51
|
Biragyn A, Longo DL. Neoplastic "Black Ops": cancer's subversive tactics in overcoming host defenses. Semin Cancer Biol 2012; 22:50-9. [PMID: 22257681 DOI: 10.1016/j.semcancer.2012.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Metastatic cancer is usually an incurable disease. Cancers have a broad repertoire of subversive tactics to defeat the immune system. They mimic self, they down-regulate MHC molecules so that T cells are blind to their presence, they interfere with antigen presentation, and they produce factors that can kill T cells or paralyze their response to antigens. Furthermore, the same powerful machinery designed to prevent harmful autoimmune responses is also acting to protect cancers. In particular, cancer is protected with the help of so-called regulatory immune cells. These unique subsets of cells, represented by almost every immune cell type, function to control responses of effector immune cells. In this review, we will discuss the evidence that cancer actively promotes cross-talk of regulatory immune cells to evade immunosurveillance. We will also discuss the role of a newly described cell type, regulatory B cells, by emphasizing their importance in suppression of antitumor immune responses. Thus, cancer not only directly suppresses immune function, but also recruits components of the immune system to become traitors and protect the tumor from immune attack.
Collapse
Affiliation(s)
- Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, United States.
| | | |
Collapse
|
52
|
Abstract
UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and nonmelanoma skin cancer). Exposure to UV radiation also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of dermatologists and cancer biologists to understand how UV radiation exposure suppresses the immune response and contributes to skin cancer induction led to the development of the subdiscipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples in which investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and natural killer T (NKT) cells, as well as the immune-suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of cutaneous science, we provide examples of how concepts that grew out of efforts by immunologists and dermatologists to understand immune regulation by UV radiation affected immunology in general.
Collapse
|
53
|
Halliday GM, Byrne SN, Damian DL. Ultraviolet A Radiation: Its Role in Immunosuppression and Carcinogenesis. ACTA ACUST UNITED AC 2011; 30:214-21. [DOI: 10.1016/j.sder.2011.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/07/2011] [Indexed: 11/29/2022]
|
54
|
Scott NM, Lambert MJM, Gorman S, McGlade JP, Hart PH. Differences in control by UV radiation of inflammatory airways disease in naïve and allergen pre-sensitised mice. Photochem Photobiol Sci 2011; 10:1894-901. [PMID: 22002339 DOI: 10.1039/c1pp05206c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exposure of skin to UV radiation (UVR) prior to allergen exposure can inhibit inflammatory airways disease in mice by reducing effector CD4+ T cells in both the trachea and the airway draining lymph nodes. This study analysed the immunomodulatory properties of UVR delivered to naïve versus allergen pre-sensitised mice. In a model of inflammatory airways disease, BALB/c mice were sensitised by peritoneal injection of the allergen, ovalbumin (OVA) (20 μg/mouse), in the adjuvant, alum (4 mg/mouse), on days 0 and 14. On day 21, the mice were exposed to aerosolised OVA and 24 h later, proliferative responses by the cells in the airway draining lymph nodes were examined. UVR (8 kJ m(-2)) was administered 3 days prior to first OVA sensitisation (day -3), or OVA aerosol challenge (day 18). UVR before sensitisation reduced immune responses associated with expression of allergic airways disease; seven days after first OVA sensitisation, regulation of OVA-induced proliferation in vitro but not in vivo by CD4+CD25+ cells from UV-irradiated mice was detected. UVR administered to pre-sensitised mice regulated allergen responsiveness by cells from the airway draining lymph nodes only with a sensitisation protocol involving allergen and adjuvant at 5% strength of the original dose (1 μg OVA in 0.2 mg alum/mouse). These results suggest that UVR may modulate allergic airways disease by two mechanisms. The first, and more potent, is by reducing effector cells in respiratory tissues and requires UV delivery prior to sensitisation. The second, associated with administration to pre-sensitised mice, is weaker and is detected when the mice are sensitised with lower levels of allergen and adjuvant.
Collapse
Affiliation(s)
- Naomi M Scott
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, West Perth, Australia
| | | | | | | | | |
Collapse
|
55
|
Rana S, Rogers LJ, Halliday GM. Systemic low-dose UVB inhibits CD8 T cells and skin inflammation by alternative and novel mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2783-91. [PMID: 21641400 DOI: 10.1016/j.ajpath.2011.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/07/2011] [Accepted: 02/17/2011] [Indexed: 01/20/2023]
Abstract
Exposure to UVB radiation before antigen delivery at an unirradiated site inhibits functional immunological responses. Mice treated dorsally with suberythemal low-dose UVB and immunized with ova in abdominal skin generated ova-specific CD8 T cells with a significantly decreased activation, expansion, and cytotoxic activity compared with unirradiated mice. UVB also impaired the delayed-type hypersensitivity (DTH) reaction to ova. Transfer of CD4⁺CD25⁺cells from UVB-exposed mice did not suppress the ova-specific CD8 T-cell response or DTH reaction in unexposed mice, confirming that systemic low-dose UVB does not induce long-lived functional regulatory CD4⁺CD25⁺ T cells. Repairing cyclobutane pyrimidine dimer-type DNA damage and blocking aryl hydrocarbon receptor signaling also did not reverse the immunosuppressive effect of UVB on ova-specific CD8 T cells and DTH, suggesting that cyclobutane pyrimidine dimers and the aryl hydrocarbon receptor are not required in systemic low-dose UVB-induced immunosuppression. The known UVB chromophore, cis-urocanic acid, and reactive oxygen species triggered the inhibition of DTH caused by UVB, but they were not involved in the modulation of CD8 T cells. These findings indicate that systemic low-dose UVB impedes the primary response of antigen-specific CD8 T cells by a novel mechanism that is independent of pathways known to be involved in systemic suppression of DTH.
Collapse
Affiliation(s)
- Sabita Rana
- Discipline of Dermatology, Central Clinical School, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
56
|
The challenges of UV-induced immunomodulation for children's health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:323-32. [PMID: 21875613 DOI: 10.1016/j.pbiomolbio.2011.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 02/01/2023]
Abstract
Exposure to solar ultraviolet radiation (UVR) is recognised to have both beneficial and harmful effects on human health. With regard to immune responses, it can lead to suppression of immunity and to the synthesis of vitamin D, a hormone that can alter both innate and adaptive immunity. The consequences in children of such UV-induced changes are considerable: first there are positive outcomes including protection against some photoallergic (for example polymorphic light eruption) and T cell-mediated autoimmune diseases (for example multiple sclerosis) and asthma, and secondly there are negative outcomes including an increased risk of skin cancer (squamous cell carcinoma, basal cell carcinoma and cutaneous malignant melanoma) and less effective control of several infectious diseases. Many uncertainties remain regarding the amount of sun exposure that would provide children with the most effective responses against the variety of immunological challenges that they are likely to experience.
Collapse
|
57
|
Norval M, Halliday GM. The consequences of UV-induced immunosuppression for human health. Photochem Photobiol 2011; 87:965-77. [PMID: 21749399 DOI: 10.1111/j.1751-1097.2011.00969.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exposure to UV radiation can cause suppression of specific immune responses. The pathways leading to the down-regulation are complex, starting from the absorption of UV photons by chromophores in the skin and ending with local and systemic changes in immune mediators, the generation of T and B regulatory cells and inhibition of effector and memory T cell activation. The consequences for human health are thought to be both beneficial and adverse. The former are illustrated by protection against polymorphic light eruption, and possible protection against T cell-mediated autoimmune diseases and asthma. The latter are illustrated by skin cancer, cutaneous lupus erythematosus and infectious diseases including vaccination. Many outstanding questions remain in this rapidly developing and controversial area, not least what advice to give the general public regarding their sun exposure. While considerable advances have been made in the development of strategies that preserve the health benefits of sunlight exposure and decrease its detrimental effects, further research is required before optimal levels of protection are achieved.
Collapse
Affiliation(s)
- Mary Norval
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | |
Collapse
|
58
|
Linder N, Abudi Y, Abdalla W, Badir M, Amitai Y, Samuels J, Mendelson E, Levy I. Effect of season of inoculation on immune response to rubella vaccine in children. J Trop Pediatr 2011; 57:299-302. [PMID: 19889749 DOI: 10.1093/tropej/fmp104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The yearly seasons are marked by changes in the amount of sunlight. Ultraviolet radiation (UVR) is known to adversely affect the course of viral infections, immunologic memory and cellular and humoral immune responses. Our objectives were to investigate potential differences in the immune response of the rubella vaccine after 3-4 years by season of inoculation. Children aged 4-5 years attending four kindergartens in villages in northern Israel, all of whom had been vaccinated at 1 year of age, were enrolled in the study. Participants were divided into three groups by season of the year in which the inoculation was performed: summer (N = 63), winter (N = 36) and intermediate (N = 104). Main outcome measures were mean geometrical titer of rubella antibodies and complete, partial or no immunity to rubella by season of inoculation. Of the 203 children tested, 186 (91.6%) had adequate antibody levels, 7 (3.4%) had equivocal levels and 10 (4.9%) had inadequate levels. Significantly higher mean geometrical titers were found in the winter-inoculated compared with the summer-inoculated group (73.0 ± 2.6 vs 47.6 ± 2.8; p < 0.05). The same tendency was noted in the percent of infants properly immunized. This preliminary study shows a strong correlation between the immune response to rubella vaccine and the season of vaccination. Immunogenicity may be improved by inoculating children during seasons of less sunlight or by reducing the children's exposure to sunlight following inoculation. This practice is especially important in areas with extreme seasonal variability in solar radiation and tropical areas. Further studies are needed to corroborate and expand these findings.
Collapse
Affiliation(s)
- Nehama Linder
- Department of Neonatology, Rabin Medical Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Norval M, Woods GM. UV-induced immunosuppression and the efficacy of vaccination. Photochem Photobiol Sci 2011; 10:1267-74. [PMID: 21713277 DOI: 10.1039/c1pp05105a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ultraviolet radiation (UVR) suppresses immunity by complex pathways, initiated by chromophores located in the skin and ending with the generation of specific subsets of T and B regulatory cells. The primary and memory (recall) immune response to a wide variety of antigens, including microorganisms, can be reduced by UVR, leading to the possibility that the efficacy of vaccination could be similarly reduced. A limited number of animal models of vaccination demonstrate that this may indeed be the case. The situation in human subjects has not been rigorously assessed but there are indications from a variety of sources that UVR adversely affects the immune responses to several vaccines. These studies are reviewed and the implications for vaccine administration discussed. As vaccination represents a major public health measure world-wide for the control of an increasing number of common infections, it is important to maximise its efficacy; therefore further evaluation of UVR in the context of vaccination is required and warranted.
Collapse
Affiliation(s)
- Mary Norval
- Biomedical Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.
| | | |
Collapse
|
60
|
Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells. Cancer Res 2011; 71:3505-15. [PMID: 21444674 PMCID: PMC3096701 DOI: 10.1158/0008-5472.can-10-4316] [Citation(s) in RCA: 472] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary metastasis of breast cancer requires recruitment and expansion of T-regulatory cells (Treg) that promote escape from host protective immune cells. However, it remains unclear precisely how tumors recruit Tregs to support metastatic growth. Here we report the mechanistic involvement of a unique and previously undescribed subset of regulatory B cells. These cells, designated tumor-evoked Bregs (tBreg), phenotypically resemble activated but poorly proliferative mature B2 cells (CD19(+) CD25(High) CD69(High)) that express constitutively active Stat3 and B7-H1(High) CD81(High) CD86(High) CD62L(Low) IgM(Int). Our studies with the mouse 4T1 model of breast cancer indicate that the primary role of tBregs in lung metastases is to induce TGF-β-dependent conversion of FoxP3(+) Tregs from resting CD4(+) T cells. In the absence of tBregs, 4T1 tumors cannot metastasize into the lungs efficiently due to poor Treg conversion. Our findings have important clinical implications, as they suggest that tBregs must be controlled to interrupt the initiation of a key cancer-induced immunosuppressive event that is critical to support cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Ronald E. Gress
- Experimental Transplantation and Immunology Branch, Bethesda, MD
| | - Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, MD
| | | | | | - Robert P. Wersto
- Flow Cytometry Unit, Research Resources Branch, National Institute on Aging, Baltimore, MD
| | - Arya Biragyn
- Please address correspondence to: Arya Biragyn, Ph.D., National Institute on Aging, 251 Bayview Blvd, Suite 100, Rm.08C220, Baltimore, Maryland 21224. Ph. (410) 558-8680; Fax: (410) 558-8284;
| |
Collapse
|
61
|
Byrne SN, Beaugie C, O'Sullivan C, Leighton S, Halliday GM. The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:211-22. [PMID: 21703403 DOI: 10.1016/j.ajpath.2011.03.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/08/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The cellular and molecular mechanisms by which UV radiation modulates inflammation and immunity while simultaneously maintaining skin homeostasis is complex and not completely understood. Similar to the effects of UV, IL-33 has potent immune-modulating properties that are mediated by the downstream induction of cytokines and chemokines. We have discovered that exposure of mice in vivo or human skin samples ex vivo to inflammatory doses of UVB induced IL-33 expression within the epidermal and dermal skin layers. Using a combination of murine cell lines and primary human cells, we demonstrate that both UV and the oxidized lipid platelet activating factor induce IL-33 expression in keratinocytes and dermal fibroblasts. Highlighting the significance of these results, we found that administering IL-33 to mice in vivo suppressed the induction of Th1-mediated contact hypersensitivity responses. This may have consequences for skin cancer growth because UV-induced squamous cell carcinomas that evade immunological destruction were found to express significantly higher levels of IL-33. Finally, we demonstrate that dermal mast cells and skin-infiltrating neutrophils closely associate with UV-induced IL-33-expressing fibroblasts. Our results therefore identify and support a role for IL-33 as an important early danger signal produced in response to inflammation-inducing UV radiation.
Collapse
Affiliation(s)
- Scott Napier Byrne
- Cellular Immunology Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
62
|
McGee HM, Malley RC, Muller HK, Woods GM. Neonatal exposure to UVR alters skin immune system development, and suppresses immunity in adulthood. Immunol Cell Biol 2011; 89:767-76. [DOI: 10.1038/icb.2010.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heather M McGee
- Cancer and Immunology Research Group, Menzies Research Institute, University of Tasmania Hobart Tasmania Australia
| | - Roslyn C Malley
- School of Medicine, University of Tasmania Hobart Tasmania Australia
| | - H Konrad Muller
- School of Medicine, University of Tasmania Hobart Tasmania Australia
| | - Gregory M Woods
- Cancer and Immunology Research Group, Menzies Research Institute, University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
63
|
Weill FS, Cela EM, Ferrari A, Paz ML, Leoni J, Gonzalez Maglio DH. Skin exposure to chronic but not acute UV radiation affects peripheral T-cell function. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:838-847. [PMID: 21598169 DOI: 10.1080/15287394.2011.570228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultraviolet (UV) radiation (UVR) produces deleterious effects that may finally lead to carcinogenesis. These adverse effects include tissue inflammation, free radical formation with consequent oxidation of proteins and lipids, DNA damage, and immune function suppression. The aim of this study was to evaluate the effects of UVR at the local and systemic levels following acute (4 consecutive days with 0.5 minimal erythema dose [MED]) or chronic (20 consecutive days with 0.25 MED) exposure. Locally, histological alterations and epidermal T-cell populations were studied. Systemically, inguinal lymph-node and spleen T cells were analyzed with respect to proliferative response and cytokine production against a nonspecific mitogen. Lymph-node T-cell populations were also characterized. Our results indicated that while both acute and chronic UVR produced epidermal hyperplasia and a decrease in epidermal T-cell density, acute UVR increased T-cell proliferative response, while chronic UVR produced the opposite effect, shifting the cytokine production toward a Th2/Treg profile. Therefore, even though acute irradiation produced a direct effect on skin, it did not correlate with a marked modification of overall T-cell response, which is in contrast to marked effects in chronically irradiated animals. These findings may contribute to understanding the clinical relevance of occupational UVR exposure, typically related to outdoor activities, which is associated with nonmelanoma skin carcinogenesis.
Collapse
Affiliation(s)
- Federico S Weill
- Immunology Department, Pharmacy and Biochemistry School, University of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
64
|
Fujimoto M. Regulatory B cells in skin and connective tissue diseases. J Dermatol Sci 2010; 60:1-7. [DOI: 10.1016/j.jdermsci.2010.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 12/31/2022]
|
65
|
Wilson MS, Taylor MD, O'Gorman MT, Balic A, Barr TA, Filbey K, Anderton SM, Maizels RM. Helminth-induced CD19+CD23hi B cells modulate experimental allergic and autoimmune inflammation. Eur J Immunol 2010; 40:1682-96. [PMID: 20306466 PMCID: PMC3179601 DOI: 10.1002/eji.200939721] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Numerous population studies and experimental models suggest that helminth infections can ameliorate immuno-inflammatory disorders such as asthma and autoimmunity. Immunosuppressive cell populations associated with helminth infections include Treg and alternatively-activated macrophages. In previous studies, we showed that both CD4+CD25+ Treg, and CD4– MLN cells from Heligmosomoides polygyus-infected C57BL/6 mice were able to transfer protection against allergic airway inflammation to sensitized but uninfected animals. We now show that CD4–CD19+ MLN B cells from infected, but not naïve, mice are able to transfer a down-modulatory effect on allergy, significantly suppressing airway eosinophilia, IL-5 secretion and pathology following allergen challenge. We further demonstrate that the same cell population can alleviate autoimmune-mediated inflammatory events in the CNS, when transferred to uninfected mice undergoing myelin oligodendrocyte glycoprotein(p35–55)-induced EAE. In both allergic and autoimmune models, reduction of disease was achieved with B cells from helminth-infected IL-10−/− donors, indicating that donor cell-derived IL-10 is not required. Phenotypically, MLN B cells from helminth-infected mice expressed uniformly high levels of CD23, with follicular (B2) cell surface markers. These data expand previous observations and highlight the broad regulatory environment that develops during helminth infections that can abate diverse inflammatory disorders in vivo.
Collapse
Affiliation(s)
- Mark S Wilson
- Centre for Immunity, Infection and Evolution, and Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
66
|
McGee HM, Woods GM, Bennett B, Chung RS. The two faces of metallothionein in carcinogenesis: photoprotection against UVR-induced cancer and promotion of tumour survival. Photochem Photobiol Sci 2010; 9:586-96. [PMID: 20354655 DOI: 10.1039/b9pp00155g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallothionein is a multi-functional protein that protects the host against toxic heavy metals. Under stressful situations it can protect against oxidative damage, contribute to tissue repair, modulate immune responses and limit inflammatory processes. Recently, metallothionein's role in ultraviolet radiation (UVR)-induced injury has been investigated. These studies have shown that when metallothionein is upregulated following exposure to UVR, it can protect against UVR-induced damage and the subsequent development of skin cancer. We propose that this initial protection is achieved through its anti-oxidant role resulting in reduced oxidative stress, reduced apoptosis, reduced NFkappaB activation and enhanced repair of DNA damage. However, once UVR-induced neoplasia has occurred, the cancer cells can hijack metallothionein's protective functions, resulting in increased tumour progression and malignancy. These two discordant sets of attributes are context-dependent, and represent the two faces of metallothionein.
Collapse
Affiliation(s)
- Heather M McGee
- Menzies Research Institute, University of Tasmania, Australia.
| | | | | | | |
Collapse
|
67
|
McGlade JP, Strickland DH, Lambert MJM, Gorman S, Thomas JA, Judge MA, Burchell JT, Zosky GR, Hart PH. UV inhibits allergic airways disease in mice by reducing effector CD4 T cells. Clin Exp Allergy 2010; 40:772-85. [PMID: 20214669 DOI: 10.1111/j.1365-2222.2010.03469.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In human asthma, and experimental allergic airways disease in mice, antigen-presenting cells and CD4(+) effector cells at the airway mucosa orchestrate, and CD4(+)CD25(+) regulatory T cells attenuate, allergen immunity. UV irradiation of skin before sensitization with ovalbumin (OVA) causes significantly reduced asthma-like responses in respiratory tissues. OBJECTIVE To determine whether UV-induced changes in CD11c(+) cells, CD4(+)CD25(+) effector cells or CD4(+)CD25(+) regulatory cells in the trachea and airway draining lymph nodes (ADLNs) were responsible for reduced allergic airways disease. METHODS The phenotype and function of CD11c(+) cells and CD4(+)CD25(+) cells in the trachea and ADLNs of UV- and non-irradiated, OVA-sensitized mice was examined 24 h after a single exposure to aerosolized OVA. RESULTS No changes in the function of CD11c(+) cells from UV-irradiated mice were observed. CD4(+)CD25(+) cells from UV-irradiated, OVA-sensitized mice harvested 24 h after OVA aerosol proliferated less in response to OVA in vitro and were unable to suppress the proliferation of OVA-sensitized responder cells. This result suggested reduced activation of effector T cells in the airway mucosa of UV-irradiated, OVA-sensitized mice. To exclude regulatory cells of any type, there was similar proliferation in vivo to aerosolized OVA by CFSE-loaded, OVA-TCR-specific CD4(+) cells adoptively transferred into UV- and non-irradiated, OVA-sensitized mice. In addition, there was no difference in the expression of regulatory T cell markers (Foxp3, IL-10, TGF-beta mRNA). To examine effector T cells, ADLN cells from UV-irradiated, OVA-sensitized and -challenged mice were cultured with OVA. There was reduced expression of the early activation marker CD69 by CD4(+)CD25(+) cells, and reduced proliferation in the absence of the regulatory cytokine, IL-10. CONCLUSION Reduced allergic airways disease in UV-irradiated mice is due to fewer effector CD4(+)CD25(+) cells in the trachea and ADLNs, and not due to UV-induced regulatory cells.
Collapse
Affiliation(s)
- J P McGlade
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, West Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
The Alternative Complement Pathway Seems to be a UVA Sensor that Leads to Systemic Immunosuppression. J Invest Dermatol 2009; 129:2694-701. [DOI: 10.1038/jid.2009.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
69
|
Abstract
Allogeneic hematopoietic stem cell transplantation is an established treatment modality for malignant and nonmalignant hematologic diseases. Acute and chronic graft-versus-host diseases (GVHDs) are a major cause of morbidity and mortality after allogeneic stem cell transplantation. T cells have been identified as key players in the graft-versus-host reaction and, therefore, most established drugs used against GVHD target T cells. Despite our knowledge on the pathogenesis of the GVH reaction, success of established therapies for prevention and treatment of GHVD is unsatisfactory. Recently, animal and human studies demonstrated that B cells are involved in the immunopathophysiology of acute and chronic GVHD. Early phase clinical trials of B-cell depletion with rituximab have shown beneficial effects on both acute and chronic GVHD. This review summarizes the current experimental and clinical evidence for the involvement of B cells in the pathogenesis of acute and chronic GVHD and discusses the clinical implications for the management of patients undergoing allogeneic stem cell transplantation.
Collapse
|
70
|
Wolf P, Byrne SN, Gruber-Wackernagel A. New insights into the mechanisms of polymorphic light eruption: resistance to ultraviolet radiation-induced immune suppression as an aetiological factor. Exp Dermatol 2009; 18:350- 6. [PMID: 19348001 DOI: 10.1111/j.1600-0625.2009.00859.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An abnormal immune response has long been thought responsible for the patho-aetiology of polymorphic light eruption, the most common photodermatosis. Recent evidence indicates that polymorphic light eruption patients are resistant to the immune suppressive effects of sunlight, a phenomenon that leads to the formation of skin lesions upon seasonal sun exposure. This immunological abnormality in polymorphic light eruption supports the concept of the biological significance and evolutionary logic of sunlight-induced immune suppression, i.e. the prevention of immune responses to photo-induced neo-antigens in the skin, thereby preventing autoimmunity and skin rashes. This article focuses on the immunological alterations in polymorphic light eruption and the pathogenic significance to the disease state and skin carcinogenesis.
Collapse
Affiliation(s)
- Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
71
|
Fillatreau S, Gray D, Anderton SM. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 2008; 8:391-7. [PMID: 18437156 DOI: 10.1038/nri2315] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When B cells react aggressively against self, the potential for pathology is extreme. It is therefore not surprising that B-cell depletion is seen as an attractive therapy in autoimmune diseases. However, B cells can also be essential for restraining unwanted autoaggressive T-cell responses. Recent advances have pointed to interleukin-10 (IL-10) production as a key component in B-cell-mediated immune regulation. In this Opinion article, we develop a hypothesis that triggering of Toll-like receptors controls the propensity of B cells for IL-10 production and immune suppression. According to this model, B cells can translate exposure to certain microbial infections into protection from chronic inflammatory diseases.
Collapse
Affiliation(s)
- Simon Fillatreau
- Simon Fillatreau is at the Immune regulation group, Deutsches Rheuma-ForschungsZentrum, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
72
|
Komura K. [Ultraviolet: a regulator of immunity]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2008; 31:125-131. [PMID: 18587222 DOI: 10.2177/jsci.31.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Humans establish acquired immune systems during the growth, which can sufficiently eliminate pathogen avoiding immune responses to self, such as allergy and autoimmunity. An imbalance of the acquired immune system leads up to immune-mediated disorders. Ultraviolet (UV) exposure helps to establish the normal peripheral tolerance to contact allergen avoiding excessive immune responses. By contrast, UV develops kinds of autoimmune diseases on rare occasions, suggesting that abnormality in the process of UV-induced peripheral tolerance may induce these diseases. To elucidate the mechanism of UV-induced tolerance is possible to provide a new approach for the management of immune diseases. In the current review, focus is on the suggested players of UV-induced tolerance, blocking mechanisms on the elicitation phase of contact hypersensitivity, and the association between UV and autoimmunity. The major impact in basic immunology in this area is the discovery of cell surface marker of regulatory T cells. Therefore, we first discuss about the association of regulatory/suppressor T cells with UV-induced tolerance. Since the elicitation phase depends on cellular influx into the inflammatory sites, which is tightly regulated by adhesion molecules, we also focused on the role of adhesion molecules. Finally, this paper also includes statistical findings concerning the association between UV-radiation and the prevalence of a myositis specific autoantibody. Thus, UV is one of the nice regulators of an immune network and the knowledge of UV-mediated immune regulation will be translated into new therapeutic strategies to human immune-mediated disorders.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
73
|
Byrne SN, Limón-Flores AY, Ullrich SE. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. THE JOURNAL OF IMMUNOLOGY 2008; 180:4648-55. [PMID: 18354188 DOI: 10.4049/jimmunol.180.7.4648] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The UV radiation in sunlight is the primary cause of skin cancer. UV is also immunosuppressive and numerous studies have shown that UV-induced immune suppression is a major risk factor for skin cancer induction. Previous studies demonstrated that dermal mast cells play a critical role in the induction of immune suppression. Mast cell-deficient mice are resistant to the immunosuppressive effects of UV radiation, and UV-induced immune suppression can be restored by injecting bone marrow-derived mast cells into the skin of mast cell- deficient mice. The exact process however, by which mast cells contribute to immune suppression, is not known. In this study, we show that one of the first steps in the induction of immune suppression is mast cell migration from the skin to the draining lymph nodes. UV exposure, in a dose-dependent manner, causes a significant increase in lymph node mast cell numbers. When GFP(+) skin was grafted onto mast cell-deficient mice, we found that GFP(+) mast cells preferentially migrated into the lymph nodes draining the skin. The mast cells migrated primarily to the B cell areas of the draining nodes. Mast cells express CXCR4(+) and UV exposure up-regulated the expression of its ligand CXCL12 by lymph node B cells. Treating UV-irradiated mice with a CXCR4 antagonist blocked mast cell migration and abrogated UV-induced immune suppression. Our findings indicate that UV-induced mast cell migration to draining lymph nodes, mediated by CXCR4 interacting with CXCL12, represents a key early step in UV-induced immune suppression.
Collapse
Affiliation(s)
- Scott N Byrne
- Department of Immunology and Center for Cancer Immunology Research, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | | | |
Collapse
|
74
|
Halliday GM, Rana S. Waveband and dose dependency of sunlight-induced immunomodulation and cellular changes. Photochem Photobiol 2008; 84:35-46. [PMID: 18173699 DOI: 10.1111/j.1751-1097.2007.00212.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both the UVB and UVA wavebands within sunlight are immunosuppressive. This article reviews the relationship between wavebands and dose in UV-induced immunosuppression mainly concentrating on responses in humans. It also contrasts the effects of UVB and UVA on cellular changes involved in immunosuppression. Over physiological sunlight doses to which humans can be exposed during routine daily living or recreational pursuits, both UVA and UVB suppress immunity. While there is a linear dose relationship with UVB commencing at doses less than half of what is required to cause sunburn, UVA has a bell-shaped dose response over the range to which humans can be realistically exposed. At doses too low for either waveband to be suppressive, interactions between UVA and UVB augment each other, enabling immunosuppression to occur. At doses beyond where UVA is immunosuppressive, it still contributes to sunlight-induced immunosuppression via this interaction with UVB. While there is little research comparing the mechanisms by which UVB, UVA and their interactions can cause immunosuppression, it is likely that different chromophores and early molecular events are involved. There is evidence that both wavebands disrupt antigen presentation and effect T cell responses. Different individuals are likely to have different immunomodulatory responses to sunlight.
Collapse
Affiliation(s)
- Gary M Halliday
- Dermatology Research Laboratories, Melanoma and Skin Cancer Research Institute and Bosch Institute, University of Sydney, Sydney, NSW, Australia.
| | | |
Collapse
|
75
|
Rana S, Byrne SN, MacDonald LJ, Chan CYY, Halliday GM. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:993-1004. [PMID: 18292235 DOI: 10.2353/ajpath.2008.070517] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Contact hypersensitivity is a T-cell-mediated response to a hapten. Exposing C57BL/6 mice to UV B radiation systemically suppresses both primary and secondary contact hypersensitivity responses. The effects of UVB on in vivo T-cell responses during UVB-induced immunosuppression are unknown. We show here that UVB exposure, before contact sensitization, inhibits the expansion of effector CD4+ and CD8+ T cells in skin-draining lymph nodes and reduces the number of CD4+ and IFN-gamma+ CD8+ T cells infiltrating challenged ear skin. In the absence of UVB, at 10 weeks after initial hapten exposure, the ear skin of sensitized mice was infiltrated by dermal effector memory CD8+ T cells at the site of challenge. However, if mice were previously exposed to UVB, this cell population was absent, suggesting an impaired development of peripheral memory T cells. This finding occurred in the absence of UVB-induced regulatory CD4+ T cells and did not involve prostaglandin E2, suggesting that the importance of these two factors in mediating or initiating UVB-induced immunosuppression is dependent on UVB dose. Together these data indicate that in vivo T-cell responses are prone to immunoregulation by UVB, including a novel effect on both the activated T-cell pool size and the development of memory T cells in peripheral compartments.
Collapse
Affiliation(s)
- Sabita Rana
- Department of Medicine, Melanoma and Skin Cancer Research Institute, Sydney Cancer Centre, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
76
|
Hoehlig K, Lampropoulou V, Roch T, Neves P, Calderon-Gomez E, Anderton SM, Steinhoff U, Fillatreau S. Immune regulation by B cells and antibodies a view towards the clinic. Adv Immunol 2008; 98:1-38. [PMID: 18772002 DOI: 10.1016/s0065-2776(08)00401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B lymphocytes contribute to immunity in multiple ways, including production of antibodies, presentation of antigen to T cells, organogenesis of secondary lymphoid organs, and secretion of cytokines. Recent clinical trials have shown that depleting B cells can be highly beneficial for patients with autoimmune diseases, implicating B cells and antibodies as key drivers of pathology. However, it should be kept in mind that B cell responses and antibodies also have important regulatory roles in limiting autoimmune pathology. Here, we analyze clinical examples illustrating the potential of antibodies as treatment for immune-mediated disorders and discuss the underlying mechanisms. Furthermore, we examine the regulatory functions of activated B cells, their involvement in the termination of some experimental autoimmune diseases, and their use in cell-based therapy for such pathologies. These suppressive functions of B cells and antibodies do not only open new ways for harnessing autoimmune illnesses, but they also should be taken into account when designing new strategies for vaccination against microbes and tumors.
Collapse
Affiliation(s)
- Kai Hoehlig
- Laboratory of immune regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Gorman S, Kuritzky LA, Judge MA, Dixon KM, McGlade JP, Mason RS, Finlay-Jones JJ, Hart PH. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. THE JOURNAL OF IMMUNOLOGY 2007; 179:6273-83. [PMID: 17947703 DOI: 10.4049/jimmunol.179.9.6273] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immunomodulatory effects of vitamin D have been described following chronic oral administration to mice or supplementation of cell cultures with 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D. In this study, topically applied 1,25(OH)(2)D(3), enhanced the suppressive capacity of CD4(+)CD25(+) cells from the draining lymph nodes. The effects of topical 1,25(OH)(2)D(3) were compared with those of UVB irradiation, which is the environmental factor required for 1,25(OH)(2)D(3) production in skin. CD4(+) cells from the skin-draining lymph nodes (SDLN) of either 1,25(OH)(2)D(3)-treated or UVB-irradiated mice had reduced capacity to proliferate to Ags presented in vitro, and could suppress Ag-specific immune responses upon adoptive transfer into naive mice. This regulation was lost upon removal of CD4(+)CD25(+) cells. Furthermore, purified CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated or UVB-irradiated mice compared with equal numbers of CD4(+)CD25(+) cells from control mice had increased capacity to suppress immune responses in both in vitro and in vivo assay systems. Following the sensitization of recipient mice with OVA, the proportion of CD4(+)Foxp3(+) cells of donor origin significantly increased in recipients of CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated mice, indicating that these regulatory T cells can expand in vivo with antigenic stimulation. These studies suggest that 1,25(OH)(2)D(3) may be an important mediator by which UVB-irradiation exerts some of its immunomodulatory effects.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
78
|
McGlade JP, Gorman S, Zosky GR, Larcombe AN, Sly PD, Finlay-Jones JJ, Turner DJ, Hart PH. Suppression of the asthmatic phenotype by ultraviolet B-induced, antigen-specific regulatory cells. Clin Exp Allergy 2007; 37:1267-76. [PMID: 17845406 DOI: 10.1111/j.1365-2222.2007.02750.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Over recent decades, there has been a significant global increase in the prevalence of asthma, an inflammatory disease of the respiratory system. While ultraviolet radiation (UV) has been used successfully in the treatment of inflammatory conditions such as psoriasis, studies of UV-induced regulation of allergic respiratory responses have been rare, and have not analysed in vivo measurements of airway hyperresponsiveness (AHR) or the antigen specificity of the UV-induced effects. OBJECTIVE To investigate the regulatory properties of erythemal ultraviolet B (UVB) irradiation of the skin and the induction of allergen-induced airway immunity in a murine asthma model, and to examine the mechanisms involved. METHODS BALB/c mice were exposed to a single erythemal dose of UV 3 days before intraperitonial sensitization (day 0) and boost (day 14) with the antigen, ovalbumin (OVA). Airway-associated, asthma-like responses to aerosolized OVA at day 21 were analysed including (a) AHR measured in vivo, (b) OVA-specific proliferative responses and cytokine production by cells from the lung-draining lymph nodes (LDLN), and (c) inflammatory cells and cytokines in the bronchoalveolar lavage fluid. To determine UVB-induced mechanisms of regulation, LDLN cells from UVB irradiated, OVA-sensitized mice were adoptively transferred into naïve BALB/c mice that were subsequently sensitized and challenged with OVA, or a non-specific antigen. RESULTS UVB irradiation of skin significantly suppressed AHR to methacholine and OVA-specific responses in the LDLN and in the lung compartment. Reduced OVA-specific responses by LDLN cells from both UVB irradiated mice and mice that received 5 x 10(6) LDLN cells from UVB irradiated, but not from non-irradiated, OVA-sensitized mice suggested that UVB-induced regulatory cells are responsible for many of the asthma-reducing effects of dorsal UVB exposure. CONCLUSION UVB irradiation of skin suppresses AHR and cellular responses of the airways to respiratory allergens. Further, this study implicates UVB or its downstream mediators as a potential approach to reducing the severity of asthma.
Collapse
Affiliation(s)
- J P McGlade
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Leitenberger J, Jacobe HT, Cruz PD. Photoimmunology--illuminating the immune system through photobiology. Semin Immunopathol 2007; 29:65-70. [PMID: 17621955 DOI: 10.1007/s00281-007-0063-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We review the field of photoimmunology with emphasis on immunosuppression induced by ultraviolet B radiation. Recent studies have focused on UVB-induced alterations in epidermal Langerhans cell function, resulting in a shift from Th1 to Th2 phenotype and the activation of regulatory T cells as the source of IL-10 that is central to this form of immunosuppression.
Collapse
Affiliation(s)
- Justin Leitenberger
- Department of Dermatology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9069, USA
| | | | | |
Collapse
|
80
|
Breathnach RM, Fanning S, Mulcahy G, Bassett HF, Jones BR. A study of dendritic cell and MHC class II expression in dogs with immunomodulatory-responsive lymphocytic-plasmacytic pododermatitis. Vet J 2007; 177:352-9. [PMID: 17804263 DOI: 10.1016/j.tvjl.2007.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 10/22/2022]
Abstract
The term immunomodulatory-responsive lymphocytic-plasmacytic pododermatitis (ImR-LPP) has previously been proposed to denote a sub-population of dogs with idiopathic pododermatitis. The objective of this study was to investigate dendritic cell (DC) and MHC class II antigen expression in lesional skin of dogs with ImR-LPP (n=47). Median epidermal CD1c(+) cell counts were 37.8 and 12.5 mm(-1) in ImR-LPP dogs and healthy controls (n=27), respectively (P<0.01), while the corresponding dermal cell counts were 180.9 and 45.0 mm(-2), respectively (P<0.01). Intra-epidermal clusters of DCs were observed in 18/47 dogs with ImR-LPP. Median epidermal MHC class II(+) cell counts were 32.5 and 10.5 mm(-1) in ImR-LPP dogs and healthy controls, respectively (P<0.01), while the corresponding dermal cell counts were 216.9 and 46.9 mm(-2), respectively (P<0.01). Dermal MHC class II(+) staining was primarily associated with DCs (47/47 dogs), mononuclear inflammatory cells (45/47), fibroblast-like cells (19/47) and vascular endothelium (14/47). The DC hyperplasia and increased MHC class II expression in lesional ImR-LPP skin are consistent with enhanced antigen presentation, and suggest that both parameters may contribute to the pathogenesis of ImR-LPP through the priming and activation of CD4(+) T cells. Equally, it is possible that the enhanced DC numbers observed in this study may contribute to the immunoregulation of steady-state pathology in lesional ImR-LPP skin through additional expanded, although as yet unresolved, mechanisms.
Collapse
Affiliation(s)
- Rory M Breathnach
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
81
|
Ashour HM, Seif TM. The role of B cells in the induction of peripheral T cell tolerance. J Leukoc Biol 2007; 82:1033-9. [PMID: 17656652 DOI: 10.1189/jlb.0507310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hossam M Ashour
- Cairo University, Department of Microbiology and Immunology, Cairo, Egypt.
| | | |
Collapse
|
82
|
Gorman S, Tan JWY, Yerkovich ST, Finlay-Jones JJ, Hart PH. CD4+ T Cells in Lymph Nodes of UVB-Irradiated Mice Suppress Immune Responses to New Antigens Both In Vitro and In Vivo. J Invest Dermatol 2007; 127:915-24. [PMID: 17068476 DOI: 10.1038/sj.jid.5700600] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms by which erythemal UVB irradiation modulates systemic immune responses to antigens applied to non-irradiated sites are poorly understood. In this study, regulatory CD4+ T cells were identified in the skin-draining lymph nodes (SDLNs) of UVB-irradiated, but otherwise naive mice. A transgenic mouse strain (DO11.10) was utilized in which the majority of CD4+ T cells expressed the ovalbumin (OVA(323-339)) T-cell receptor. Thus, T-cell responses could be examined following erythemal UVB irradiation without further antigen sensitization. CD4+ T cells from the SDLNs of UVB-irradiated mice had significantly reduced capacity to respond to presentation of the OVA(323-339) peptide in vitro. Transfer of CD4+ T cells from the SDLNs of UVB-irradiated antigen-naive mice significantly reduced both OVA sensitization and contact hypersensitivity responses to an experimental hapten in the recipient mice. Depletion of CD4+CD25+ cells abrogated this UVB-suppressive effect in the in vitro proliferation assay. There was also a significant increase in the proportion of CD4+CD25+Foxp3+ cells in the SDLNs of UVB-irradiated mice. The potential of these regulatory cells poised to regulate responses to incoming antigens at distant non-irradiated sites broadens the biological impact of UVB irradiation of skin on immunity.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
83
|
Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, McConkey DJ, Norval M, Ullrich SE. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A 2006; 103:17420-5. [PMID: 17085585 PMCID: PMC1859944 DOI: 10.1073/pnas.0603119103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor.
Collapse
Affiliation(s)
- Jeffrey P. Walterscheid
- *Department of Immunology and Center for Cancer Immunology Research and
- Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030; and
| | - Dat X. Nghiem
- *Department of Immunology and Center for Cancer Immunology Research and
- Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030; and
| | - Nasser Kazimi
- *Department of Immunology and Center for Cancer Immunology Research and
| | - Leta K. Nutt
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030; and
| | - David J. McConkey
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030; and
| | - Mary Norval
- Medical Microbiology, University of Edinburgh Medical School, Edinburgh EH8 9AG, Scotland
| | - Stephen E. Ullrich
- *Department of Immunology and Center for Cancer Immunology Research and
- Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030; and
- To whom correspondence should be addressed at:
Department of Immunology/Unit 902, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. E-mail:
| |
Collapse
|
84
|
Matsumura Y, Byrne SN, Nghiem DX, Miyahara Y, Ullrich SE. A role for inflammatory mediators in the induction of immunoregulatory B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:4810-7. [PMID: 16982922 PMCID: PMC1579249 DOI: 10.4049/jimmunol.177.7.4810] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UV exposure suppresses the immune response to a variety of microbial, fungal, and viral Ags. In addition, UV radiation is a complete carcinogen and the immune suppression induced by UV radiation is a major risk factor for skin cancer induction. In this study, we examined the mechanisms underlying the induction of immune suppression and tolerance induction by UV radiation. Transferring lymph nodes cells from UV-irradiated, FITC-sensitized mice into normal recipients transferred immune tolerance. Contrary to expectations, the cell responsible was an FITC(+), IL-10-secreting, CD19(+), B220(+) B cell. Because the lipid mediator of inflammation, platelet-activating factor (PAF) is released by UV-irradiated keratinocytes and is essential for the induction of immune suppression, we determined its role in tolerance induction. When UV-irradiated mice were injected with PCA 4248, a selective PAF receptor (PAFR) antagonist, transfer of tolerance was suppressed. However, immune suppression was not transferred when FITC(+) cells from the draining lymph nodes of UV-irradiated, PAFR-deficient donor mice were injected into the recipients. Because PCA 4248 also blocks serotonin receptor binding, we measured the effect that blocking both serotonin and PAFR binding has on the transfer of immune suppression. Only when both PAF and serotonin binding were blocked could we inhibit tolerance induction. These data identify a novel function for PAF and serotonin in modulating immune function, the activation of immunoregulatory B cells.
Collapse
Affiliation(s)
- Yumi Matsumura
- Department of Immunology and Center for Cancer Immunology Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Scott N. Byrne
- Department of Immunology and Center for Cancer Immunology Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Dat X. Nghiem
- Department of Immunology and Center for Cancer Immunology Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030; and
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77225
| | - Yasuko Miyahara
- Department of Immunology and Center for Cancer Immunology Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Stephen E. Ullrich
- Department of Immunology and Center for Cancer Immunology Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030; and
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77225
- Address correspondence and reprint requests to Dr. Stephen E. Ullrich, Department of Immunology-902, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. E-mail address:
| |
Collapse
|
85
|
Byrne SN, Spinks N, Halliday GM. The induction of immunity to a protein antigen using an adjuvant is significantly compromised by ultraviolet A radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 84:128-34. [PMID: 16563795 DOI: 10.1016/j.jphotobiol.2006.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/17/2006] [Indexed: 11/20/2022]
Abstract
Ultraviolet (UV) radiation from sunlight causes skin cancer and inhibits priming of the immune system during vaccination. However the dose related effects of the different components of sunlight (UVA and UVB) are complex and require further investigation. Using ovalbumin as a model protein vaccine with saponin as adjuvant we show that both UVA and UVB can suppress the DTH response to a poorly immunogenic protein. Increasing doses of UVB induced increased levels of immunosuppression and tolerance. UVA however, caused a bi-phasic dose response with intermediate but not low or high doses causing primary immunosuppression. No dose of UVA caused significant tolerance. Similar results were observed in both C57BL/6 and Balb/c mice. Our data confirms the complex immunomodulatory dose effects of UVA and UVB for a protein antigen, and shows that both UVB and UVA can suppress immunity induced by a protein with adjuvant. This highlights the importance of considering sun exposure patterns in the future success of both preventing skin cancer development and enhancing vaccination regimes.
Collapse
Affiliation(s)
- Scott N Byrne
- Department of Medicine, Dermatology Research Laboratories, Melanoma and Skin Cancer Research Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital at the University of Sydney, 2006, Australia
| | | | | |
Collapse
|
86
|
Maeng HG, Kim DN, Cho SK, Cha JH, Kim TY, Lee YS, Choi DK, Lee JH, Cho MJ, Kwon HJ, Lee SK. Altered immune cell proportions in the radiodermatitis induced hairless mice-1 (HR-1). JOURNAL OF RADIATION RESEARCH 2006; 47:9-17. [PMID: 16571914 DOI: 10.1269/jrr.47.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accidental radiation exposures or radiation therapy can cause internal and external damage including radiodermatitis. Even though radiodermatitis is one of the dose limiting factors in radiotherapy, the immunological nature of it is not yet been clearly understood. In this study, we have examined the alteration in immune cell population during the radiodermatitis process. A radiodermatitis model was established in HR-1 mice by locally exposing a posterior dorsal region to 10 Gy X-ray/day for 4 consecutive days. Collagen accumulation, redness, erythema, and dry desquamation of the skin were detected after X-irradiation. The size and total cell number of the spleen decreased immediately after X-irradiation, compared to those of the sham-irradiated mice, and recovered to the normal levels two weeks later. Reduction and recovery of the bone marrow cell population preceded a similar change of the spleen cell population. The proportion of CD4+ T cell increased, while the proportion of CD8+ T cell decreased ahead of the obvious skin damage, in both lymph node and spleen of the irradiated mice. Interestingly, the proportion of splenic monocytes/macrophages was expanded gradually at a similar kinetics with the aggravation of the radiodermatitis. The infiltration of the CD11b+ monocyte/macrophage to the X-irradiated skin also coincided with the development of radiodermatitis. These altered proportions of immune cells may play important roles in radiodermatitis.
Collapse
Affiliation(s)
- Hyung Gun Maeng
- Research Institute of Immunobiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
B cells are typically characterized by their ability to produce Abs, including autoantibodies. However, B cells possess additional immune functions, including the production of cytokines and the ability to function as a secondary APC. As with T cells, the B cell population contains functionally distinct subsets capable of performing both pathogenic and regulatory functions. Recent studies indicate that regulatory B cells develop in several murine models of chronic inflammation, including inflammatory bowel disease, rheumatoid arthritis, and experimental autoimmune encephalomyelitis. The regulatory function may be directly accomplished by the production of regulatory cytokines IL-10 and TGF-beta and/or by the ability of B cells to interact with pathogenic T cells to dampen harmful immune responses. In this review, we make a case for the existence of regulatory B cells and discuss the possible developmental pathways and functional mechanisms of these B cells.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Immunopathology Unit, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
88
|
Grimbaldeston MA, Finlay-Jones JJ, Hart PH. Mast cells in photodamaged skin: what is their role in skin cancer? Photochem Photobiol Sci 2006; 5:177-83. [PMID: 16465303 DOI: 10.1039/b504344a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, changes that we have observed in the prevalence of mast cells in human sun-exposed skin, and their potential immunoregulatory role, are discussed. More specifically, in a study of Australian volunteers, the prevalence of dermal mast cells was increased in back-of-hand skin, anecdotally the most sun-exposed site of the body, but not in skin from buttock, inner arm or shoulder. By histological analysis of back-of-hand skin, there was a significant correlation between dermal mast cell prevalence and elastin content suggesting increased mast cell prevalence with photodamage. We hypothesised that these mast cells were immunomodulatory upon activation by sun exposure. However, no link was found between dermal mast cell prevalence in hand skin and the presence of basal cell carcinomas. Finally, we discuss other roles for increased numbers of mast cells in UV-exposed photodamaged skin.
Collapse
Affiliation(s)
- Michele A Grimbaldeston
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, P.O. Box 855, West Perth, Western Australia 6872
| | | | | |
Collapse
|
89
|
Byrne SN, Ahmed J, Halliday GM. Ultraviolet B but Not A Radiation Activates Suppressor B Cells in Draining Lymph Nodes. Photochem Photobiol 2005; 81:1366-70. [PMID: 16080770 DOI: 10.1562/2005-04-20-ra-495] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunosuppressive doses of solar-simulated UV radiation activate lymph node B cells that can suppress primary immunity by inhibiting the function of dendritic cells. The aim of this study was to determine the waveband responsible for activation of these suppressor B cells. We exposed C57BL/6 mice to various doses of either UVA or UVB radiation and analyzed the number and activation state of lymph node antigen-presenting cells (APC). Immunosuppressive doses of UVB but not UVA activated B cells as assessed by major histocompatibility complex II (MHC II) expression and doubled their numbers in draining lymph nodes. Higher doses of UVA that were not immunosuppressive actually suppressed B cell activation. Our results show that UVA and UVB suppress systemic immunity via different mechanisms. Lymph node B cells are activated in response to immunosuppressive doses of UVB but not UVA. Thus, the activation state of lymph node APC appears to be important for UV immunomodulation.
Collapse
Affiliation(s)
- Scott N Byrne
- Department of Medicine, Dermatology Research Laboratories, Melanoma and Skin Cancer Research Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital at the University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
90
|
McLoone P, Norval M. Adaptation to the UV-induced suppression of phagocytic activity in murine peritoneal macrophages following chronic exposure to solar simulated radiation. Photochem Photobiol Sci 2005; 4:792-7. [PMID: 16189553 DOI: 10.1039/b503094c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure of certain strains of mice to ultraviolet radiation (UVR) is known to suppress both local and systemic immune responses, including a reduction in the phagocytic activity of peritoneal macrophages. However, in many instances, the immunological effects have been observed following a single or a limited number of doses of UVR from sources containing a higher proportion of UVB than that emitted by the sun. The first aim of the present study was to establish whether a single exposure of C3H/HeN mice to solar simulated radiation (SSR) suppressed the ability of the peritoneal macrophages to phagocytose opsonised sheep red blood cells. The mice were irradiated with SSR from Cleo Natural lamps and a single dose of 31.9 J cm(-2) was found to be the minimal dose for significant suppression of macrophage phagocytic activity. Such a dose did not modulate the surface expression of I-A(k), CD11b, CD86 or FcgammaRII/III (CD32/16) on the macrophages. The second aim was to assess whether repeated SSR exposures with a dose below the minimal immunosuppressive dose affected macrophage activity and, if so, to test for photoadaptation by repeated exposures followed by a single, normally immunosuppressive dose of SSR, and then assaying the macrophage activity. Groups of mice were irradiated on each of 2, 10 and 30 days with 14.9 J cm(-2) SSR, followed in some instances by a single additional exposure of 31.9 J cm(-2) on the same day as the last irradiation. The phagocytic activity of the peritoneal macrophages was tested 24 h later. It was reduced by 32%, 18% and 4% respectively after 2, 10 and 30 repeated exposures to SSR, and by 39%, 21% and 7% respectively after 2, 10 and 30 repeated exposures plus the additional higher dose at the end. Thus, although the macrophage activity was initially suppressed by the SSR, photoadaptation of this immune parameter occurred following repeated exposures.
Collapse
Affiliation(s)
- Pauline McLoone
- Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh, ScotlandEH8 9AG
| | | |
Collapse
|