51
|
Barth S, Edlich F, Berchner-Pfannschmidt U, Gneuss S, Jahreis G, Hasgall PA, Fandrey J, Wenger RH, Camenisch G. Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J Biol Chem 2009; 284:23046-58. [PMID: 19546213 DOI: 10.1074/jbc.m109.032631] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-4-hydroxylase domain (PHD) proteins are 2-oxoglutarate and dioxygen-dependent enzymes that mediate the rapid destruction of hypoxia-inducible factor alpha subunits. Whereas PHD1 and PHD3 proteolysis has been shown to be regulated by Siah2 ubiquitin E3 ligase-mediated polyubiquitylation and proteasomal destruction, protein regulation of the main oxygen sensor responsible for hypoxia-inducible factor alpha regulation, PHD2, remained unknown. We recently reported that the FK506-binding protein (FKBP) 38 specifically interacts with PHD2 and determines PHD2 protein stability in a peptidyl-prolyl cis-trans isomerase-independent manner. Using peptide array binding assays, fluorescence spectroscopy, and fluorescence resonance energy transfer analysis, we defined a minimal linear glutamate-rich PHD2 binding domain in the N-terminal part of FKBP38 and showed that this domain forms a high affinity complex with PHD2. Vice versa, PHD2 interacted with a non-linear N-terminal motif containing the MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+) finger domain with FKBP38. Biochemical fractionation and immunofluorescence analysis demonstrated that PHD2 subcellular localization overlapped with FKBP38 in the endoplasmic reticulum and mitochondria. An additional fraction of PHD2 was found in the cytoplasm. In cellulo PHD2/FKBP38 association, as well as regulation of PHD2 protein abundance by FKBP38, is dependent on membrane- anchored FKBP38 localization mediated by the C-terminal transmembrane domain. Mechanistically our data indicate that PHD2 protein stability is regulated by a ubiquitin-independent proteasomal pathway involving FKBP38 as adaptor protein that mediates proteasomal interaction. We hypothesize that FKBP38-bound PHD2 is constantly degraded whereas cytosolic PHD2 is stable and able to function as an active prolyl-4-hydroxylase.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Schödel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, Amann K, Korbmacher C, Wiesener M, Warnecke C, Kurtz A, Eckardt KU, Willam C. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1663-74. [PMID: 19349364 DOI: 10.2353/ajpath.2009.080687] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia-inducible transcription factors (HIFs) play important roles in the response of the kidney to systemic and regional hypoxia. Degradation of HIFs is mediated by three oxygen-dependent HIF-prolyl hydroxylases (PHDs), which have partially overlapping characteristics. Although PHD inhibitors, which can induce HIFs in the presence of oxygen, are already in clinical development, little is known about the expression and regulation of these enzymes in the kidney. Therefore, we investigated the expression levels of the three PHDs in both isolated tubular cells and rat kidneys. All three PHDs were present in the kidney and were expressed predominantly in three different cell populations: (a) in distal convoluted tubules and collecting ducts (PHD1,2,3), (b) in glomerular podocytes (PHD1,3), and (c) in interstitial fibroblasts (PHD1,3). Higher levels of PHDs were found in tubular segments of the inner medulla where oxygen tensions are known to be physiologically low. PHD expression levels were unchanged in HIF-positive tubular and interstitial cells after induction by systemic hypoxia. In rat models of acute renal injury, changes in PHD expression levels were variable; while cisplatin and ischemia/reperfusion led to significant decreases in PHD2 and 3 expression levels, no changes were seen in a model of contrast media-induced nephropathy. These results implicate the non-uniform expression of HIF-regulating enzymes that modify the hypoxic response in the kidney under both regional and temporal conditions.
Collapse
Affiliation(s)
- Johannes Schödel
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg,Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Nangaku M. Novel Therapeutic Approach Targeting The Hif-Hre System In The Kidney. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 645:81-6. [DOI: 10.1007/978-0-387-85998-9_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
55
|
Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F, Ruszniewski P, Bedossa P. Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res 2008; 14:6634-9. [PMID: 18927305 DOI: 10.1158/1078-0432.ccr-07-5258] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Tumor hypoxia is associated with poor prognosis and resistance to treatment. Our aim was to assess the expression of proteins that act as cellular oxygen sensors, directly regulating the hypoxia inducible factor (HIF) pathway, i.e., prolyl hydroxylase domain proteins (PHD)-1, PHD-2, PHD-3, and FIH in pancreatic endocrine tumors (PET). EXPERIMENTAL DESIGN Immunohistochemical expression of these markers was examined in 109 PET included in tissue microarrays and representing various stages of tumorigenesis. The results were correlated with histoprognostic factors including Ki-67 index, presence of a fibrotic focus, and microvascular density (MVD). RESULTS The cytoplasmic and nuclear expressions of the three PHD isoforms were associated, and their expression was significantly higher in aggressive PETS, malignant, with lymph node metastases or with lower MVD. High nuclear expression of the three isoforms highly correlated with HIF-1alpha nuclear expression (P = 0.02, 0.003, and 0.006, respectively). Moreover, high nuclear PHD-1 or PHD-3 expression was associated with a poorer survival (P = 0.01). Cytoplasmic FIH was significantly higher in malignant PETs (P = 0.05) and in PETs with lymph node metastases (P = 0.02), and its expression correlated positively with those of cytoplasmic PHD isoforms (P < 0001). FIH stromal expression was found in 23% of PETs and correlated with higher FIH nuclear expression (P = 0.0004) and poorer disease-free survival (P = 0.0018). CONCLUSION HIF regulatory proteins are highly expressed in PET and their expression is correlated with tumor metastases, tumor recurrence, and prognosis. These molecules that play an important role in the control of hypoxia-induced genes may have a function in the regulation of cellular proliferation and differentiation during endocrine tumorigenesis.
Collapse
Affiliation(s)
- Anne Couvelard
- Department of Pathology, University Paris 7, Clichy, France.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Fu D, Dai A, Hu R, Chen Y, Zhu L. Expression and role of factor inhibiting hypoxia-inducible factor-1 in pulmonary arteries of rat with hypoxia-induced hypertension. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00464.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
57
|
Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, Flamme I, Fandrey J. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 2008; 283:31745-53. [PMID: 18776187 DOI: 10.1074/jbc.m804390200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundance of the transcription factor hypoxia-inducible factor is regulated through hydroxylation of its alpha-subunits by a family of prolyl-hydroxylases (PHD1-3). Enzymatic activity of these PHDs is O2-dependent, which enables PHDs to act as cellular O2 sensor enzymes. Herein we studied endogenous PHD activity that was induced in cells grown under hypoxia or in the presence of nitric oxide. Under such conditions nuclear extracts contained much higher PHD activity than the respective cytoplasmic extracts. Although PHD1-3 were abundant in both compartments, knockdown experiments for each isoenzyme revealed that nuclear PHD activity was only due to PHD2. Maximal PHD2 activity was found between 120 and 210 microm O2. PHD2 activity was strongly decreased below 100 microm O2 with a half-maximum activity at 53 +/- 13 microm O2 for the cytosolic and 54 +/- 10 microm O2 for nuclear PHD2 matching the physiological O2 concentration within most cells. Our data suggest a role for PHD2 as a decisive oxygen sensor of the hypoxia-inducible factor degradation pathway within the cell nucleus.
Collapse
|
58
|
Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SB. Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer. Breast Cancer Res 2008; 9:R89. [PMID: 18096060 PMCID: PMC2246192 DOI: 10.1186/bcr1838] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 11/14/2007] [Accepted: 12/20/2007] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF)-1alpha levels in invasive breast carcinoma have been shown to be an adverse prognostic indicator. Cellular HIF-1alpha activity is regulated by factor-inhibiting hypoxia-inducible factor 1 (FIH-1). In hypoxia, FIH-1 hydroxylation of Asn803 within the C-terminal transactivation domain does not occur and HIF-1alpha forms a fully active transcriptional complex. The present study investigates the role of FIH-1 in invasive breast carcinoma and its correlation with hypoxia. METHODS Microarrayed tissue cores from 295 invasive carcinomas were stained for FIH-1, for HIF-1alpha and for carbonic anhydrase 9. FIH-1 expression was correlated with standard clinicopathological parameters and with the expression of the surrogate hypoxic markers HIF-1alpha and carbonic anhydrase 9. RESULTS FIH-1 was positive in 239/295 (81%) tumours, 42/295 (14%) exclusively in the nucleus and 54/295 (18%) exclusively in the cytoplasm. Exclusive nuclear FIH-1 expression was significantly inversely associated with tumour grade (P = 0.02) and risk of recurrence (P = 0.04), whereas exclusive cytoplasmic FIH-1 was significantly positively associated with tumour grade (P = 0.004) and carbonic anhydrase 9 expression (P = 0.02). Patients with tumours that excluded FIH-1 from the nucleus had a significantly shorter survival compared with those with exclusive nuclear expression (P = 0.02). Cytoplasmic FIH-1 expression was also an independent poor prognostic factor for disease-free survival. CONCLUSION FIH-1 is widely expressed in invasive breast carcinoma. As with other HIF regulators, its association between cellular compartmentalization and the hypoxic response and survival suggests that tumour regulation of FIH-1 is an additional important mechanism for HIF pathway activation.
Collapse
Affiliation(s)
- Ern Yu Tan
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 2008; 15:635-41. [PMID: 18259202 DOI: 10.1038/cdd.2008.10] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxygen-dependent hydroxylation of hypoxia-inducible factor (HIF)-alpha subunits by prolyl hydroxylase domain (PHD) proteins signals their polyubiquitination and proteasomal degradation, and plays a critical role in regulating HIF abundance and oxygen homeostasis. While oxygen concentration plays a major role in determining the efficiency of PHD-catalyzed hydroxylation reactions, many other environmental and intracellular factors also significantly modulate PHD activities. In addition, PHDs may also employ hydroxylase-independent mechanisms to modify HIF activity. Interestingly, while PHDs regulate HIF-alpha protein stability, PHD2 and PHD3 themselves are subject to feedback upregulation by HIFs. Functionally, different PHD isoforms may differentially contribute to specific pathophysiological processes, including angiogenesis, erythropoiesis, tumorigenesis, and cell growth, differentiation and survival. Because of diverse roles of PHDs in many different processes, loss of PHD expression or function triggers multi-faceted pathophysiological changes as has been shown in mice lacking different PHD isoforms. Future investigations are needed to explore in vivo specificity of PHDs over different HIF-alpha subunits and differential roles of PHD isoforms in different biological processes.
Collapse
Affiliation(s)
- G-H Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, USA.
| | | |
Collapse
|
60
|
Fukuba H, Takahashi T, Jin HG, Kohriyama T, Matsumoto M. Abundance of aspargynyl-hydroxylase FIH is regulated by Siah-1 under normoxic conditions. Neurosci Lett 2008; 433:209-14. [PMID: 18280659 DOI: 10.1016/j.neulet.2007.12.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 12/23/2007] [Accepted: 12/27/2007] [Indexed: 11/30/2022]
Abstract
The activity of hypoxia-inducible factors-1alpha (HIF-1alpha) is regulated by two types of hydroxylases, prolyl-hydroxylase (PHD) and aspargynyl-hydroxylase factor inhibiting HIF-1alpha (FIH). Hydroxylation of HIF-1alpha by PHD and FIH causes proteasomal degradation and transcriptional inhibition of HIF-1alpha, respectively. Siah ubiquitin ligases regulate the abundance of PHD via targeting for proteasomal degradation. The present study investigated the role of Siah-1 in the regulation of FIH abundance under normoxic conditions. Immunohistochemical analysis of the rat brains revealed that both Siah-1 and FIH were widely distributed in the central nervous system including the cerebral cortex, the hippocampus, the striatum, the olfactory bulb, the putamen, the thalamus, the celleberum, and the brain stem. In the hippocampus, both Siah-1 and FIH predominantly expressed in neurons. Siah-1 and FIH localized mostly in the cytoplasm. In mammalian cells, FIH expression levels were increased in the presence of a proteasomal inhibitor MG132, suggesting that FIH is degraded by the ubiquitin-proteasome system. Immunoprecipitation assay and ubiquitination assay revealed that Siah-1 interacted with, and ubiquitinated FIH. Under normoxic conditions, Siah-1 facilitated degradation of FIH. On the other hand, when endogenous Siah-1 expression was suppressed using siRNA, FIH expression levels were increased, as compared to control. These results suggest that Siah-1 might play a role as a regulator of FIH abundance under normoxic conditions.
Collapse
Affiliation(s)
- Hiromasa Fukuba
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Hiroshima 734-8551, Japan.
| | | | | | | | | |
Collapse
|
61
|
Abstract
The hypoxia-inducible factors (HIFs) are critical for cellular adaptation to limiting oxygen and regulate a wide array of genes when cued by cellular oxygen-sensing mechanisms. HIF is able to direct transcription from either of two transactivation domains, each of which is regulated by distinct mechanisms. The oxygen-dependent asparaginyl hydroxylase factor-inhibiting HIF-1alpha (FIH-1) is a key regulator of the HIF C-terminal transactivation domain, and provides a direct link between oxygen sensation and HIF-mediated transcription. Additionally, there are phosphorylation and nitrosylation events reported to modulate HIF transcriptional activity, as well as numerous transcriptional coactivators and other interacting proteins that together provide cell and tissue specificity of HIF target gene regulation.
Collapse
Affiliation(s)
- K Lisy
- The School of Molecular and Biomedical Science, and the ARC Special research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
| | | |
Collapse
|
62
|
Giatromanolaki A, Koukourakis MI, Pezzella F, Turley H, Sivridis E, Bouros D, Bougioukas G, Harris AL, Gatter KC. Expression of prolyl-hydroxylases PHD-1, 2 and 3 and of the asparagine hydroxylase FIH in non-small cell lung cancer relates to an activated HIF pathway. Cancer Lett 2008; 262:87-93. [PMID: 18187257 DOI: 10.1016/j.canlet.2007.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/24/2007] [Accepted: 11/26/2007] [Indexed: 11/17/2022]
Abstract
The oxygen sensitive prolyl-hydroxylase domain enzymes (PHDs) and the asparagines hydroxylase (FIH, factor inhibiting HIF) regulate the transcriptional activity of HIFs. We assessed the expression of these enzymes in a series of 73 non-small cell lung carcinomas (NSCLC). A direct association of PHDs with FIH and of the PHDs/FIH with HIFs expression was noted. Thirty three of 73 cases had high HIF/PHD expression, predicting intense HIF activity; 19/73 cases had low HIF and high PHD expression mimicking the normal bronchial pattern; and 18/73 cases had low HIF/PHD (inactive HIF pathway). High lactate dehydrogenase LDH5 expression was noted in cases with high HIF/PHD phenotype. The value of such a classification in defining different metabolic phenotypes of NSCLC deserves further evaluation.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Departments of Pathology, Radiotherapy-Oncology, Pneumology and Thoracic Surgery, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, P.Colgan S. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 2008; 134:145-55. [PMID: 18166352 PMCID: PMC2194638 DOI: 10.1053/j.gastro.2007.09.033] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/13/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS A number of recent studies have implicated tissue hypoxia in both acute and chronic inflammatory diseases, particularly as they relate to mucosal surfaces lined by epithelial cells. In this context, a protective role for the transcriptional regulator hypoxia-inducible factor (HIF) was shown through conditional deletion of epithelial HIF-1alpha in a murine model of colitis. Here, we hypothesized that pharmacologic activation of HIF would similarly provide a protective adaptation to murine colitic disease. METHODS For these purposes, we used a novel prolyl hydroxylase (PHD) inhibitor (FG-4497) that readily stabilizes HIF-1alpha and subsequently drives the expression downstream of HIF target genes (eg, erythropoietin). RESULTS Our results show that the FG-4497-mediated induction of HIF-1alpha provides an overall beneficial influence on clinical symptoms [weight loss, colon length, tissue tumor necrosis factor-alpha (TNFalpha)] in murine trinitrobenzene sulfonic acid (TNBS) colitis, most likely because of their barrier protective function and wound healing during severe tissue hypoxia at the site of inflammation. CONCLUSIONS Taken together these findings emphasize the role of epithelial HIF-1alpha during inflammatory diseases in the colon and may provide the basis for a therapeutic use of PHD inhibitors in inflammatory mucosal disease.
Collapse
Affiliation(s)
- Andreas Robinson
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO
| | - Simon Keely
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO
| | - Jörn Karhausen
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tubingen, Germany
| | - Mark E. Gerich
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO
| | - Glenn T. Furuta
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital, Denver, CO
| | - Sean P.Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|
64
|
Li J, Wang E, Dutta S, Lau JS, Jiang SW, Datta K, Mukhopadhyay D. Protein kinase C-mediated modulation of FIH-1 expression by the homeodomain protein CDP/Cut/Cux. Mol Cell Biol 2007; 27:7345-53. [PMID: 17682059 PMCID: PMC2168911 DOI: 10.1128/mcb.02201-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under normoxia, FIH-1 (factor inhibiting HIF-1) inhibits the transcriptional activity of hypoxia-inducible factor (HIF); however, under such conditions, we observed a significant level of HIF activity in renal cell carcinoma (RCC). This phenomenon could be attributed to a decrease in the level of functional FIH that has been identified in our previous work. Nonetheless, the molecular mechanism of FIH regulation in cancer, in particular RCC, was unclear until now. In this communication, we have demonstrated that in RCC, the Cut-like homeodomain protein (CDP/Cut) is involved in FIH transcriptional regulation and is controlled by a specific signaling event involving protein kinase C (PKC) zeta. Furthermore, we have defined a unique CDP/Cut binding site on the FIH promoter. With chromatin immunoprecipitation assays, we show that CDP binds to the FIH-1 promoter in vivo and that this binding is PKC zeta dependent. Moreover, we have also defined a potential phosphorylation site in CDP (serine 987) that modulates FIH expression. CDP/Cut is a transcriptional repressor that decreases FIH-1 expression and subsequently leads to a decrease in the repressor activity of FIH-1. Without this repression, HIF activity increases, allowing for the increased transcription of the genes it regulates, such as the vascular endothelial growth factor and GLUT-1 genes. Both CDP and HIF levels are increased in several cancers and are responsible for the metastatic progression of the tumors. Taken together, our results suggest for the first time a potential connection between CDP and FIH that could lead to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jinping Li
- Department of Biochemistry and Molecular Biology, Gugg 1401A, Mayo Clinic College of Medicine, 200 First Street SW, Rochester MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Ozer A, Bruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 2007; 3:144-53. [PMID: 17301803 DOI: 10.1038/nchembio863] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the Fe(II)- and 2-oxoglutarate-dependent family of dioxygenases have long been known to oxidize several amino acids in various protein targets to facilitate protein folding. However, in recent years investigators have characterized several such hydroxylation modifications that serve a regulatory, rather than structural, purpose. Furthermore, the responsible enzymes seem to function directly as sensors of the cellular environment and metabolic state. For example, a cellular response pathway to low oxygen (hypoxia) is orchestrated through the actions of prolyl and asparaginyl hydroxylases that govern both the oxygen-dependent stability and transcriptional activity of the hypoxia-inducible transcription factor. Recently, a different subfamily of Fe(II)- and 2-oxoglutarate-dependent dioxygenases has been shown to carry out histone demethylation. The discovery of protein regulation via hydroxylation raises the possibility that other Fe(II)- and 2-oxoglutarate-dependent dioxygenases might also serve in a similar capacity.
Collapse
Affiliation(s)
- Abdullah Ozer
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, USA
| | | |
Collapse
|
66
|
Bel Aiba RS, Dimova EY, Görlach A, Kietzmann T. The role of hypoxia inducible factor-1 in cell metabolism--a possible target in cancer therapy. Expert Opin Ther Targets 2007; 10:583-99. [PMID: 16848694 DOI: 10.1517/14728222.10.4.583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In many cancer types, intratumoural hypoxia is linked to increased expression and activity of the transcription factor hypoxia-inducible factor (HIF-1alpha), which is associated with poor patient prognosis. This increased the interest in HIF-1alpha as a cancer drug target. Further, HIF-1alpha has also a central role in the adaptive cellular programme responding to hypoxia in normal tissues. Many of the HIF-1alpha-regulated genes encode enzymes of metabolic pathways. Therefore, studying the link and the feedback mechanisms between metabolism and HIF-1alpha is of major importance to find new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachida S Bel Aiba
- University of Kaiserslautern, Faculty of Chemistry, Department of Biochemistry, Erwin-Schrödinger Strasse 54, D-67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
67
|
Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F, Katschinski DM, Stiehl DP, Wenger RH, Camenisch G. The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol Cell Biol 2007; 27:3758-68. [PMID: 17353276 PMCID: PMC1899990 DOI: 10.1128/mcb.01324-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-alpha subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-alpha for proteasomal destruction. We identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as a novel interactor of PHD2. Yeast two-hybrid, glutathione S-transferase pull-down, coimmunoprecipitation, colocalization, and mammalian two-hybrid studies confirmed specific FKBP38 interaction with PHD2, but not with PHD1 or PHD3. PHD2 and FKBP38 associated with their N-terminal regions, which contain no known interaction motifs. Neither FKBP38 mRNA nor protein levels were regulated under hypoxic conditions or after PHD inhibition, suggesting that FKBP38 is not a HIF/PHD target. Stable RNA interference-mediated depletion of FKBP38 resulted in increased PHD hydroxylation activity and decreased HIF protein levels and transcriptional activity. Reconstitution of FKBP38 expression abolished these effects, which were independent of the peptidyl prolyl cis/trans isomerase activity. Downregulation of FKBP38 did not affect PHD2 mRNA levels but prolonged PHD2 protein stability, suggesting that FKBP38 is involved in PHD2 protein regulation.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Physiology and Center for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Linke S, Hampton‐Smith RJ, Peet DJ. Characterization of Ankyrin Repeat–Containing Proteins as Substrates of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxia‐Inducible Transcription Factor. Methods Enzymol 2007; 435:61-85. [DOI: 10.1016/s0076-6879(07)35004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
69
|
Stockmann C, Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin Exp Pharmacol Physiol 2006; 33:968-79. [PMID: 17002676 DOI: 10.1111/j.1440-1681.2006.04474.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms controlling the expression of the gene encoding for the hormone erythropoietin (EPO) are exemplary for oxygen-regulated gene expression. In humans and other mammals, hypoxia modulates EPO levels by increasing expression of the EPO gene. An association between polycythaemia and people living at high altitudes was first reported more than 100 years ago. Since the identification of EPO as the humoral regulator of red blood cell production and the cloning of the EPO gene, considerable progress has been made in understanding the regulation of EPO gene expression. This has finally led to the identification of a widespread cellular oxygen-sensing mechanism. Central to this mechanism is the transcription factor complex hypoxia-inducible factor (HIF)-1. The abundance and activity of HIF-1, a heterodimer of an alpha- and beta-subunit, is predominantly regulated by oxygen-dependent post-translational hydroxylation of the alpha-subunit. Non-heme ferrous iron containing hydroxylases use dioxygen and 2-oxoglutarate to specifically target proline and an asparagine residue in HIF-1alpha. As such, the three prolyl hydroxylases (prolyl hydroxylase domain-containing protein (PHD) 1, PHD2 and PHD3) and the asparagyl hydroxylase (factor inhibiting HIF (FIH)-1) act as cellular oxygen sensors. In addition to erythropoiesis, HIF-1 regulates a broad range of physiologically relevant genes involved in angiogenesis, apoptosis, vasomotor control and energy metabolism. Therefore, the HIF system is implicated in the pathophysiology of many human diseases. In addition to the tight regulation by oxygen tension, temporal and tissue-specific signals limit expression of the EPO gene primarily to the fetal liver and the adult kidney.
Collapse
|
70
|
Khan Z, Michalopoulos GK, Stolz DB. Peroxisomal localization of hypoxia-inducible factors and hypoxia-inducible factor regulatory hydroxylases in primary rat hepatocytes exposed to hypoxia-reoxygenation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1251-1269. [PMID: 17003483 PMCID: PMC1698853 DOI: 10.2353/ajpath.2006.060360] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2006] [Indexed: 01/07/2023]
Abstract
Many signals involved in pathophysiology are controlled by hypoxia-inducible factors (HIFs), transcription factors that induce expression of hypoxia-responsive genes. HIFs are post-translationally regulated by a family of O2-dependent HIF hydroxylases: four prolyl 4-hydroxylases and an asparaginyl hydroxylase. Most of these enzymes are abundant in resting liver, which is itself unique because of its physiological O2 gradient, and they can exist in both nuclear and cytoplasmic pools. In this study, we analyzed the cellular localization of endogenous HIFs and their regulatory hydroxylases in primary rat hepatocytes cultured under hypoxia-reoxygenation conditions. In hepatocytes, hypoxia targeted HIF-1alpha to the peroxisome, rather than the nucleus, where it co-localized with von Hippel-Lindau tumor suppressor protein and the HIF hydroxylases. Confocal immunofluorescence microscopy demonstrated that the HIF hydroxylases translocated from the nucleus to the cytoplasm in response to hypoxia, with increased accumulation in peroxisomes on reoxygenation. These results were confirmed via immunotransmission electron microscopy and Western blotting. Surprisingly, in resting liver tissue, perivenous localization of the HIF hydroxylases was observed, consistent with areas of low pO2. In conclusion, these studies establish the peroxisome as a highly relevant site of subcellular localization and function for the endogenous HIF pathway in hepatocytes.
Collapse
Affiliation(s)
- Zahida Khan
- University of Pittsburgh School of Medicine, Cellular and Molecular Pathology, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
71
|
Abstract
Tissue hypoxia not only occurs under pathological conditions but is also an important microenvironmental factor that is critical for normal embryonic development. Hypoxia-inducible factors HIF-1 and HIF-2 are oxygen-sensitive basic helix-loop-helix transcription factors, which regulate biological processes that facilitate both oxygen delivery and cellular adaptation to oxygen deprivation. HIFs consist of an oxygen-sensitive alpha-subunit, HIF-alpha, and a constitutively expressed beta-subunit, HIF-beta, and regulate the expression of genes that are involved in energy metabolism, angiogenesis, erythropoiesis and iron metabolism, cell proliferation, apoptosis, and other biological processes. Under conditions of normal Po(2), HIF-alpha is hydroxylated and targeted for rapid proteasomal degradation by the von Hippel-Lindau (VHL) E3-ubiquitin ligase. When cells experience hypoxia, HIF-alpha is stabilized and either dimerizes with HIF-beta in the nucleus to form transcriptionally active HIF, executing the canonical hypoxia response, or it physically interacts with unrelated proteins, thereby enabling convergence of HIF oxygen sensing with other signaling pathways. In the normal, fully developed kidney, HIF-1alpha is expressed in most cell types, whereas HIF-2alpha is mainly found in renal interstitial fibroblast-like cells and endothelial cells. This review summarizes some of the most recent advances in the HIF field and discusses their relevance to renal development, normal kidney function and disease.
Collapse
Affiliation(s)
- Volker H Haase
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6144, USA.
| |
Collapse
|