimeric antigen receptor-modified T cells for B-cell malignancies: a systematic review of efficacy and safety in clinical trials. Eur J Haematol 2015; 96:389-96. [PMID: 26115358 DOI: 10.1111/ejh.12602] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Administration of anti-CD19 chimeric antigen receptor (CAR)-modified T cells for B-cell malignancies has been remarkably effective in recent clinical trials. To investigate the critical parameters affecting efficacy and evaluated the safety of using CAR T cells targeting CD19 in B-lineage malignancies. We performed a systematic review of reported phase I clinical trials using CAR T cells targeting CD19 in B-lineage malignancies. METHODS We searched Medline and Embase for studies on anti-CD19 CAR-modified T cells in patients with B-cell malignancies in October 2014. Univariate analyses were performed using the Kaplan-Meier method, and a Cox regression model was used to determine the independent prognostic factors of progression-free survival (PFS). RESULTS Six trials involving 50 patients were included in this review. After CAR T-cell infusion, the overall response rate was 48% (complete responses in 24%). The 6-month PFS and 1-year PFS were 43% and 27%, respectively. Statistically significant factors favorably influencing PFS were conditioning chemotherapy (P < 0.001), B-cell aplasia (P = 0.040), and durable persistence of CAR T cells (P = 0.013) in univariate analyses. After multivariate analysis, conditioning chemotherapy remained as an independent prognostic factor for PFS. The most common adverse events were fever, hypotension, rigor, fatigue, bacteremia, chill, dyspnea, and headache, but all were temporary and resolved. CONCLUSION Anti-CD19 CAR-modified T cells have shown therapeutic efficacy in patients with B-lineage malignancies and were well tolerated in most patients. Conditioning chemotherapy is a prerequisite to improve the clinical outcome.
Collapse
Affiliation(s)
- Yangmin Zhu
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Youping Tan
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Ruiming Ou
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Qi Zhong
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Liling Zheng
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Yuanyuan Du
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| | - Jing Huang
- Department of Hematology, Guangdong NO. 2 Provincial People's Hospital, Guangdong, Guangzhou, China
| |
Collapse
|
97
|
Andrijauskaite K, Suriano S, Cloud CA, Li M, Kesarwani P, Stefanik LS, Moxley KM, Salem ML, Garrett-Mayer E, Paulos CM, Mehrotra S, Kochenderfer JN, Cole DJ, Rubinstein MP. IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells. Cancer Gene Ther 2015; 22:360-7. [PMID: 26182912 PMCID: PMC4807400 DOI: 10.1038/cgt.2015.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. As retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naive CD8(+) T cells, which are quiescent, must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 preconditioning of mouse T cells greatly enhanced transduction efficiency, while preserving function and expansion potential. We also observed a similar transduction-enhancing effect of IL-12 preconditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8(+) T cells.
Collapse
Affiliation(s)
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Colleen A. Cloud
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Leah S. Stefanik
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | | | - Mohamed L Salem
- Immunology & Biotechnology Division, Tanta University, Egypt
| | | | - Chrystal M. Paulos
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - James N. Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
98
|
Hyperinflammation, rather than hemophagocytosis, is the common link between macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Curr Opin Rheumatol 2015; 26:562-9. [PMID: 25022357 DOI: 10.1097/bor.0000000000000093] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Macrophage activation syndrome is the rheumatic disease-associated member of a group of hyperinflammatory syndromes characterized by uncontrolled cytokine storm. In this review, we highlight recent publications related to the pathoetiology of hyperinflammatory syndromes with an emphasis on how this new knowledge will guide our diagnosis, treatment, and future research efforts to better understand these deadly conditions. RECENT FINDINGS The heterogeneity of clinical manifestations seen in patients with hyperinflammatory syndromes continues to grow as novel genetic and immunotherapeutic triggers of cytokine storm have been identified. Recent studies characterize unique cytokine and gene expression profiles from patients with different hyperinflammatory syndromes, whereas novel murine models begin to define networks of immune dysregulation thought to drive excessive inflammation in cytokine storm. SUMMARY Emerging evidence suggests hypercytokinemia is the driving cause of immunopathology and morbidity/mortality in hyperinflammatory syndromes. Therefore, approaches to block cytokine function may be fruitful in treating hyperinflammatory syndromes with less toxicity than current therapies. However, not all hyperinflammatory syndromes result in the same pathogenic cytokine profile, implying that a personalized approach will be required for effective use of anticytokine therapies in the treatment of hyperinflammatory syndromes.
Collapse
|
99
|
Aranda F, Buqué A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673. [PMID: 26451319 DOI: 10.1080/2162402x.2015.1046673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immune Receptors of the Innate and Adaptive System; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) ; Barcelona, Spain
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Francesca Castoldi
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; INSERM; U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| |
Collapse
|
100
|
Rubinstein MP, Su EW, Suriano S, Cloud CA, Andrijauskaite K, Kesarwani P, Schwartz KM, Williams KM, Johnson CB, Li M, Scurti GM, Salem ML, Paulos CM, Garrett-Mayer E, Mehrotra S, Cole DJ. Interleukin-12 enhances the function and anti-tumor activity in murine and human CD8(+) T cells. Cancer Immunol Immunother 2015; 64:539-49. [PMID: 25676709 PMCID: PMC4804872 DOI: 10.1007/s00262-015-1655-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/10/2015] [Indexed: 02/07/2023]
Abstract
Mouse CD8(+) T cells conditioned with interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8(+) T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8(+) T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8(+) T cells led to a tenfold-100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8(+) T cells genetically modified with a tyrosinase-specific T cell receptor (TCR) exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8(+) T cells for adoptive transfer and cancer therapy.
Collapse
Affiliation(s)
- Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, HO506, Charleston, SC, 29425, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|