51
|
McPherson SW, Heuss ND, Gregerson DS. Regulation of CD8(+) T Cell Responses to Retinal Antigen by Local FoxP3(+) Regulatory T Cells. Front Immunol 2012; 3:166. [PMID: 22737153 PMCID: PMC3380377 DOI: 10.3389/fimmu.2012.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/03/2012] [Indexed: 02/06/2023] Open
Abstract
While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal) on a retina-specific promoter (arrβgal mice) were backcrossed to mice expressing green fluorescent protein (GFP) and diphtheria toxin (DTx) receptor (DTR) under control of the Foxp3 promoter (Foxp3-DTR/GFP mice), and to T cell receptor transgenic mice that produce βgal-specific CD8 T cells (BG1 mice). These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 × Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP × arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of DTx to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3(+) regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immuno regulation to be responsive to local conditions.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota Minneapolis, MN, USA
| | | | | |
Collapse
|
52
|
Neill DR, Fernandes VE, Wisby L, Haynes AR, Ferreira DM, Laher A, Strickland N, Gordon SB, Denny P, Kadioglu A, Andrew PW. T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog 2012; 8:e1002660. [PMID: 22563306 PMCID: PMC3334885 DOI: 10.1371/journal.ppat.1002660] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design. Streptococcus pneumoniae is a major human bacterial pathogen that causes a wide range of diseases including pneumonia, meningitis, sepsis and ear infections. The bacterium is responsible for around 1.2 million deaths per year, mostly in high-risk groups such as children, the elderly and those with a weakened immune system. Infection with the pneumococcus can induce a wide-variety of immune responses and disease symptoms and it is not known why some people are more resistant to infection than others. Here, we identify an important role in natural resistance against pneumococcal pneumonia for a group of cells – known as T regulatory cells – that control the immune response to pneumococcal infection. In mice, strong T regulatory cell responses correlate with resistance to invasive pneumococcal pneumonia. Disease-resistance can be boosted by administering T regulatory cells to highly susceptible mice or inhibited by blocking the activity of these cells in resistant mice. These results advance our understanding of the host immunity differences that underpin resistance to pneumococcal pneumonia and offer hope that in the future we might boost resistance in susceptible individuals through modulation of their immune system.
Collapse
Affiliation(s)
- Daniel R. Neill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Laura Wisby
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Andrew R. Haynes
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Daniela M. Ferreira
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Ameera Laher
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Natalie Strickland
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (AK); (PWA)
| | - Peter W. Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (AK); (PWA)
| |
Collapse
|
53
|
Schwele S, Fischer AM, Brestrich G, Wlodarski MW, Wagner L, Schmueck M, Roemhild A, Thomas S, Hammer MH, Babel N, Kurtz A, Maciejewski JP, Reinke P, Volk HD. Cytomegalovirus-specific regulatory and effector T cells share TCR clonality--possible relation to repetitive CMV infections. Am J Transplant 2012; 12:669-81. [PMID: 22081907 DOI: 10.1111/j.1600-6143.2011.03842.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) infections have a major impact on morbidity and mortality of transplant patients. Among the complex antiviral T-cell response, CMV-IE-1 antigen-specific CD8+ cells are crucial for preventing CMV disease but do not protect from recurring/lasting CMV reactivation. Recently, we confirmed that adoptive transfer of autologous IE-1/pp65-specific T-cell lines was able to combat severe CMV disease; however, the control of CMV infection was only temporary. We hypothesized that CMV-induced regulatory T cells (iTreg) might be related to recurring/lasting CMV infection. In fact, kidney transplant patients with recurring CMV infections expressed enhanced suppression on CMV response. Analysis of in vitro expanded CD4+ epitope-specific cells revealed that CMV-specific CD4+CD25(high) Treg cells functionally suppress CD25(low) effector T cells (Teff) upon epitope-specific reactivation. Their phenotype is similar to iTreg - CD39(high) /Helios-/IL-2(low) /IFNγ(high) /IL-10±/TGFß-LAP±/FOXP3+ and methylated foxp3 locus. Remarkably, in vitro expanded CD4+CD25(high) iTreg share the same dominant TCR-Vβ-CDR3 clones with functionally distinct CD4+CD25(low) Teff. Moreover, the same clones were present in freshly isolated CD4+CD25(high) and CD4+CD25(low) T cells suggesting their in vivo generation. These findings directly demonstrate that Teff and iTreg can differentiate from one "mother" clone with specificity to the same viral epitope and indicate that peripheral iTreg generation is related to frequent antigen appearance.
Collapse
Affiliation(s)
- S Schwele
- Institute of Medical Immunology, Charité- Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions. Cell Immunol 2012; 274:109-14. [PMID: 22398308 DOI: 10.1016/j.cellimm.2012.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 12/17/2011] [Accepted: 01/12/2012] [Indexed: 11/20/2022]
Abstract
Foxp3-expressing cells among CD19(+)CD5(+) B cells were identified as regulatory B cells. Food allergy manifesting as late eczematous reactions is regarded as a non-IgE-mediated food allergy. The diagnosis for milk allergy manifesting as late eczematous reactions was made on the basis of the findings obtained from a double-blind placebo-controlled food challenge in patients with atopic dermatitis. Twelve patients with milk allergy and 12 patients who could tolerate milk were selected. On casein stimulation, the CD19(+)CD5(+)Foxp3(+) B cell (Breg) fraction in CD5(+) B cells decreased from 4.4±1.1% to 3.1±0.7% (P=0.047, n=12) in the milk allergy group and increased from 4.4±1.3% to 5.2±1.4% (P=0.001, n=10) in the milk-tolerant group. On the other hand, on allergen stimulation, the number of CD4(+)Foxp3(+) regulatory T cells (Tregs) in the milk allergy group and milk-tolerant group increased from 2.6±0.7% to 3.4±0.6% (P=0.014, n=9) and from 2.7±1.0% to 3.5±1.0% (P=0.038, n=10), respectively. In conclusion, allergen-specific responses of Bregs, rather than those of Tregs, seem to influence the immune responses (i.e., allergy or tolerance) to a food allergen.
Collapse
|
55
|
Ruan Q, Chen YH. Nuclear factor-κB in immunity and inflammation: the Treg and Th17 connection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:207-21. [PMID: 21948370 DOI: 10.1007/978-1-4614-0106-3_12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although nuclear factor-kB (NF-kB) is generally considered to be a pro-inflammatory transcription factor, recent studies indicate that it also plays a critical role in the development of an anti-inflammatory T cell subset called regulatory T (Treg) cells. Two NF-kB proteins, c-Rel and p65, drive the development of Treg cells by promoting the formation of a Foxp3-specific enhanceosome. Consequently, c-Rel-deficient mice have marked reductions in Treg cells, and c-Rel-deficient T cells are compromised in Treg cell differentiation. However, with the exception of Foxp3, most NF-kB target genes in immune cells are pro-inflammatory. These include several Th17-related cytokine genes and the retinoid-related orphan receptor-g (Rorg or Rorc) that specifies Th17 differentiation and lineage-specific function. T cells deficient in c-Rel or p65 are significantly compromised in Th17 differentiation, and c-Rel -deficient mice are defective in Th17 responses. Thus, NF-kB is required for the development of both anti-inflammatory Treg and pro-inflammatory Th17 cells.
Collapse
Affiliation(s)
- Qingguo Ruan
- Department of Pathology and Laboratory Medicine, 712 Stellar-Chance Laboratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
56
|
Functional transforming growth factor-β receptor type II expression by CD4+ T cells in Peyer's patches is essential for oral tolerance induction. PLoS One 2011; 6:e27501. [PMID: 22087328 PMCID: PMC3210179 DOI: 10.1371/journal.pone.0027501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022] Open
Abstract
Our previous studies have shown that Peyer's patches (PPs) play a key role in the induction of oral tolerance. Therefore, we hypothesized that PPs are an important site for Transforming Growth Factor (TGF)- β signaling and sought to prove that this tissue is of importance in oral tolerance induction. We found that expression of TGF-β type II receptor (TGFβRII) by CD4+ T cells increases and persists in the PPs of normal C57BL/6 mice after either high- or low-dose feeding of OVA when compared to mesenteric lymph nodes (MLNs) and spleen. Approximately one-third of these TGFβRII+ CD4+ T cells express the transcription factor Foxp3. Interestingly, the number of TGFβRII+ CD4+ T cells in PPs decreased when OVA-fed mice were orally challenged with OVA plus native cholera toxin (CT). In contrast, numbers of TGFβRII+ CD4+ T cells were increased in the intestinal lamina propria (iLP) of these challenged mice. Further, these PP CD4+ TGFβRII+ T cells upregulated Foxp3 within 2 hours after OVA plus CT challenge. Mice fed PBS and challenged with OVA plus CT did not reveal any changes in TGFβRII expression by CD4+ T cells. In order to test the functional property of TGFβRII in the induction of oral tolerance, CD4dnTGFβRII transgenic mice, in which TGFβRII signaling is abrogated from all CD4+ T cells, were employed. Importantly, these mice could not develop oral tolerance to OVA. Our studies show a critical, dose-independent, role for TGFβRII expression and function by CD4+ T cells in the gut-associated lymphoid tissues, further underlining the vital role of PPs in oral tolerance.
Collapse
|
57
|
Di Caro V, D'Anneo A, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Phosphatidylinositol-3-kinase activity during in vitro dendritic cell generation determines suppressive or stimulatory capacity. Immunol Res 2011; 50:130-52. [PMID: 21476100 DOI: 10.1007/s12026-011-8206-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Modulating PI3K at different stages of dendritic cells (DC) generation could be a novel means to balance the generation of immunosuppressive versus immunostimulatory DC. We show that PI3K inhibition during mouse DC generation in vitro results in cells that are potently immunosuppressive and characteristic of CD8alpha- CD11c+ CD11b+ DC. These DC exhibited low surface class I and class II MHC, CD40, and CD86 and did not produce TNF-alpha. In allogeneic MLR, these DC were suppressive. Although in these mixed cultures, there was no increase in the frequency of CD4+ CD25+ Foxp3+ cells, the Foxp3 content on a per cell basis was significantly increased. Sustained TLR9 signaling in the presence of PI3K inhibition during DC generation overrode the cells' suppressive phenotype.
Collapse
Affiliation(s)
- Valentina Di Caro
- Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigen-presenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.
Collapse
Affiliation(s)
- Hyun-Tak Jin
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
59
|
Williams KM, Dotson AL, Otto AR, Kohlmeier JE, Benedict SH. Choice of resident costimulatory molecule can influence cell fate in human naïve CD4+ T cell differentiation. Cell Immunol 2011; 271:418-27. [PMID: 21943647 DOI: 10.1016/j.cellimm.2011.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023]
Abstract
With antigen stimulation, naïve CD4+ T cells differentiate to several effector or memory cell populations, and cytokines contribute to differentiation outcome. Several proteins on these cells receive costimulatory signals, but a systematic comparison of their differential effects on naïve T cell differentiation has not been conducted. Two costimulatory proteins, CD28 and ICAM-1, resident on human naïve CD4+ T cells were compared for participation in differentiation. Under controlled conditions, and with no added cytokines, costimulation through either CD3+CD28 or CD3+CAM-1 induced differentiation to T effector and T memory cells. In contrast, costimulation through CD3+ICAM-1 induced differentiation to Treg cells whereas costimulation through CD3+CD28 did not.
Collapse
Affiliation(s)
- Kelli M Williams
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
60
|
Application of ChIP-Seq and related techniques to the study of immune function. Immunity 2011; 34:830-42. [PMID: 21703538 DOI: 10.1016/j.immuni.2011.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 01/02/2023]
Abstract
Behaviors observed at the cellular level such as development and acquisition of effector functions by immune cells result from transcriptional changes. The biochemical mediators of transcription are sequence-specific transcription factors (TFs), chromatin modifying enzymes, and chromatin, the complex of DNA and histone proteins. Covalent modification of DNA and histones, also termed epigenetic modification, influences the accessibility of target sequences for transcription factors on chromatin and the expression of linked genes required for immune functions. Genome-wide techniques such as ChIP-Seq have described the entire "cistrome" of transcription factors involved in specific developmental steps of B and T cells and started to define specific immune responses in terms of the binding profiles of critical effectors and epigenetic modification patterns. Current data suggest that both promoters and enhancers are prepared for action at different stages of activation by epigenetic modification through distinct transcription factors in different cells.
Collapse
|
61
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|
62
|
De Serres SA, Yeung MY, Mfarrej BG, Najafian N. Effect of biologic agents on regulatory T cells. Transplant Rev (Orlando) 2011; 25:110-6. [DOI: 10.1016/j.trre.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/26/2010] [Indexed: 02/07/2023]
|
63
|
Engelmann P, Farkas K, Kis J, Richman G, Zhang Z, Liew CW, Borowiec M, Niewczas MA, Jalahej H, Orbán T. Characterization of human invariant natural killer T cells expressing FoxP3. Int Immunol 2011; 23:473-84. [PMID: 21708895 DOI: 10.1093/intimm/dxr040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently described forkhead box protein 3 (FoxP3) transcription factor is a key molecule in CD4+ CD25hi+ T-cell characterization. Invariant NK T (iNKT) cells are also characterized as regulatory cells modulating the immune response by rapidly producing T(h)1 and T(h)2 cytokines. We aimed to analyze cellular markers important in regulatory features of human iNKT cells and to study their role in functional assays. iNKT cells were single cell sorted from peripheral mononuclear cells of healthy individuals after immunostaining of invariant TCR α-chain. We found FoxP3 expression in human iNKT clones. Randomly selected iNKT cell clones (CD4+, double negative, CD8+) expressed FoxP3 mRNA and protein at different levels upon stimulation as supported by various approaches. FoxP3 mRNA and protein expression was detected in unstimulated iNKT cells as well. Furthermore, different stimulations changed the FoxP3 expression in iNKT cells over time and the most dramatic changes were observed upon anti-CD3 stimulation. Both the supernatant of iNKT cells and iNKT cells themselves exerted similar stimulation effects on PBMC proliferation in functional assays and these stimulations showed a negative correlation with FoxP3 expression. Our data indicate that the FoxP3 expression in iNKT cells may be a key transcriptional factor in controlling the regulatory function of the iNKT cells.
Collapse
Affiliation(s)
- Péter Engelmann
- Section for Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Noh G, Lee JH. Regulatory B cells and allergic diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 3:168-77. [PMID: 21738882 PMCID: PMC3121058 DOI: 10.4168/aair.2011.3.3.168] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/20/2011] [Indexed: 12/26/2022]
Abstract
B cells are generally considered to positively regulate immune responses by producing antigen-specific antibodies. B cells are classified into classical CD5- conventional B cells and CD5+ B1 cells. The latter produce multi-specific autoantibodies and are thought to be involved in autoimmune diseases. However, evidence supporting a B cell negative regulatory function has accumulated over the past 30 years. Multiple reports have suggested that absence, or loss, of regulatory B cells exacerbates symptoms of both allergic (including contact hypersensitivity and anaphylaxis) and autoimmune (such as experimental autoimmune encephalomyelitis, chronic colitis, and collagen-induced arthritis) diseases, and in lupus-like models of autoimmunity. Regulatory B cells are characterized by production of the negative regulatory cytokines, IL-10 and TGF-β. IL-10-producing B cells were the first regulatory B cells to be recognized and were termed 'B10' cells. IL-10-producing regulatory B cells are of the CD19+CD5+IgMhiIgDloCD1dhi type. Recently, a TGF-β-producing regulatory B cell subset, Br3, has been shown to be related to immune tolerance in food allergies. Moreover, forkhead box P3 (Foxp3)-expressing B cells have also been identified in humans and may act as regulatory B cells (Bregs). The functional image of regulatory B cells is similar to that of regulatory T cells. Because of the proliferative and apoptotic responses of Br1 and Br3 cells in immune tolerance in non-IgE-mediated food allergy, reciprocal roles and counter-regulatory mechanisms of Br1 and Br3 responses are also suspected. Additionally, different roles for regulatory B and T cells at different time points during initiation and progression of autoimmune disease are described.
Collapse
Affiliation(s)
- Geunwoong Noh
- Division of Allergy and Clinical Immunology, Department of Paediatrics, Chungnam National University Hospital, Daejeon, Korea
| | | |
Collapse
|
65
|
Lee JH, Noh J, Noh G, Choi WS, Cho S, Lee SS. Allergen-specific transforming growth factor-β-producing CD19+CD5+ regulatory B-cell (Br3) responses in human late eczematous allergic reactions to cow's milk. J Interferon Cytokine Res 2011; 31:441-9. [PMID: 21291325 DOI: 10.1089/jir.2010.0020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD19(+)CD5(+) regulatory B cells produce transforming growth factor β (TGF-β) in both mouse and human B-cell leukemias. In this study, TGF-β was uniquely produced by normal human regulatory B cells. TGF-β-producing regulatory B-cell (Br3) responses were characterized through allergic responses to cow's milk. In total, 10 subjects allergic to milk and 13 milk-tolerant subjects were selected following double-blinded, placebo-controlled food challenges. Their peripheral blood mononuclear cells were stimulated in vitro with casein. Following allergen stimulation, the percentage of Br3s among CD5(+) B cells decreased from 11.5% ± 13.7% to 8.0% ± 9.6% (P = 0.042, n = 5) in the milk-allergy group and increased from 14.7% ± 15.6% to 18.9% ± 20.1% (P = 0.006, n = 7) in the milk-tolerant group. However, the numbers of Br3s increased only in the milk-tolerant group, from 1,954 ± 1,058 to 4,548 ± 1,846 per well (P = 0.026), whereas the numbers of Br3s in the milk-allergy group were unchanged [2,596 ± 823 to 2,777 ± 802 per well (P = 0.734)]. The numbers of apoptotic events were similar to the numbers of total Br3 responses. The percentage of non-TGF-β-producing CD5(+) B cells with apoptotic changes increased from 13.4% ± 17.1% to 16.4% ± 20.3% (P = 0.047, n = 5) in the milk-allergy group and remained unchanged [from 9.9% ± 11.9% to 9.3% ± 11.4% (P = 0.099, n = 7)] in the milk-tolerant group. Using carboxyfluorescein succinimidyl ester labeling, we observed that the percentage of proliferating Br3s among CD5(+) B cells was unchanged [from 6.1% ± 2.8% to 6.4% ± 2.9% (P = 0.145)] in the milk-allergy group and increased from 6.8% ± 3.9% to 10.2% ± 5.3% (P = 0.024) in the milk-tolerant group. In conclusion, Br3s proliferated in response to allergen stimulation in the milk-tolerant group and not in the milk-allergy group. TGF-β-producing regulatory B cells (Br3) may be involved in allergy tolerance by negatively regulating the immune system with TGF-β, and this negative regulation may be controlled by apoptosis.
Collapse
Affiliation(s)
- Jae Ho Lee
- Department of Paediatrics, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
66
|
Neujahr DC, Larsen CP. Regulatory T cells in lung transplantation--an emerging concept. Semin Immunopathol 2011; 33:117-27. [PMID: 21424593 PMCID: PMC3395059 DOI: 10.1007/s00281-011-0253-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/13/2011] [Indexed: 01/11/2023]
Abstract
Lung transplantation represents an option for patients with a variety of end-stage lung diseases. While surgical advances have led to improvements in short-term survival, long-term survival is limited by chronic rejection termed bronchiolitis obliterans syndrome (BOS). A growing body of work is devoted to determining why some patients develop BOS. One avenue of interest that has emerged recently is the role that regulatory T cells (Tregs) may have in protection from BOS. In this review, we will discuss the evidence that Tregs are relevant to outcomes following transplant. We will discuss the relevant animal models, in vitro assays, and human observational studies that support a role for Tregs. We will also explore the interplay between injurious T cells such as Th17 cells and Tregs as well as the effect that additional cell types and chemokines have on the balance between inflammation and regulation. Finally, we will review emerging therapies which may harness the ability of Tregs to lessen the effects of BOS.
Collapse
Affiliation(s)
- David C Neujahr
- Emory University Department of Medicine, Emory University Hospital, Atlanta, GA 30322, USA.
| | | |
Collapse
|
67
|
Analysis of the transcriptional program of developing induced regulatory T cells. PLoS One 2011; 6:e16913. [PMID: 21347372 PMCID: PMC3036712 DOI: 10.1371/journal.pone.0016913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/06/2011] [Indexed: 12/12/2022] Open
Abstract
CD25+ regulatory T cells develop in the thymus (nTregs), but may also be generated in the periphery upon stimulation of naive CD4 T cells under appropriate conditions (iTregs). To gain insight into the mechanisms governing iTreg development, we performed longitudinal transcriptional profiling of CD25+ T cells during their differentiation from uncommitted naive CD4 T cells. Microarray analysis of mRNA from CD25+ iTregs early after stimulation revealed expression of genes involved in cell cycle progression and T cell activation, which largely overlapped with genes expressed in CD25+ effector T cells (Teffs) used as a control. Whereas expression of these genes remained elevated in Teffs, it declined gradually in developing iTregs, resulting in a more quiescent phenotype in mature iTregs. A similar pattern of kinetics was observed for biological processes and for intracellular pathways over-represented within the expressed genes. A maximum dichotomy of transcriptional activity between iTregs and Teffs was reached at late stages of their maturation. Of interest, members of the FoxO and FoxM1 transcription factor family pathways exhibited a reciprocal expression pattern in iTregs and Teffs, suggesting a role of these transcription factors in determining T cell fate.
Collapse
|
68
|
Bestard O, Cassis L, Cruzado JM, Torras J, Franquesa M, Gil-Vernet S, Lucia M, Grinyó JM. Costimulatory blockade with mTor inhibition abrogates effector T-cell responses allowing regulatory T-cell survival in renal transplantation. Transpl Int 2011; 24:451-60. [DOI: 10.1111/j.1432-2277.2011.01223.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
69
|
|
70
|
Ghez D, Lepelletier Y, Jones KS, Pique C, Hermine O. Current concepts regarding the HTLV-1 receptor complex. Retrovirology 2010; 7:99. [PMID: 21114861 PMCID: PMC3001707 DOI: 10.1186/1742-4690-7-99] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 11/29/2010] [Indexed: 12/12/2022] Open
Abstract
The identity of the Human T lymphotropic Virus type 1 (HTLV-1) receptor remained an unsolved puzzle for two decades, until the recent demonstration that three molecules, Glucose Transporter 1, Neuropilin-1 and Heparan Sulfate Proteoglycans are involved in HTLV-1 binding and entry. Despite these advances, several questions remain unanswered, including the precise role of each of these molecules during virus entry. In light of the most recent data, we propose a model of the HTLV-1 receptor complex and discuss its potential impact on HTLV-1 infection.
Collapse
Affiliation(s)
- David Ghez
- CNRS UMR8147, Universite Rene Descartes, Paris 5, 161 Rue de Sèvres, 75743 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
71
|
Mejri N, Müller N, Hemphill A, Gottstein B. Intraperitoneal Echinococcus multilocularis infection in mice modulates peritoneal CD4+ and CD8+ regulatory T cell development. Parasitol Int 2010; 60:45-53. [PMID: 20965274 DOI: 10.1016/j.parint.2010.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 12/16/2022]
Abstract
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-γ mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-β mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.
Collapse
Affiliation(s)
- Naceur Mejri
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
72
|
Parvizi P, Andrzejewski K, Read LR, Behboudi S, Sharif S. Expression profiling of genes associated with regulatory functions of T-cell subsets in Marek's disease virus-infected chickens. Avian Pathol 2010; 39:367-73. [DOI: 10.1080/03079457.2010.508776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
73
|
Torres J, Tamimi F, Alkhraisat MH, Manchón A, Linares R, Prados-Frutos JC, Hernández G, López Cabarcos E. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with anorganic bovine bone. J Clin Periodontol 2010. [PMID: 20796106 DOI: 10.1111/j.1600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Bone augmentation with the titanium-mesh (Ti-mesh) technique is susceptible to a large rate of complications such as morbidity of bone graft donor site, and mesh exposure to the oral cavity. The purpose of this study was to evaluate the effectiveness of anorganic bovine bone (ABB) in alveolar bone augmentation with the Ti-mesh technique. In addition, we investigated the effect of platelet-rich plasma (PRP) in preventing mesh exposure by using it to cover the Ti-mesh. PATIENTS AND METHODS Patients included in the clinical trial were randomly allocated by a blinded assistant into two groups. The 30 patients recruited for this study underwent 43 alveolar bone augmentation with the Ti-mesh technique using ABB as graft material in all of them. In 15 patients, the Ti-meshes were covered with PRP (PRP group) whereas in the other 15 the Ti-meshes were not (control group). After 6 months, patients were called for clinical, radiographic, and histological evaluation, and implant placement surgery. A total of 97 implants were placed in the augmented bone and their evolution was followed up for a period of 24 months. RESULTS Significant differences were found between the two study groups in terms of complications and bone formation. In the control group, 28.5% of the cases suffered from mesh exposure, while in the PRP group, no exposures were registered. Radiographic analysis revealed that bone augmentation was higher in the PRP group than in the control group. Overall, 97.3% of implants placed in the control group and 100% of those placed in the PRP group were successful during the monitoring period. We suggest that the positive effect of PRP on the Ti-mesh technique is due to its capacity to improve soft tissue healing, thereby protecting the mesh and graft material secured beneath the gingival tissues. CONCLUSIONS Alveolar bone augmentation using ABB alone in the Ti-mesh technique is sufficient for implant rehabilitation. Besides, covering the Ti-meshes with PRP was a determining factor in avoiding mesh exposure. Ti-mesh exposure provoked significant bone loss, but in most cases it did not affect the subsequent placement of implants.
Collapse
Affiliation(s)
- Jesús Torres
- Ciencias de la Salud III, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Plasmacytoid dendritic cells: from heart to vessels. Int J Vasc Med 2010; 2010:430318. [PMID: 21152192 PMCID: PMC2989744 DOI: 10.1155/2010/430318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/29/2010] [Accepted: 08/30/2010] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the vessel wall layers during pathological conditions, such as atherosclerosis. It is thus clear that a better identification of pDCs activity in cardiovascular diseases can not only elucidate pathological mechanisms but also lead to new therapeutic approaches.
Collapse
|
75
|
Zelenay S, Bergman ML, Paiva RS, Lino AC, Martins AC, Duarte JH, Moraes-Fontes MF, Bilate AM, Lafaille JJ, Demengeot J. Cutting edge: Intrathymic differentiation of adaptive Foxp3+ regulatory T cells upon peripheral proinflammatory immunization. THE JOURNAL OF IMMUNOLOGY 2010; 185:3829-33. [PMID: 20817879 DOI: 10.4049/jimmunol.1001281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocytes differentiate into CD4(+) Foxp3(+) regulatory T cells (T(R)) upon interaction between their TCR and peptide-MHC II complexes locally expressed in the thymus. Conversion of naive CD4(+) T cells into T(R) can additionally take place in the periphery under noninflammatory conditions of Ag encounter. In this study, making use of TCR transgenic models naturally devoid of Foxp3(+) cells, we report de novo generation of T(R) upon a single footpad injection of Ag mixed with a classic proinflammatory adjuvant. Abrupt T(R) differentiation upon immunization occurred intrathymically and was essential for robust tolerance induction in a mouse model of spontaneous encephalomyelitis. This phenomenon could be attributed to a specific feature of thymocytes, which, in contrast to mature peripheral CD4(+) T cells, were insensitive to the inhibitory effects of IL-6 on the induction of Foxp3 expression. Our findings uncover a pathway for T(R) generation with major implications for immunity and tolerance induction.
Collapse
|
76
|
Abstract
Regulatory T cells (Tregs) and the PD-1: PD-ligand (PD-L) pathway are both critical to terminating immune responses. Elimination of either can result in the breakdown of tolerance and the development of autoimmunity. The PD-1: PD-L pathway can thwart self-reactive T cells and protect against autoimmunity in many ways. In this review, we highlight how PD-1 and its ligands defend against potentially pathogenic self-reactive effector T cells by simultaneously harnessing two mechanisms of peripheral tolerance: (i) the promotion of Treg development and function and (ii) the direct inhibition of potentially pathogenic self-reactive T cells that have escaped into the periphery. Treg cells induced by the PD-1 pathway may also assist in maintaining immune homeostasis, keeping the threshold for T-cell activation high enough to safeguard against autoimmunity. PD-L1 expression on non-hematopoietic cells as well as hematopoietic cells endows PD-L1 with the capacity to promote Treg development and enhance Treg function in lymphoid organs and tissues that are targets of autoimmune attack. At sites where transforming growth factor-beta is present (e.g. sites of immune privilege or inflammation), PD-L1 may promote the de novo generation of Tregs. When considering the consequences of uncontrolled immunity, it would be therapeutically advantageous to manipulate Treg development and sustain Treg function. Thus, this review also discusses how the PD-1 pathway regulates a number of autoimmune diseases and the therapeutic potential of PD-1: PD-L modulation.
Collapse
Affiliation(s)
- Loise M. Francisco
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
- Brigham & Women’s Hospital, Boston, MA, USA
| | - Peter T. Sage
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
| | - Arlene H. Sharpe
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
- Brigham & Women’s Hospital, Boston, MA, USA
| |
Collapse
|
77
|
Phillips B, Giannoukakis N, Trucco M. Dendritic cell-based therapy in Type 1 diabetes mellitus. Expert Rev Clin Immunol 2010; 5:325-39. [PMID: 20477010 DOI: 10.1586/eci.09.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) immunotherapy is a clinical reality. Despite two decades of considerable data demonstrating the feasibility of using DCs to prolong transplant allograft survival and to prevent autoimmunity, only now are these cells entering clinical trials in humans. Type 1 diabetes is the first autoimmune disorder to be targeted for treatment in humans using autologous-engineered DCs. This review will highlight the role of DCs in autoimmunity and the manner in which they have been engineered to treat these disorders in rodent models, either via the induction of immune hyporesponsiveness, which may be cell- and/or antigen-specific, or indirectly by upregulation of other immune cell networks.
Collapse
Affiliation(s)
- Brett Phillips
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA.
| | | | | |
Collapse
|
78
|
Zhao Z, Ciric B, Yu S, Li H, Yang J, Kamoun M, Zhang GX, Rostami A. Expression of 3G11 epitope defines subpopulations of regulatory T cells with different suppressive potency. J Neurol Sci 2010; 295:66-74. [PMID: 20621800 DOI: 10.1016/j.jns.2010.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/05/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
3G11, a sialylated carbohydrate epitope on the disialoganglioside molecule, is expressed predominantly on the surface of mouse CD4(+) T cells. Our previous studies suggested that lack of the 3G11 molecule could be a new cell surface marker for regulatory CD4(+) T cells. In the present study, we explore the relationship between 3G11(-) and CD25(+) T cells, a well-defined, naturally occurring regulatory T cell population. We found that a large proportion of CD25(+)CD4(+) T cells lack expression of 3G11 and that more 3G11(-)CD4(+) T cells express Foxp3 compared to the 3G11(+)CD4(+) population. Based on 3G11 and CD25 expression we sorted four CD4(+) T cell subpopulations and tested their phenotypes. Among four CD25/3G11-related CD4(+) T cell subpopulations, CD25(+)3G11(-) T cells expressed the highest levels of Foxp3 and IL-10 and most efficiently inhibited mitogenic and antigen-specific immune responses in vitro and clinical EAE in vivo, while CD25(-)3G11(+) T cells produced a higher level of proinflammatory cytokines and enhanced autoimmune responses. Thus, among CD4(+)CD25(+) T cells, CD25(+)3G11(-) T cells represent a more effective Treg subpopulation than CD25(+)3G11(+) T cells.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Noh J, Lee JH, Noh G, Bang SY, Kim HS, Choi WS, Cho S, Lee SS. Characterisation of allergen-specific responses of IL-10-producing regulatory B cells (Br1) in Cow Milk Allergy. Cell Immunol 2010; 264:143-9. [PMID: 20646682 DOI: 10.1016/j.cellimm.2010.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/10/2010] [Accepted: 05/22/2010] [Indexed: 01/04/2023]
Abstract
CD19+CD5+ regulatory B cells regulate immune responses by producing IL-10. IL-10-producing regulatory B cell (Br1) responses by allergen stimulation were investigated in human food allergy. Six milk allergy patients and eight milk-tolerant subjects were selected according to DBPCFC. PBMCs were stimulated by casein in vitro and stained for intracellular IL-10 and apoptosis. In response to allergen stimulation, Br1 decreased from 26.2+/-18.3 to 15.5+/-8.9% (p=0.031, n=6) in the milk allergy group and increased from 15.4+/-9.0 to 23.7+/-11.2% (p=0.023, n=8) in the milk-tolerant group. Apoptotic non-IL-10-producing regulatory B cells increased from 21.8+/-9.3 to 38.0+/-16.1% (p=0.031, n=6) in the milk allergy group and unchanged from 28.8+/-13.8 to 28.0+/-15.0% (p=0.844, n=8) in the milk-tolerant group. Br1 may be involved in the immune tolerance of food allergies by producing IL-10 and simultaneously undergoing apoptosis in humans. The exact roles for Br1 in immune tolerance needs to be further investigated.
Collapse
Affiliation(s)
- Joonyong Noh
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Liu J, Yoshida Y, Kunugita N, Noguchi J, Sugiura T, Ding N, Arashidani K, Fujimaki H, Yamashita U. Thymocytes are activated by toluene inhalation through the transcription factors NF-κB, STAT5 and NF-AT. J Appl Toxicol 2010; 30:656-60. [DOI: 10.1002/jat.1536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Boks MA, Zwaginga JJ, Van Ham SM, Ten Brinke A. An Optimized CFSE-based T-cell Suppression Assay to Evaluate the Suppressive Capacity of Regulatory T-Cells Induced by Human Tolerogenic Dendritic Cells. Scand J Immunol 2010; 72:158-68. [DOI: 10.1111/j.1365-3083.2010.02414.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Golding A, Rosen A, Petri M, Akhter E, Andrade F. Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology 2010; 131:107-17. [PMID: 20465564 DOI: 10.1111/j.1365-2567.2010.03280.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An adequate effector response against pathogens and its subsequent inactivation after pathogen clearance are critical for the maintenance of immune homeostasis. This process involves an initial phase of T-cell effector (Teff) activation followed by the expansion of regulatory T cells (Tregs), a unique cell population that limits Teff functions. However, significant questions remain unanswered about the mechanisms that regulate the balance between these cell populations. Using an in vitro system to mimic T-cell activation in human peripheral blood mononuclear cells (PBMC), we analysed the patterns of Treg and Teff activation, with special attention to the role of type I interferon (IFN-I). Interestingly, we found that IFN-alpha, either exogenously added or endogenously induced, suppressed the generation of CD4(+) FoxP3(HI )IFN-gamma(Neg) activated Tregs (aTregs) while simultaneously promoting propagation of CD4(+) FoxP3(Low/Neg )IFN-gamma(Pos) activated Teffs (aTeffs). We also showed that IFN-alpha-mediated inhibition of interleukin (IL)-2 production may play an essential role in IFN-alpha-induced suppression of aTregs. In order to test our findings in a disease state with chronically elevated IFN-alpha, we investigated systemic lupus erythematosus (SLE). Plasma from patients with SLE was found to contain IFN-I activity that suppressed aTreg generation. Furthermore, anti-CD3 activated SLE PBMCs exhibited preferential expansion of aTeffs with a very limited increase in aTreg numbers. Together, these observations support a model whereby a transient production of IFN-alpha (such as is seen in an early antiviral response) may promote CD4 effector functions by delaying aTreg generation, but a chronic elevation of IFN-alpha may tip the aTeff:aTreg balance towards aTeffs and autoimmunity.
Collapse
Affiliation(s)
- Amit Golding
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
83
|
Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res 2010; 107:57-117. [PMID: 20399961 DOI: 10.1016/s0065-230x(10)07003-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the present time, regulatory T cells (Tregs) are an integral part of immunology but the route from discovery of "suppressive" lymphocytes in the 1980s to the current established concept of Tregs almost 20 years later has been a rollercoaster ride. Tregs are essential for maintaining self-tolerance as defects in their compartment lead to severe autoimmune diseases. This vitally important function exists alongside the detrimental effects on tumor immunosurveillance and antitumor immunity. Beginning with the identification of CD4(+)CD25(+) Tregs in 1995, the list of Treg subsets, suppressive mechanisms, and knowledge about their various origins is steadily growing. Increase in Tregs within tumors and circulation of cancer patients, observed in early studies, implied their involvement in pathogenesis and disease progression. Several mechanisms, ranging from proliferation to specific trafficking networks, have been identified to account for their systemic and/or local accumulation. Since various immunotherapeutic approaches are being utilized for cancer therapy, various strategies to overcome the antagonistic effects exerted by Tregs are being currently explored. An overview on the biology of Tregs present in cancer patients, their clinical impact, and methods for modulating them is given in this review. Despite the extensive studies on Tregs in cancer many questions still remain unanswered. Even the paradigm that Tregs generally are disadvantageous for the control of malignancies is now under scrutiny. Insight into the specific role of Tregs in different types of neoplasias is the key for targeting them in a way that is beneficial for the clinical outcome.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Oncology and Pathology, Karolinska University Hospital, Cancer Center Karolinska R8:01, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
84
|
Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 2010; 31:932-40. [PMID: 20064450 DOI: 10.1016/j.immuni.2009.10.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/23/2009] [Accepted: 10/09/2009] [Indexed: 12/26/2022]
Abstract
Regulatory T (Treg) cells are essential for maintaining immune homeostasis. Although Foxp3 expression marks the commitment of progenitors to Treg cell lineage, how Treg cells are generated during lymphocyte development remains enigmatic. We report here that the c-Rel transcription factor controlled development of Treg cells by promoting the formation of a Foxp3-specific enhanceosome. This enhanceosome contained c-Rel, p65, NFAT, Smad, and CREB. Although Smad and CREB first bound to Foxp3 enhancers, they later moved to the promoter to form the c-Rel enhanceosome. c-Rel-deficient mice had up to 90% reductions of Treg cells compared to wild-type mice, and c-Rel-deficient T cells were compromised in Treg cell differentiation. Thus, Treg cell development is controlled by a c-Rel enhanceosome, and strategies targeting Rel-NF-kappaB can be effective for manipulating Treg cell function.
Collapse
|
85
|
Li A, Chen J, Hattori M, Franco E, Zuppan C, Ojogho O, Iwaki Y, Escher A. A therapeutic DNA vaccination strategy for autoimmunity and transplantation. Vaccine 2010; 28:1897-904. [DOI: 10.1016/j.vaccine.2009.10.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
86
|
Lee JH, Noh J, Noh G, Kim HS, Mun SH, Choi WS, Cho S, Lee S. Allergen-specific B cell subset responses in cow’s milk allergy of late eczematous reactions in atopic dermatitis. Cell Immunol 2010; 262:44-51. [DOI: 10.1016/j.cellimm.2009.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/03/2009] [Accepted: 12/21/2009] [Indexed: 12/30/2022]
|
87
|
Milkova L, Voelcker V, Forstreuter I, Sack U, Anderegg U, Simon JC, Maier-Simon C. The NF-κB signalling pathway is involved in the LPS/IL-2-induced upregulation of FoxP3 expression in human CD4+CD25high regulatory T cells. Exp Dermatol 2010; 19:29-37. [DOI: 10.1111/j.1600-0625.2009.00953.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. ACTA ACUST UNITED AC 2009; 206:3015-29. [PMID: 20008522 PMCID: PMC2806460 DOI: 10.1084/jem.20090847] [Citation(s) in RCA: 1585] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both the programmed death (PD) 1–PD-ligand (PD-L) pathway and regulatory T (T reg) cells are instrumental to the maintenance of peripheral tolerance. We demonstrate that PD-L1 has a pivotal role in regulating induced T reg (iT reg) cell development and sustaining iT reg cell function. PD-L1−/− antigen-presenting cells minimally convert naive CD4 T cells to iT reg cells, showing the essential role of PD-L1 for iT reg cell induction. PD-L1–coated beads induce iT reg cells in vitro, indicating that PD-L1 itself regulates iT reg cell development. Furthermore, PD-L1 enhances and sustains Foxp3 expression and the suppressive function of iT reg cells. The obligatory role for PD-L1 in controlling iT reg cell development and function in vivo is illustrated by a marked reduction in iT reg cell conversion and rapid onset of a fatal inflammatory phenotype in PD-L1−/−PD-L2−/− Rag−/− recipients of naive CD4 T cells. PD-L1 iT reg cell development is mediated through the down-regulation of phospho-Akt, mTOR, S6, and ERK2 and concomitant with the up-regulation of PTEN, all key signaling molecules which are critical for iT reg cell development. Thus, PD-L1 can inhibit T cell responses by promoting both the induction and maintenance of iT reg cells. These studies define a novel mechanism for iT reg cell development and function, as well as a new strategy for controlling T reg cell plasticity.
Collapse
Affiliation(s)
- Loise M Francisco
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Bewick S, Yang R, Zhang M. The danger is growing! A new paradigm for immune system activation and peripheral tolerance. PLoS One 2009; 4:e8112. [PMID: 19956616 PMCID: PMC2779512 DOI: 10.1371/journal.pone.0008112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 10/20/2009] [Indexed: 11/19/2022] Open
Abstract
Successful immune defense is a complex balancing act. In order to protect a host against invasion by harmful pathogens, an immune response must be rapid and vigorous, and must eliminate foreign invaders before their populations grow beyond control. That same immune response, however, must be selective enough to recognize and ignore commensal bacteria, environmental antigens and host tissue itself. How the immune system makes the crucial decision whether or not to attack a particular antigen has been a long-standing question central to the study of immunology. Here we show that the structure of the signaling network between regulatory T-cells and type 17 helper T-cells allows the immune system to selectively attack pathogens based on whether or not the pathogens represent a growing, and thus dangerous population. We term this mechanism for immune system activation the 'Growth Detection Paradigm', because it offers an entirely new explanation for immune system regulation and peripheral tolerance.
Collapse
Affiliation(s)
- Sharon Bewick
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Ruoting Yang
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Mingjun Zhang
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
90
|
Vondran FWR, Timrott K, Tross J, Kollrich S, Schwarz A, Lehner F, Klempnauer J, Becker T, Schwinzer R. Impact of Basiliximab on regulatory T-cells early after kidney transplantation: down-regulation of CD25 by receptor modulation. Transpl Int 2009; 23:514-23. [DOI: 10.1111/j.1432-2277.2009.01013.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
91
|
Hershko AY, Rivera J. Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 2009; 128:98-104. [PMID: 19900479 DOI: 10.1016/j.imlet.2009.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 12/14/2022]
Abstract
Recent advances in understanding the physiological role of mast cells (MCs) point to an important regulatory role for these cells in adaptive immunity. MCs express a diverse array of molecules that can promote their interaction with T cells as well as with other immune cells. New evidence demonstrates that mast cells can directly and indirectly communicate with T cells. They can control both effector and regulatory T cell responses and their activity can in turn be modulated by these interactions. Here we briefly summarize these advances and discuss some of the major challenges in understanding the communication of MCs and T cells.
Collapse
Affiliation(s)
- Alon Y Hershko
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
92
|
Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood 2009; 114:3831-40. [PMID: 19704119 DOI: 10.1182/blood-2009-03-212134] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lymphopenia enhances the effectiveness of adoptive immunotherapy by facilitating expansion of transferred T cells but also limits the T-cell repertoire available to mediate immune responses and, in humans, is associated with chronic immune dysfunction. Previous studies concluded that lymphopenia augments adoptive immunotherapy by diminishing Tregs and increasing homeostatic cytokines. We sought to determine whether targeted therapies that replicate the physiology of lymphopenia in lymphoreplete hosts could provide a similarly supportive milieu. Pmel-1 T cells were transferred to B16-bearing lymphopenic versus lymphoreplete mice receiving alphaCD25 and/or recombinant human interleukin-7. Although CD25-based Treg depletion was inefficient because of peripheral expansion of CD4+CD25-FOXP3+ cells, outcomes were better in alphaCD25-treated lymphoreplete hosts than in lymphopenic hosts, and adoptive immunotherapy was most effective in lymphoreplete hosts receiving alphaCD25 plus recombinant human interleukin-7. Lymphopenic hosts supported increased proliferation of adoptively transferred antigen-specific T cells, but cells transferred to lymphoreplete recipients receiving targeted therapies showed superior function. Further, determinant spreading was substantial in lymphoreplete hosts but absent in lymphopenic hosts. These results demonstrate that targeted therapies delivered to mimic the "physiology of lymphopenia" enhance the efficacy of adoptive immunotherapy in lymphoreplete hosts and provide a potentially superior alternative to the induction of lymphopenia.
Collapse
|
93
|
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30:832-44. [PMID: 19538929 DOI: 10.1016/j.immuni.2009.04.014] [Citation(s) in RCA: 1015] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 11/07/2008] [Accepted: 04/09/2009] [Indexed: 12/19/2022]
Abstract
Effector T cell differentiation requires the simultaneous integration of multiple, and sometimes opposing, cytokine signals. We demonstrated mTOR's role in dictating the outcome of T cell fate. mTOR-deficient T cells displayed normal activation and IL-2 production upon initial stimulation. However, such cells failed to differentiate into T helper 1 (Th1), Th2, or Th17 effector cells. The inability to differentiate was associated with decreased STAT transcription factor activation and failure to upregulate lineage-specific transcription factors. Under normally activating conditions, T cells lacking mTOR differentiated into Foxp3(+) regulatory T cells. This was associated with hyperactive Smad3 activation in the absence of exogenous TGF-beta. Surprisingly, T cells selectively deficient in TORC1 do not divert to a regulatory T cell pathway, implicating both TORC1 and TORC2 in preventing the generation of regulatory T cells. Overall, our studies suggest that mTOR kinase signaling regulates decisions between effector and regulatory T cell lineage commitment.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ordoñez-Rueda D, Lozano F, Sarukhan A, Raman C, Garcia-Zepeda EA, Soldevila G. Increased numbers of thymic and peripheral CD4+
CD25+
Foxp3+
cells in the absence of CD5 signaling. Eur J Immunol 2009; 39:2233-47. [DOI: 10.1002/eji.200839053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
95
|
Chang JH, Kim YJ, Han SH, Kang CY. IFN-gamma-STAT1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis. Eur J Immunol 2009; 39:1241-51. [PMID: 19337996 DOI: 10.1002/eji.200838913] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulatory CD4(+) T cells are important for the homeostasis of immune cells, and their absence correlates with autoimmune disorders. However, how the immune system regulates Treg homeostasis remains unclear. We found that IFN-gamma-deficient-mice had more forkhead box P3 (FOXP3(+)) cells than WT mice in all secondary lymphoid organs except the thymus. However, T-bet- or IL-4Ralpha-deficient mice did not show a similar increase. In vitro differentiation studies showed that conversion of naïve T cells into FOXP3(+) cells (neo-generated inducible Treg (iTreg)) by TGF-beta was significantly inhibited by IFN-gamma in a STAT-1-dependent manner. Moreover, an in vivo adoptive transfer study showed that inhibition of FOXP3(+) iTreg generation by IFN-gamma was a T-cell autocrine effect. This inhibitory effect of IFN-gamma on iTreg generation was significantly abrogated after N-acetyl-L-cysteine treatment both in vitro and in vivo, indicating that IFN-gamma regulation of iTreg generation is dependent on ROS-mediated apoptosis. Therefore, our results suggest that autocrine IFN-gamma can negatively regulate the neo-generation of FOXP3(+) iTreg through ROS-mediated apoptosis in the periphery.
Collapse
Affiliation(s)
- Jae-Hoon Chang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | | | | | | |
Collapse
|
96
|
Saito H. T-cell subpopulation and tolerance. Hepatol Res 2009; 39:645-7. [PMID: 19570138 DOI: 10.1111/j.1872-034x.2009.00561.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hidetsugu Saito
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
97
|
Hendrikx TK, Velthuis JHL, Klepper M, van Gurp E, Geel A, Schoordijk W, Baan CC, Weimar W. Monotherapy rapamycin allows an increase of CD4 CD25 FoxP3 T cells in renal recipients. Transpl Int 2009; 22:884-91. [PMID: 19453998 DOI: 10.1111/j.1432-2277.2009.00890.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4(+) CD25(bright+) FoxP3(+) regulatory T cells (Tregs) may control donor-specific allogeneic responses in kidney transplant recipients. Recent evidence demonstrated that three phenotypical Treg-subsets, naive (CCR7(+)CD45RO(-)), central-memory (CCR7(+)CD45RO(+)) and effector-memory (CCR7(-)CD45RO(+)), are essential for the development and function of antigen-specific suppression in the lymphoid and peripheral tissues. Also, it has been appreciated that Tregs are affected by immunosuppressive agents. In clinical practice, however, the effect of a single drug remains to be determined. Therefore, we analyzed the effect of several immunosuppressive agents on the number, phenotype and function of peripheral Tregs from 46 stable kidney transplant recipients. These patients were converted to monotherapy with tacrolimus (n = 15), rapamycin (n = 17) or mycophenolate mofetil (n = 14). Blood was obtained at inclusion and 6 months thereafter. The number of Tregs increased significantly in patients on monotherapy with rapamycin (P < 0.001), which was caused by increased numbers of Tregs with a central-memory and an effector-memory phenotype (both P < 0.05). At 6 months after conversion, however, the suppressive function of Tregs did not significantly change in co-cultures stimulated with donor-Ag. Therefore, monotherapy with rapamycin allows the signals that are needed to increase the number of functional Tregs with a memory phenotype, thereby enhancing the potential capacity to regulate donor-specific responses in the lymphoid and the peripheral tissues.
Collapse
Affiliation(s)
- Thijs K Hendrikx
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Skin application of ketoprofen systemically suppresses contact hypersensitivity by inducing CD4+ CD25+ regulatory T cells. J Dermatol Sci 2009; 53:216-21. [DOI: 10.1016/j.jdermsci.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 12/20/2022]
|
99
|
Ludwig-Portugall I, Hamilton-Williams EE, Gotot J, Kurts C. CD25+ T(reg) specifically suppress auto-Ab generation against pancreatic tissue autoantigens. Eur J Immunol 2009; 39:225-33. [PMID: 19130585 DOI: 10.1002/eji.200838699] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To study B-cell tolerance against non-lymphoid tissue autoantigens, we generated transgenic rat insulin promoter (RIP)-OVA/hen egg lysozyme (HEL) mice expressing the model antigens, OVA and HEL, in pancreatic islets. Their vaccination with OVA or HEL induced far less auto-Ab titers compared with non-transgenic controls. Depletion of CD25(+) cells during immunization completely restored auto-Ab production, but did not affect antibodies against a foreign control antigen. Depletion at later time-points was not effective. OVA-specific CD25(+) FoxP3(+) T(reg) were more frequent in the autoantigen-draining pancreatic LN than in other secondary lymphatics of RIP-OVA/HEL mice. Consistently, B cells were suppressed in that LN and also in the spleen, which is known to concentrate circulating antigen, such as the antigens used for vaccination. Suppression involved preventing expansion of autoreactive B cells in response to autoantigen, reducing antibody production per B-cell and isotype changes. These findings demonstrate that CD25(+) T(reg) suppress auto-Ab production against non-lymphoid tissue antigens in an antigen-specific manner.
Collapse
Affiliation(s)
- Isis Ludwig-Portugall
- Institute of Molecular Medicine and Experimental Immunology, Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | | | | | |
Collapse
|
100
|
Generation of Donor-Specific Regulatory T-Cell Function in Kidney Transplant Patients. Transplantation 2009; 87:376-83. [DOI: 10.1097/tp.0b013e3181901b69] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|