51
|
Shen Z, Chen Y, Li L, Liu L, Peng M, Chen X, Wu X, Sferra TJ, Wu M, Lin X, Cheng Y, Chu J, Shen A, Peng J. Transcription Factor EBF1 Over-Expression Suppresses Tumor Growth in vivo and in vitro via Modulation of the PNO1/p53 Pathway in Colorectal Cancer. Front Oncol 2020; 10:1035. [PMID: 32676457 PMCID: PMC7333669 DOI: 10.3389/fonc.2020.01035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023] Open
Abstract
Early B cell factor 1 (EBF1) has been identified as an upstream transcription factor of the potential oncogene PNO1 and is involved in the growth of colorectal cancer (CRC) cells. However, its expression, biological function, and underlying mechanism of action in most solid tumors remain largely unknown. We postulated that EBF1 has a role in the pathophysiology of CRC. Analysis of EBF1 mRNA expression in CRC tumor samples from several public databases and directly from banked tissues revealed that EBF1 mRNA expression is lower in CRC tissue compared to non-cancerous colorectal tissue. Survival analysis of multiple datasets revealed that low EBF1 expression was correlated with shorter overall survival, relapse-free survival, and event-free survival in CRC patients. Transduction of lentivirus encoding full length EBF1 followed by in vitro and in vivo assays demonstrated that EBF1 over-expression in CRC cell lines suppresses cell growth by inhibiting cell viability, cell survival, and induces cell cycle arrest and apoptosis. Mechanistic investigation indicated that EBF1 over-expression down-regulates PNO1 mRNA and protein expression, as well as transcriptional activity while up-regulating the expression of p53 and p21 proteins. These findings suggest that EBF1 is a novel potential tumor suppressor in CRC with prognostic value for the identification of patients at high-risk of relapse.
Collapse
Affiliation(s)
- Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meizhong Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
52
|
Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt R, Rouchon Q, Verbeiren T, De Maeyer D, Reumers J, Saeys Y, Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 2020; 15:2247-2276. [PMID: 32561888 DOI: 10.1038/s41596-020-0336-2] [Citation(s) in RCA: 539] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022]
Abstract
This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon's target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h.
Collapse
Affiliation(s)
- Bram Van de Sande
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Christopher Flerin
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Wouter Saelens
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Robrecht Cannoodt
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quentin Rouchon
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Toni Verbeiren
- Janssen Pharmaceutica, Beerse, Belgium.,Data Intuitive, Ghent, Belgium
| | | | | | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
53
|
Jacobsen JA, Bartom ET, Sigvardsson M, Kee BL. Ezh2 Represses Transcription of Innate Lymphoid Genes in B Lymphocyte Progenitors and Maintains the B-2 Cell Fate. THE JOURNAL OF IMMUNOLOGY 2020; 204:1760-1769. [PMID: 32094206 DOI: 10.4049/jimmunol.1901188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
Lymphocyte lineage specification and commitment requires the activation of lineage-specific genes and repression of alternative lineage genes, respectively. The mechanisms governing alternative lineage gene repression and commitment in lymphocytes are largely unknown. In this study, we demonstrate that Ezh2, which represses gene expression through methylation of histone 3 lysine 27, was essential for repression of numerous genes, including genes encoding innate lymphocyte transcription factors, specifically in murine B lymphocyte progenitors, but these cells maintained their B lymphocyte identity. However, adult Ezh2-deficient B lymphocytes expressed Lin28b, which encodes an RNA-binding protein associated with fetal hematopoietic gene expression programs, and these cells acquired a fetal B-1 lymphocyte phenotype in vitro and in vivo. Therefore, Ezh2 coordinates the repression of multiple gene programs in B lymphocytes and maintains the adult B-2 cell fate.
Collapse
Affiliation(s)
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Lund SE-221 00, Sweden; and
| | - Barbara L Kee
- Committee on Immunology, The University of Chicago, Chicago, IL 60657; .,Department of Pathology, The University of Chicago, Chicago, IL 60657
| |
Collapse
|
54
|
Wang FF, Yang ZJ, Zhu MJ, Di ZS, Shang HW, Xu JD. Correlation between intestinal flora and gut immune system development. Shijie Huaren Xiaohua Zazhi 2019; 27:1446-1453. [DOI: 10.11569/wcjd.v27.i23.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut contains a complex array of intestinal bacteria, especially in the colon. A large number of studies have proved that the amount of intestinal flora and the development of the intestinal immune system have a certain parallel relationship, which is vital for the regulation for the intestinal function. This article reviews the correlation between the gut microbiota and the development of the intestinal immune system as well as the regulation of intestinal function by intestinal microbiota and immune system, with an aim to provide new clues to the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Min-Jia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhi-Shan Di
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Morphological Experiment Center, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
55
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
56
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
57
|
Nagel S, Pommerenke C, MacLeod RAF, Meyer C, Kaufmann M, Fähnrich S, Drexler HG. Deregulated expression of NKL homeobox genes in T-cell lymphomas. Oncotarget 2019; 10:3227-3247. [PMID: 31143370 PMCID: PMC6524933 DOI: 10.18632/oncotarget.26929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 11/25/2022] Open
Abstract
Recently, we have presented a scheme, termed "NKL-code", which describes physiological expression patterns of NKL homeobox genes in early hematopoiesis and in lymphopoiesis including main stages of T-, B- and NK-cell development. Aberrant activity of these genes underlies the generation of hematological malignancies notably T-cell leukemia. Here, we searched for deregulated NKL homeobox genes in main entities of T-cell lymphomas comprising angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL), hepatosplenic T-cell lymphoma (HSTL), NK/T-cell lymphoma (NKTL) and peripheral T-cell lymphoma (PTCL). Our data revealed altogether 19 aberrantly overexpressed genes in these types, demonstrating deregulated NKL homeobox genes involvement in T-cell lymphomas as well. For detailed analysis we focused on NKL homeobox gene MSX1 which is normally expressed in NK-cells. MSX1 was overexpressed in subsets of HSTL patients and HSTL-derived sister cell lines DERL-2 and DERL-7 which served as models to characterize mechanisms of deregulation. We performed karyotyping, genomic and expression profiling, and whole genome sequencing to reveal mutated and deregulated gene candidates, including the fusion gene CD53-PDGFRB. Subsequent knockdown experiments allowed the reconstruction of an aberrant network involved in MSX1 deregulation, including chromatin factors AUTS2 and mutated histone HIST1H3B(K27M). The gene encoding AUTS2 is located at chromosome 7q11 and may represent a basic target of the HSTL hallmark aberration i(7q). Taken together, our findings highlight an oncogenic role for deregulated NKL homeobox genes in T-cell lymphoma and identify MSX1 as a novel player in HSTL, implicated in aberrant NK- and T-cell differentiation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silke Fähnrich
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
58
|
Lee GY, Jeong SY, Lee HR, Oh IH. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells. Sci Rep 2019; 9:1007. [PMID: 30700727 PMCID: PMC6353913 DOI: 10.1038/s41598-018-36999-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment serves as a stem cell niche regulating the in vivo cell fate of normal hematopoietic stem cells (HSC) as well as leukemia stem cells (LSCs). Accumulating studies have indicated that the regeneration of normal HSCs and the process of leukemogenesis change with advancing age. However, the role of microenvironmental factors in these age-related effects are unclear. Here, we compared the stem cell niche in neonatal and adult BM to investigate potential differences in their microenvironmental regulation of both normal and leukemic stem cells. We found that the mesenchymal niche in neonatal BM, compared to adult BM, was characterized by a higher frequency of primitive subsets of mesenchymal stroma expressing both platelet-derived growth factor receptor and Sca-1, and higher expression levels of the niche cross-talk molecules, Jagged-1 and CXCL-12. Accordingly, normal HSCs transplanted into neonatal mice exhibited higher levels of regeneration in BM, with no difference in homing efficiency or splenic engraftment compared to adult BM. In contrast, in vivo self-renewal of LSCs was higher in adult BM than in neonatal BM, with increased frequencies of leukemia-initiating cells as well as higher lympho-myeloid differentiation potential towards biphenotypic leukemic cells. These differences in LSC self-renewal capacity between neonates and adults was abrogated by switching of recipients, confirming their microenvironmental origin. Our study provides insight into the differences in leukemic diseases observed in childhood and adults, and is important for interpretation of many transplantation studies involving neonatal animal models.
Collapse
Affiliation(s)
- Ga-Young Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Seon-Yeong Jeong
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea. .,Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea.
| |
Collapse
|
59
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
60
|
TP53INP1 deficiency maintains murine B lymphopoiesis in aged bone marrow through redox-controlled IL-7R/STAT5 signaling. Proc Natl Acad Sci U S A 2018; 116:211-216. [PMID: 30559202 DOI: 10.1073/pnas.1809980116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone marrow (BM) produces all blood and immune cells deriving from hematopoietic stem cells (HSCs). The decrease of immune cell production during aging is one of the features of immunosenescence. The impact of redox dysregulation in BM aging is still poorly understood. Here we use TP53INP1-deficient (KO) mice endowed with chronic oxidative stress to assess the influence of aging-associated redox alterations in BM homeostasis. We show that TP53INP1 deletion has no impact on aging-related accumulation of HSCs. In contrast, the aging-related contraction of the lymphoid compartment is mitigated in TP53INP1 KO mice. B cells that accumulate in old KO BM are differentiating cells that can mature into functional B cells. Importantly, this phenotype results from B cell-intrinsic events associated with defective redox control. Finally, we show that oxidative stress in aged TP53INP1-deficient mice maintains STAT5 expression and activation in early B cells, driving high Pax5 expression, which provides a molecular mechanism for maintenance of B cell development upon aging.
Collapse
|
61
|
Leung A, Trac C, Kato H, Costello KR, Chen Z, Natarajan R, Schones DE. LTRs activated by Epstein-Barr virus-induced transformation of B cells alter the transcriptome. Genome Res 2018; 28:1791-1798. [PMID: 30381291 PMCID: PMC6280761 DOI: 10.1101/gr.233585.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Endogenous retroviruses (ERVs) are ancient viral elements that have accumulated in the genome through retrotransposition events. Although they have lost their ability to transpose, many of the long terminal repeats (LTRs) that originally flanked full-length ERVs maintain the ability to regulate transcription. While these elements are typically repressed in somatic cells, they can function as transcriptional enhancers and promoters when this repression is lost. Epstein-Barr virus (EBV), which transforms primary B cells into continuously proliferating cells, is a tumor virus associated with lymphomas. We report here that transformation of primary B cells by EBV leads to genome-wide activation of LTR enhancers and promoters. The activation of LTRs coincides with local DNA hypomethylation and binding by transcription factors such as RUNX3, EBF1, and EBNA2. The set of activated LTRs is unique to transformed B cells compared with other cell lines known to have activated LTRs. Furthermore, we found that LTR activation impacts the B cell transcriptome by up-regulating transcripts driven by cryptic LTR promoters. These transcripts include genes important to oncogenesis of Hodgkin lymphoma and other cancers, such as HUWE1/HECTH9 These data suggest that the activation of LTRs by EBV-induced transformation is important to the pathology of EBV-associated cancers. Altogether, our results indicate that EBV-induced transformation of B cells alters endogenous retroviral element activity, thereby impacting host gene regulatory networks and oncogenic potential.
Collapse
Affiliation(s)
- Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hiroyuki Kato
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| | - Zhaoxia Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
62
|
Ko KH, Lee IK, Kim G, Gu MJ, Kim HY, Park BC, Park TS, Han SH, Yun CH. Changes in bursal B cells in chicken during embryonic development and early life after hatching. Sci Rep 2018; 8:16905. [PMID: 30442912 PMCID: PMC6238004 DOI: 10.1038/s41598-018-34897-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/01/2018] [Indexed: 11/25/2022] Open
Abstract
The bursa of Fabricius, the primary lymphoid organ for B cell development found only in birds, offers novel approaches to study B cell differentiation at various developmental stages. Here, we explored the changes and mechanism involved in the developmental stages of bursal B cells. The bursal B cells rapidly increased in the late embryonic stage and around hatching, which coincided with changes in specific cell surface markers. Moreover, the cells in the bursa were divided by size into small (low forward- and side-scatter) or large (high forward- and side-scatter) via flow cytometry. It is intriguing that the proportion of small and large B cells was reversed during this period. Because little is known about this phenomenon, we hypothesized that size-based B cell population could be used as an indicator to distinguish their status and stage during B cell development in chicken. The results demonstrated that large B cells are actively proliferating cells than small B cells. Additionally, large B cells showed higher mRNA expression of both proliferation- and differentiation-associated genes compared to small B cells. Taken together, these data show that large bursal B cells are the main source of proliferation and differentiation during B cell development in chickens.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - In Kyu Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Girak Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, Dental Research Institute, and Brain Korea 21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Park
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Tae Sub Park
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, and Brain Korea 21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea. .,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
63
|
Active intermixing of indirect and direct neurons builds the striatal mosaic. Nat Commun 2018; 9:4725. [PMID: 30413696 PMCID: PMC6226429 DOI: 10.1038/s41467-018-07171-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular mosaic ensures the balanced activity of the two pathways, its developmental origin and pattern remains largely unknown. Here, we show that both SPN populations are specified embryonically and intermix progressively through multidirectional iSPN migration. Using conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, highlighting that intermixing is a parallel process to compartment formation. Our study reveals while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.
Collapse
|
64
|
Hosokawa H, Romero-Wolf M, Yui MA, Ungerbäck J, Quiloan MLG, Matsumoto M, Nakayama KI, Tanaka T, Rothenberg EV. Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16. Nat Immunol 2018; 19:1427-1440. [PMID: 30374131 PMCID: PMC6240390 DOI: 10.1038/s41590-018-0238-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
Multipotent progenitors confirm their T cell-lineage identity in the DN2 pro-T cell stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomic analysis revealed that Bcl11b associates with multiple cofactors, and that its direct action was needed to recruit these cofactors to selective target sites. These sites of Bcl11b-dependent cofactor recruitment were enriched near functionally regulated target genes, and deletion of individual cofactors relieved repression of many Bcl11b-repressed genes. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via Id2 and Zbtb16 (encoding PLZF), which were directly repressed by Bcl11b and controlled distinct alternative programs. Thus, this study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Maria L G Quiloan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University, Chuo-ku, Chiba, Japan.,AMED-CREST, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
65
|
Nagel S, MacLeod RAF, Meyer C, Kaufmann M, Drexler HG. NKL homeobox gene activities in B-cell development and lymphomas. PLoS One 2018; 13:e0205537. [PMID: 30308041 PMCID: PMC6181399 DOI: 10.1371/journal.pone.0205537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation. Several members of the NKL subclass are deregulated in T-cell progenitors and support leukemogenesis. We have recently described particular expression patterns of nine NKL homeobox genes in early hematopoiesis and T-cell development. Here, we screened NKL homeobox gene activities in normal B-cell development and extended the NKL-code to include this lymphoid lineage. Analysis of public expression profiling datasets revealed that HHEX and NKX6-3 were the only members differentially active in naïve B-cells, germinal center B-cells, plasma cells and memory B-cells. Subsequent examination of different types of B-cell malignancies showed both aberrant overexpression of NKL-code members and ectopic activation of subclass members physiologically silent in lymphopoiesis including BARX2, DLX1, EMX2, NKX2-1, NKX2-2 and NKX3-2. Based on these findings we performed detailed studies of the B-cell specific NKL homeobox gene NKX6-3 which showed enhanced activity in patient subsets of follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL), and in three DLBCL cell lines to serve as in vitro models. While excluding genomic and chromosomal rearrangements at the locus of NKX6-3 (8p11) promoter studies demonstrated that B-cell factors MYB and PAX5 activated NKX6-3 transcription. Furthermore, aberrant BMP7/SMAD1-signalling and deregulated expression of chromatin complex components AUTS2 and PCGF5 promoted NKX6-3 activation. Finally, NKL homeobox genes HHEX, HLX, MSX1 and NKX6-3 were expressed in B-cell progenitors and generated a regulatory gene network in cell lines which we propose may provide physiological support for NKL-code formation in early B-cell development. Together, we identified an NKL-code in B-cell development whose violation may deregulate differentiation and promote malignant transformation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
66
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
67
|
Pang SHM, de Graaf CA, Hilton DJ, Huntington ND, Carotta S, Wu L, Nutt SL. PU.1 Is Required for the Developmental Progression of Multipotent Progenitors to Common Lymphoid Progenitors. Front Immunol 2018; 9:1264. [PMID: 29942304 PMCID: PMC6005176 DOI: 10.3389/fimmu.2018.01264] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023] Open
Abstract
The transcription factor PU.1 is required for the development of mature myeloid and lymphoid cells. Due to this essential role and the importance of PU.1 in regulating several signature markers of lymphoid progenitors, its precise function in early lymphopoiesis has been difficult to define. Here, we demonstrate that PU.1 was required for efficient generation of lymphoid-primed multipotent progenitors (LMPPs) from hematopoietic stem cells and was essential for the subsequent formation of common lymphoid progenitors (CLPs). By contrast, further differentiation into the B-cell lineage was independent of PU.1. Examination of the transcriptional changes in conditional progenitors revealed that PU.1 activates lymphoid genes in LMPPs, while repressing genes normally expressed in neutrophils. These data identify PU.1 as a critical regulator of lymphoid priming and the transition between LMPPs and CLPs.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Carolyn A de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Oncology Research, Boehringer Ingelheim, Vienna, Austria
| | - Li Wu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
68
|
Lindqvist CM, Lundmark A, Nordlund J, Freyhult E, Ekman D, Carlsson Almlöf J, Raine A, Övernäs E, Abrahamsson J, Frost BM, Grandér D, Heyman M, Palle J, Forestier E, Lönnerholm G, Berglund EC, Syvänen AC. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget 2018; 7:64071-64088. [PMID: 27590521 PMCID: PMC5325426 DOI: 10.18632/oncotarget.11773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022] Open
Abstract
To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic and 24 relapse samples from 172 pediatric ALL patients. We found an overall greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the mutations in T-ALL had occurred in the original leukemic clone, while most of the mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified ATRX as a novel putative driver gene and uncovered an association between somatic mutations in the Notch signaling pathway at ALL diagnosis and increased risk of relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated genes. The genes highlighted in our study were frequently involved in epigenetic regulation, associated with germline susceptibility to ALL, and present in minor subclones at diagnosis that became dominant at relapse. We observed a high degree of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL and T-ALL, which could have implications for the treatment efficiency.
Collapse
Affiliation(s)
- C Mårten Lindqvist
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eva Freyhult
- Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Diana Ekman
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jonas Carlsson Almlöf
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elin Övernäs
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Britt-Marie Frost
- Department of Women's and Children's Health, University Children's Hospital, Uppsala, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Dan Grandér
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Mats Heyman
- Childhood Cancer Research Unit, Department of Women and Child Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Josefine Palle
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, University Children's Hospital, Uppsala, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Erik Forestier
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, University Children's Hospital, Uppsala, Sweden.,Nordic Society of Pediatric Hematology and Oncology
| | - Eva C Berglund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
69
|
Miyai T, Takano J, Endo TA, Kawakami E, Agata Y, Motomura Y, Kubo M, Kashima Y, Suzuki Y, Kawamoto H, Ikawa T. Three-step transcriptional priming that drives the commitment of multipotent progenitors toward B cells. Genes Dev 2018; 32:112-126. [PMID: 29440259 PMCID: PMC5830925 DOI: 10.1101/gad.309575.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/29/2017] [Indexed: 02/04/2023]
Abstract
Miyai et al. used multipotent progenitors harboring a tamoxifen-inducible form of Id3—where virtually all cells became B cells within 6 d by withdrawing 4-OHT—to identify a three-step transcription factor network model during specification of multipotent progenitors toward the B-cell lineage. Stem cell fate is orchestrated by core transcription factors (TFs) and epigenetic modifications. Although regulatory genes that control cell type specification are identified, the transcriptional circuit and the cross-talk among regulatory factors during cell fate decisions remain poorly understood. To identify the “time-lapse” TF networks during B-lineage commitment, we used multipotent progenitors harboring a tamoxifen-inducible form of Id3, an in vitro system in which virtually all cells became B cells within 6 d by simply withdrawing 4-hydroxytamoxifen (4-OHT). Transcriptome and epigenome analysis at multiple time points revealed that ∼10%–30% of differentially expressed genes were virtually controlled by the core TFs, including E2A, EBF1, and PAX5. Strikingly, we found unexpected transcriptional priming before the onset of the key TF program. Inhibition of the immediate early genes such as Nr4a2, Klf4, and Egr1 severely impaired the generation of B cells. Integration of multiple data sets, including transcriptome, protein interactome, and epigenome profiles, identified three representative transcriptional circuits. Single-cell RNA sequencing (RNA-seq) analysis of lymphoid progenitors in bone marrow strongly supported the three-step TF network model during specification of multipotent progenitors toward B-cell lineage in vivo. Thus, our findings will provide a blueprint for studying the normal and neoplastic development of B lymphocytes.
Collapse
Affiliation(s)
- Tomohiro Miyai
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Disease Biology Group, Medical Science Innovation Hub Program, RIKEN Cluster for Science and Technology Hub, Yokohama 230-0045, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Junichiro Takano
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Department of Immune Regulation Research, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Eiryo Kawakami
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Healthcare and Medical Data-Driven AI-based Predictive Reasoning Development Unit, Medical Science Innovation Hub Program, RIKEN Cluster for Science and Technology Hub, Yokohama 230-0045, Japan
| | - Yasutoshi Agata
- Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan
| | - Yasutaka Motomura
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda 278-0022, Japan.,Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda 278-0022, Japan.,Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yukie Kashima
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 272-8562, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 272-8562, Japan
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| |
Collapse
|
70
|
Li R, Cauchy P, Ramamoorthy S, Boller S, Chavez L, Grosschedl R. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Genes Dev 2018; 32:96-111. [PMID: 29440261 PMCID: PMC5830932 DOI: 10.1101/gad.309583.117] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023]
Abstract
B-cell fate determination requires the action of transcription factors that operate in a regulatory network to activate B-lineage genes and repress lineage-inappropriate genes. However, the dynamics and hierarchy of events in B-cell programming remain obscure. To uncouple the dynamics of transcription factor expression from functional consequences, we generated induction systems in developmentally arrested Ebf1-/- pre-pro-B cells to allow precise experimental control of EBF1 expression in the genomic context of progenitor cells. Consistent with the described role of EBF1 as a pioneer transcription factor, we show in a time-resolved analysis that EBF1 occupancy coincides with EBF1 expression and precedes the formation of chromatin accessibility. We observed dynamic patterns of EBF1 target gene expression and sequential up-regulation of transcription factors that expand the regulatory network at the pro-B-cell stage. A continuous EBF1 function was found to be required for Cd79a promoter activity and for the maintenance of an accessible chromatin domain that is permissive for binding of other transcription factors. Notably, transient EBF1 occupancy was detected at lineage-inappropriate genes prior to their silencing in pro-B cells. Thus, persistent and transient functions of EBF1 allow for an ordered sequence of epigenetic and transcriptional events in B-cell programming.
Collapse
Affiliation(s)
- Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Medicine, Division of Medial Genetics, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
71
|
Boller S, Li R, Grosschedl R. Defining B Cell Chromatin: Lessons from EBF1. Trends Genet 2018; 34:257-269. [PMID: 29336845 DOI: 10.1016/j.tig.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is regulated by signals from the microenvironment, transcription factor networks, and changes of the epigenetic landscape. Transcription factors interact with and shape chromatin to allow for lineage- and cell type-specific changes in gene expression. During B lymphopoiesis, epigenetic regulation is observed in multilineage progenitors in which a specific chromatin context is established, at the onset of the B cell differentiation when early B cell factor 1 (EBF1) induces lineage-specific changes in chromatin, during V(D)J recombination and after antigen-driven activation of B cells and terminal differentiation. In this review, we discuss the epigenetic changes underlying B cell differentiation, focusing on the role of transcription factor EBF1 in B cell lineage priming.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
72
|
Musa YR, Boller S, Puchalska M, Grosschedl R, Mittler G. Comprehensive Proteomic Investigation of Ebf1 Heterozygosity in Pro-B Lymphocytes Utilizing Data Independent Acquisition. J Proteome Res 2017; 17:76-85. [DOI: 10.1021/acs.jproteome.7b00369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaarub R. Musa
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Sören Boller
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Monika Puchalska
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Gerhard Mittler
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| |
Collapse
|
73
|
Boya R, Yadavalli AD, Nikhat S, Kurukuti S, Palakodeti D, Pongubala JMR. Developmentally regulated higher-order chromatin interactions orchestrate B cell fate commitment. Nucleic Acids Res 2017; 45:11070-11087. [PMID: 28977418 PMCID: PMC5737614 DOI: 10.1093/nar/gkx722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
Genome organization in 3D nuclear-space is important for regulation of gene expression. However, the alterations of chromatin architecture that impinge on the B cell-fate choice of multi-potent progenitors are still unclear. By integrating in situ Hi-C analyses with epigenetic landscapes and genome-wide expression profiles, we tracked the changes in genome architecture as the cells transit from a progenitor to a committed state. We identified the genomic loci that undergo developmental switch between A and B compartments during B-cell fate determination. Furthermore, although, topologically associating domains (TADs) are stable, a significant number of TADs display structural alterations that are associated with changes in cis-regulatory interaction landscape. Finally, we demonstrate the potential roles for Ebf1 and its downstream factor, Pax5, in chromatin reorganization and transcription regulation. Collectively, our studies provide a general paradigm of the dynamic relationship between chromatin reorganization and lineage-specific gene expression pattern that dictates cell-fate determination.
Collapse
Affiliation(s)
- Ravi Boya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anurupa Devi Yadavalli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sameena Nikhat
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore 560065, India
| | - Jagan M R Pongubala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
74
|
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol 2017; 34:369-94. [PMID: 27168242 DOI: 10.1146/annurev-immunol-041015-055427] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| |
Collapse
|
75
|
Glaser LV, Rieger S, Thumann S, Beer S, Kuklik-Roos C, Martin DE, Maier KC, Harth-Hertle ML, Grüning B, Backofen R, Krebs S, Blum H, Zimmer R, Erhard F, Kempkes B. EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathog 2017; 13:e1006664. [PMID: 28968461 PMCID: PMC5638620 DOI: 10.1371/journal.ppat.1006664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. Epstein-Barr virus (EBV) infection is closely linked to cancer development. At particular risk are immunocompromised individuals like post-transplant patients which can develop B cell lymphomas. In healthy individuals EBV preferentially infects B cells and establishes a latent infection without causing apparent clinical symptoms in most cases. Upon infection, Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates a B cell specific gene expression program that causes activation and proliferation of the infected cells. EBNA2 is a transcription factor well known to use a cellular protein, CBF1/CSL, as a DNA adaptor. CBF1/CSL is a sequence specific DNA binding protein robustly expressed in all tissues. Here we show that EBNA2 can form complexes with early B cell factor 1 (EBF1), a B cell specific DNA binding transcription factor, and EBF1 stabilizes EBNA2 chromatin binding. This EBNA2/EBF1 complex might serve as a novel target to develop future small molecule strategies that act as antivirals in latent B cell infection.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Simone Rieger
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sybille Thumann
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sophie Beer
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | - Björn Grüning
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ralf Zimmer
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Erhard
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
76
|
MicroRNA-98 interferes with thrombospondin 1 expression in peripheral B cells of patients with asthma. Biosci Rep 2017; 37:BSR20170149. [PMID: 28760845 PMCID: PMC5577176 DOI: 10.1042/bsr20170149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/09/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Abstract
Thrombospondin 1 (TSP1)-producing B cells are an important immune regulatory cell fraction in the body, which are compromised in a number of immune diseases. miRs are involved in the immune regulation. The present study aims to elucidate the mechanism by which miR-98 interferes with the expression of TSP1 in B cells of the peripheral blood system. In the present study, peripheral blood samples were collected from patients with allergic asthma. The B cells were isolated from the blood samples to be analyzed for the expression of miR-98 and TSP1. The results showed that the levels of miR-98 were higher, the levels of TSP1 were lower, in B cells isolated from the peripheral blood in patients with asthma. A negative correlation was identified between the data of miR-98 and TSP1 in B cells. Exposure to T helper (Th) 2 (Th2) cytokine, interleukin (IL)-13, increased the expression of miR-98 and suppressed the expression of TSP1 in peripheral B cells, which was abolished by knocking down the miR-98 gene. In conclusion, miR-98 can suppress the expression of TSP1 in the peripheral B cells of patients with allergic asthma.
Collapse
|
77
|
Hosokawa Y, Toyoda T, Fukui K, Baden MY, Funato M, Kondo Y, Sudo T, Iwahashi H, Kishida M, Okada C, Watanabe A, Asaka I, Osafune K, Imagawa A, Shimomura I. Insulin-producing cells derived from 'induced pluripotent stem cells' of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Investig 2017; 9:481-493. [PMID: 28796422 PMCID: PMC5934265 DOI: 10.1111/jdi.12727] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 01/28/2023] Open
Abstract
AIMS/INTRODUCTION The present study was carried out to generate induced pluripotent stem cells (iPSCs) from patients with fulminant type 1 diabetes, and evaluate the cytokine-induced apoptotic reactions of β-like insulin-producing cells differentiated from the iPSCs. MATERIALS AND METHODS iPSCs were generated from fibroblasts of patients with fulminant type 1 diabetes by inducing six reprogramming factors. Insulin-producing cells were differentiated from the iPSCs in vitro. The proportion of cleaved caspase-3-positive or terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling-positive cells among insulin (INS)-positive cells derived from fulminant type 1 diabetes iPSC and control human iPSC lines was evaluated under treatment with tumor necrosis factor-α, interleukin-1β and interferon-γ. Ribonucleic acid sequencing was carried out to compare gene expressions in INS-positive cells derived from fulminant type 1 diabetes iPSC and control human iPSC lines. RESULTS Two iPSC clones were established from each of three patients with fulminant type 1 diabetes. The differentiation of insulin-producing cells from fulminant type 1 diabetes iPSC was confirmed by immunofluorescence analysis and KCl-induced C-peptide secretion. After treatment with pro-inflammatory cytokines, these INS-positive cells showed higher expression of cleaved caspase-3 than those derived from control human iPSCs. Altered expression levels of several apoptosis-related genes were observed in INS-positive cells derived from the fulminant type 1 diabetes iPSCs by ribonucleic acid sequencing. CONCLUSIONS We generated iPSCs from patients with fulminant type 1 diabetes and differentiated them into insulin-producing cells. This in vitro disease model can be used to elucidate the disease mechanisms of fulminant type 1 diabetes.
Collapse
Affiliation(s)
- Yoshiya Hosokawa
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Kenji Fukui
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Megu Yamaguchi Baden
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Michinori Funato
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Department of Clinical ResearchNational Hospital OrganizationNagara Medical CenterGifuJapan
| | - Yasushi Kondo
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Department of Diabetes, Endocrinology and NutritionKyoto UniversityKyotoJapan
| | - Tomomi Sudo
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Hiromi Iwahashi
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
- Department of Diabetes Care MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Marina Kishida
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Japan Agency for Medical Research and Development (AMED)‐CRESTJapan
| | - Chihiro Okada
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Mitsubishi Space SoftwareTokyoJapan
| | - Akira Watanabe
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Japan Agency for Medical Research and Development (AMED)‐CRESTJapan
| | - Isao Asaka
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Akihisa Imagawa
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
- Department of Internal Medicine (I)Osaka Medical CollegeOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
78
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
79
|
Barr JY, Goodfellow RX, Colgan DF, Colgan JD. Early B Cell Progenitors Deficient for GON4L Fail To Differentiate Due to a Block in Mitotic Cell Division. THE JOURNAL OF IMMUNOLOGY 2017; 198:3978-3988. [PMID: 28381640 DOI: 10.4049/jimmunol.1602054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022]
Abstract
B cell development in Justy mutant mice is blocked due to a precursor mRNA splicing defect that depletes the protein GON4-like (GON4L) in B cell progenitors. Genetic and biochemical studies have suggested that GON4L is a transcriptional regulator that coordinates cell division with differentiation, but its role in B cell development is unknown. To understand the function of GON4L, we characterized B cell differentiation, cell cycle control, and mitotic gene expression in GON4L-deficient B cell progenitors from Justy mice. We found that these cells established key aspects of the transcription factor network that guides B cell development and proliferation and rearranged the IgH gene locus. However, despite intact IL-7 signaling, GON4L-deficient pro-B cell stage precursors failed to undergo a characteristic IL-7-dependent proliferative burst. These cells also failed to upregulate genes required for mitotic division, including those encoding the G1/S cyclin D3 and E2F transcription factors and their targets. Additionally, GON4L-deficient B cell progenitors displayed defects in DNA synthesis and passage through the G1/S transition, contained fragmented DNA, and underwent apoptosis. These phenotypes were not suppressed by transgenic expression of prosurvival factors. However, transgenic expression of cyclin D3 or other regulators of the G1/S transition restored pro-B cell development from Justy progenitor cells, suggesting that GON4L acts at the beginning of the cell cycle. Together, our findings indicate that GON4L is essential for cell cycle progression and division during the early stages of B cell development.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Renee X Goodfellow
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - Diana F Colgan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - John D Colgan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and.,Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
80
|
Harms FL, Girisha KM, Hardigan AA, Kortüm F, Shukla A, Alawi M, Dalal A, Brady L, Tarnopolsky M, Bird LM, Ceulemans S, Bebin M, Bowling KM, Hiatt SM, Lose EJ, Primiano M, Chung WK, Juusola J, Akdemir ZC, Bainbridge M, Charng WL, Drummond-Borg M, Eldomery MK, El-Hattab AW, Saleh MAM, Bézieau S, Cogné B, Isidor B, Küry S, Lupski JR, Myers RM, Cooper GM, Kutsche K. Mutations in EBF3 Disturb Transcriptional Profiles and Cause Intellectual Disability, Ataxia, and Facial Dysmorphism. Am J Hum Genet 2017; 100:117-127. [PMID: 28017373 PMCID: PMC5223027 DOI: 10.1016/j.ajhg.2016.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022] Open
Abstract
From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.
Collapse
Affiliation(s)
- Frederike Leonie Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, 576104 Manipal, India
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, 576104 Manipal, India
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Center for Bioinformatics, University of Hamburg, 20246 Hamburg, Germany; Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20246 Hamburg, Germany
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, 500001 Hyderabad, Telangana, India
| | - Lauren Brady
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92123, USA; Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - Sophia Ceulemans
- Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Edward J Lose
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Primiano
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | | | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew Bainbridge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, 15258 Al-Ain, United Arab Emirates
| | - Mohammed A M Saleh
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, 11564 Riyadh, Saudi Arabia
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44093 Nantes Cedex 1, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44093 Nantes Cedex 1, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44093 Nantes Cedex 1, France; INSERM UMR-S 957, 44035 Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, 44093 Nantes Cedex 1, France
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
81
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
82
|
Moruzzo D, Nobbio L, Sterlini B, Consalez GG, Benfenati F, Schenone A, Corradi A. The Transcription Factors EBF1 and EBF2 Are Positive Regulators of Myelination in Schwann Cells. Mol Neurobiol 2016; 54:8117-8127. [DOI: 10.1007/s12035-016-0296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
83
|
Yang CY, Ramamoorthy S, Boller S, Rosenbaum M, Rodriguez Gil A, Mittler G, Imai Y, Kuba K, Grosschedl R. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis. Genes Dev 2016; 30:2310-2324. [PMID: 27807034 PMCID: PMC5110997 DOI: 10.1101/gad.285452.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
Yang et al. used SILAC-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells and identified most components of the multifunctional CCR4–NOT complex, which regulates transcription and mRNA degradation. The interaction of the CCR4–NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation. Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4–NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1−/− progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4–NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4–NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Cheng-Yuan Yang
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Marc Rosenbaum
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Alfonso Rodriguez Gil
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Yumiko Imai
- Department of Biochemistry and Metabolic Sciences, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Sciences, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
84
|
Schwartz AM, Putlyaeva LV, Covich M, Klepikova AV, Akulich KA, Vorontsov IE, Korneev KV, Dmitriev SE, Polanovsky OL, Sidorenko SP, Kulakovskiy IV, Kuprash DV. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1259-68. [PMID: 27424222 DOI: 10.1016/j.bbagrm.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Milica Covich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
85
|
Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L, Mangoni A, Fedele AL, Di Mario C, Gigante MR, Gremese E, McInnes IB, Ferraccioli G. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun 2016; 7:12970. [PMID: 27671860 PMCID: PMC5052655 DOI: 10.1038/ncomms12970] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA. MiR-155 is thought to inhibit PU.1 and thereby drive antigen-induced B-cell maturation. Here the authors show that patients with rheumatoid arthritis have high B-cell miR-155 expression and that an antagomir can rescue PU.1 expression, suggesting potential therapeutic avenues to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Roberta Benvenuto
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Silvia Canestri
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Antonella Mangoni
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy.,Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| |
Collapse
|
86
|
Yang Z, Shah K, Khodadadi-Jamayran A, Jiang H. Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. J Exp Med 2016; 213:2349-2364. [PMID: 27647347 PMCID: PMC5068233 DOI: 10.1084/jem.20160185] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
As the major histone H3K4 methyltransferases in mammals, the Set1/Mll complexes play important roles in animal development and are associated with many diseases, including hematological malignancies. However, the role of the H3K4 methylation activity of these complexes in fate determination of hematopoietic stem and progenitor cells (HSCs and HPCs) remains elusive. Here, we address this question by generating a conditional knockout mouse for Dpy30, which is a common core subunit of all Set1/Mll complexes and facilitates genome-wide H3K4 methylation in cells. Dpy30 loss in the adult hematopoietic system results in severe pancytopenia but striking accumulation of HSCs and early HPCs that are defective in multilineage reconstitution, suggesting a differentiation block. In mixed bone marrow chimeras, Dpy30-deficient HSCs cannot differentiate or efficiently up-regulate lineage-regulatory genes, and eventually fail to sustain for long term with significant loss of HSC signature gene expression. Our molecular analyses reveal that Dpy30 directly and preferentially controls H3K4 methylation and expression of many hematopoietic development-associated genes including several key transcriptional and chromatin regulators involved in HSC function. Collectively, our results establish a critical and selective role of Dpy30 and the H3K4 methylation activity of the Set1/Mll complexes for maintaining the identity and function of adult HSCs.
Collapse
Affiliation(s)
- Zhenhua Yang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama School of Medicine, Birmingham, AL 35210
| |
Collapse
|
87
|
|
88
|
Boller S, Ramamoorthy S, Akbas D, Nechanitzky R, Burger L, Murr R, Schübeler D, Grosschedl R. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity 2016; 44:527-541. [PMID: 26982363 DOI: 10.1016/j.immuni.2016.02.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/03/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Duygu Akbas
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Robert Nechanitzky
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Rabih Murr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
89
|
Kabat-Koperska J, Kolasa-Wołosiuk A, Wojciuk B, Wojciechowska-Koszko I, Roszkowska P, Krasnodębska-Szponder B, Paczkowska E, Safranow K, Gołembiewska E, Machaliński B, Ciechanowski K. The influence of intrauterine exposure to immunosuppressive treatment on changes in the immune system in juvenile Wistar rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2279-88. [PMID: 27471376 PMCID: PMC4948737 DOI: 10.2147/dddt.s102189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background In our study, we assessed the impact of immunosuppressive drug combinations on changes in the immune system of juvenile Wistar rats exposed to these drugs during pregnancy. We primarily concentrated on changes in two organs of the immune system – the thymus and the spleen. Methods The study was conducted on 40 (32+8) female Wistar rats administered full and half dose of drugs, respectively, subjected to regimens commonly used in therapy of human kidney transplant recipients ([1] cyclosporine A, mycophenolate mofetil, and prednisone; [2] tacrolimus, mycophenolate mofetil, and prednisone; [3] cyclosporine A, everolimus, and prednisone). The animals received drugs by oral gavage 2 weeks before pregnancy and during 3 weeks of pregnancy. Results There were no statistically significant differences in the weight of the thymus and spleen, but changes were found in the results of blood hematology, cytometry from the spleen, and a histologic examination of the examined immune organs of juvenile Wistar rats. In the cytokine assay, changes in the level of interleukine 17 (IL-17) after increasing amounts of concanavaline A were dose-dependent; the increase of IL-17 was blocked after administration of higher doses of immunosuppressive drugs. However, after a reduction of doses, its increase resumed. Conclusion Qualitative, quantitative, and morphological changes in the immune system of infant rats born to pharmacologically immunosuppressed females were observed. Thymus structure, spleen composition, and splenocyte IL-17 production were mostly affected in a drug regimen–dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | | | | | |
Collapse
|
90
|
Al Dallal S, Wolton K, Hentges KE. Zfp521 promotes B-cell viability and cyclin D1 gene expression in a B cell culture system. Leuk Res 2016; 46:10-7. [PMID: 27107743 PMCID: PMC4910839 DOI: 10.1016/j.leukres.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/13/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Knockdown of Zfp521 in BCL1 cell culture reduces viability and promotes apoptosis. Genes expressed in B cells are down-regulated in cells with Zfp521 knockdown. Cyclin D1 expression is increased in mouse tumors with Zfp521 over-expression.
Leukemia arises due to the dysregulated proliferation of hematopoietic progenitor cells. Errors in the multi-step commitment process result in excessive numbers of immature lymphocytes, causing malignant disease. Genes involved in the differentiation of lymphocytes are often associated with leukemia. One such gene, Zfp521, has been found to cause B-cell leukemia in mice when over-expressed. The role of Zfp521 in B-cell differentiation, and the mechanisms by which it leads to leukemic transformation, are unclear. In this study we report that Zfp521 knockdown causes apoptosis in a B-cell culture system and promotes down-regulation of genes acting at late stages of B-cell differentiation. We identify Pax5 and cyclin D1 as Zfp521 target genes, and suggest that excessive B-cell proliferation observed in mice with retroviral insertions near the Zfp521 gene is due to an up-regulation of cyclin D1 in B-cells. Overall, these results suggest links between dysregulated Zfp521 and B-cell survival.
Collapse
Affiliation(s)
- Salma Al Dallal
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn Wolton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
91
|
EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1. PLoS Pathog 2016; 12:e1005339. [PMID: 26752713 PMCID: PMC4709166 DOI: 10.1371/journal.ppat.1005339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/21/2015] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival. Epstein-Barr Virus (EBV) reprograms host cell transcription through multiple mechanisms. Here, we show that EBV-encoded transcriptional co-activator EBNA2 drives the formation of new chromosome binding sites for host cell factors RBP-jκ and EBF1. The formation of these new sites is EBNA2-dependent. These newly formed sites have overlapping or neighboring consensus binding sites for these factors, but are only co-occupied in the presence of EBNA2. Newly formed, co-occupied binding sites are highly enriched at promoter and enhancer regulatory elements of genes activated by EBV and required for B-cell proliferation and survival. These findings indicate that EBNA2 drives cooperative and combinatorial transcription factor interactions on chromosomal DNA. We suggest that models depicting the static binding of master regulatory transcription factors to consensus binding sites be revised, and that co-activators, like EBNA2, induce dynamic and combinatorial selection of genome-wide binding sites to alter gene regulation.
Collapse
|
92
|
ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:165238. [PMID: 26788497 PMCID: PMC4695665 DOI: 10.1155/2015/165238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies.
Collapse
|
93
|
Ezeh PC, Xu H, Lauer FT, Liu KJ, Hudson LG, Burchiel SW. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicol Sci 2015; 149:289-99. [PMID: 26518055 DOI: 10.1093/toxsci/kfv233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our previously published data show that As(+3) in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As(+3) metabolite, monomethylarsonous acid (MMA(+3)), was responsible for the observed pre-B cell toxicity caused by As(+3). Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA(+3) inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As(+3) occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA(+3), and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA(+3) at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA(+3). Since 2E8 cells lack the enzymes responsible for the conversion of As(+3) to MMA(+3) in vitro, the results of these studies suggest that As(+3) induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA(+3) which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells.
Collapse
Affiliation(s)
- Peace C Ezeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| | - Huan Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131-0001
| |
Collapse
|
94
|
Abstract
In this issue of Blood, Prasad et al provide evidence for a new role for the B-lineage transcriptional regulator early B-cell factor 1 (Ebf1) during early B-cell development and B-cell acute lymphoblastic leukemia (B-ALL).
Collapse
|
95
|
Affiliation(s)
- Suzanne Cory
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| |
Collapse
|
96
|
Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stütz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cavé H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Höll JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grümayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schäfer D, Schrappe M, Schreiber S, Schütte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015. [PMID: 26214592 PMCID: PMC4603357 DOI: 10.1038/ng.3362] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.
Collapse
Affiliation(s)
- Ute Fischer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Rinaldi
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Risch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stéphanie Sungalee
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beat Bornhauser
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Gombert
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Kratsch
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joelle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Catherine L Worth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Thies Bartram
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Basso
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Cengiz Canpolat
- Department of Pediatrics, Acıbadem University Medical School, Ataşehir, Istanbul, Turkey
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Dardane Dakaj
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Cornelia Eckert
- Pediatric Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabrina Eugster
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Viktoras Frismantas
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sebastian Ginzel
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Heidenreich
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kebria Hezaveh
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jessica I Höll
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Peter Husemann
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Geertruy Te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Blerim Marovca
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Felix Niggli
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthony V Moorman
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Britt S Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Meryem Ralser
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniel Schäfer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Marketa Zaliova
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Childhood Leukaemia Investigation Prague (CLIP), Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Langhui Zhang
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Thomas Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Reseach and Medical Systems Biology, Berlin, Germany
| | - Arndt Borkhardt
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jean-Pierre Bourquin
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
97
|
Singh H. Transcriptional and epigenetic networks orchestrating immune cell development and function. Immunol Rev 2015; 261:5-8. [PMID: 25123273 DOI: 10.1111/imr.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Harinder Singh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
98
|
Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood 2015; 125:4052-9. [PMID: 25838350 DOI: 10.1182/blood-2014-12-617282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Early B-cell factor 1 (Ebf1) is a transcription factor with documented dose-dependent functions in normal and malignant B-lymphocyte development. To understand more about the roles of Ebf1 in malignant transformation, we investigated the impact of reduced functional Ebf1 dosage on mouse B-cell progenitors. Gene expression analysis suggested that Ebf1 was involved in the regulation of genes important for DNA repair and cell survival. Investigation of the DNA damage in steady state, as well as after induction of DNA damage by UV light, confirmed that pro-B cells lacking 1 functional allele of Ebf1 display signs of increased DNA damage. This correlated to reduced expression of DNA repair genes including Rad51, and chromatin immunoprecipitation data suggested that Rad51 is a direct target for Ebf1. Although reduced dosage of Ebf1 did not significantly increase tumor formation in mice, a dramatic increase in the frequency of pro-B cell leukemia was observed in mice with combined heterozygous mutations in the Ebf1 and Pax5 genes, revealing a synergistic effect of combined dose reduction of these proteins. Our data suggest that Ebf1 controls DNA repair in a dose-dependent manner providing a possible explanation to the frequent involvement of EBF1 gene loss in human leukemia.
Collapse
|
99
|
Alberghini F, Petrocelli V, Rahmat M, Casola S. An epigenetic view of B‐cell disorders. Immunol Cell Biol 2015; 93:253-60. [DOI: 10.1038/icb.2014.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Mahshid Rahmat
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| | - Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| |
Collapse
|