51
|
Sil D, Shrestha A, Kimbrell MR, Nguyen TB, Adisechan AK, Balakrishna R, Abbo BG, Malladi S, Miller KA, Short S, Cromer JR, Arora S, Datta A, David SA. Bound to shock: protection from lethal endotoxemic shock by a novel, nontoxic, alkylpolyamine lipopolysaccharide sequestrant. Antimicrob Agents Chemother 2007; 51:2811-9. [PMID: 17548488 PMCID: PMC1932507 DOI: 10.1128/aac.00200-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes. Polymyxin B (PMB), a peptide antibiotic, is a prototype small molecule that binds and neutralizes LPS toxicity. However, the antibiotic is too toxic for systemic use as an LPS sequestrant. Based on a nuclear magnetic resonance-derived model of polymyxin B-LPS complex, we had earlier identified the pharmacophore necessary for optimal recognition and neutralization of the toxin. Iterative cycles of pharmacophore-based ligand design and evaluation have yielded a synthetically easily accessible N(1),mono-alkyl-mono-homologated spermine derivative, DS-96. We have found that DS-96 binds LPS and neutralizes its toxicity with a potency indistinguishable from that of PMB in a wide range of in vitro assays, affords complete protection in a murine model of LPS-induced lethality, and is apparently nontoxic in vertebrate animal models.
Collapse
Affiliation(s)
- Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Lawrence, KS 66047, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Alakomi HL, Puupponen-Pimiä R, Aura AM, Helander IM, Nohynek L, Oksman-Caldentey KM, Saarela M. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:3905-12. [PMID: 17439151 DOI: 10.1021/jf070190y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.
Collapse
Affiliation(s)
- Hanna-Leena Alakomi
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 Espoo, Finland.
| | | | | | | | | | | | | |
Collapse
|
53
|
Murray SR, Ernst RK, Bermudes D, Miller SI, Low KB. pmrA(Con) confers pmrHFIJKL-dependent EGTA and polymyxin resistance on msbB Salmonella by decorating lipid A with phosphoethanolamine. J Bacteriol 2007; 189:5161-9. [PMID: 17449614 PMCID: PMC1951887 DOI: 10.1128/jb.01969-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutations in pmrA were recombined into Salmonella strain ATCC 14028 msbB to determine if pmrA-regulated modifications of lipopolysaccharide could suppress msbB growth defects. A mutation that functions to constitutively activate pmrA [pmrA(Con)] suppresses msbB growth defects on EGTA-containing media. Lipid A structural analysis showed that Salmonella msbB pmrA(Con) strains, compared to Salmonella msbB strains, have increased amounts of palmitate and phosphoethanolamine but no aminoarabinose addition, suggesting that aminoarabinose is not incorporated into msbB lipid A. Surprisingly, loss-of-function mutations in the aminoarabinose biosynthetic genes restored EGTA and polymyxin sensitivity to Salmonella msbB pmrA(Con) strains. These blocks in aminoarabinose biosynthesis also prevented lipid A phosphoethanolamine incorporation and reduced the levels of palmitate addition, indicating previously unknown roles for the aminoarabinose biosynthetic enzymes. Lipid A structural analysis of the EGTA- and polymyxin-resistant triple mutant msbB pmrA(Con) pagP::Tn10, which contains phosphoethanolamine but no palmitoylated lipid A, suggests that phosphoethanolamine addition is sufficient to confer EGTA and polymyxin resistance on Salmonella msbB strains. Additionally, palmitoylated lipid A was observed only in wild-type Salmonella grown in the presence of salt in rich media. Thus, we correlate EGTA resistance and polymyxin resistance with phosphoethanolamine-decorated lipid A and demonstrate that the aminoarabinose biosynthetic proteins play an essential role in lipid A phosphoethanolamine addition and affect lipid A palmitate addition in Salmonella msbB strains.
Collapse
Affiliation(s)
- Sean R Murray
- Department of Biology, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
54
|
Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, McPhee JB, Hancock REW, Hartland EL, Pearse MJ, Wijburg OLC, Jackson DC, McConville MJ, Strugnell RA. Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem 2007; 282:15569-77. [PMID: 17371870 PMCID: PMC5007121 DOI: 10.1074/jbc.m701454200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Klebsiella pneumoniae is an important cause of nosocomial Gram-negative sepsis. Lipopolysaccharide (LPS) is considered to be a major virulence determinant of this encapsulated bacterium and most mutations to the lipid A anchor of LPS are conditionally lethal to the bacterium. We studied the role of LPS acylation in K. pneumoniae disease pathogenesis by using a mutation of lpxM (msbB/waaN), which encodes the enzyme responsible for late secondary acylation of immature lipid A molecules. A K. pneumoniae B5055 (K2:O1) lpxM mutant was found to be attenuated for growth in the lungs in a mouse pneumonia model leading to reduced lethality of the bacterium. B5055DeltalpxM exhibited similar sensitivity to phagocytosis or complement-mediated lysis than B5055, unlike the non-encapsulated mutant B5055nm. In vitro, B5055DeltalpxM showed increased permeability of the outer membrane and an increased susceptibility to certain antibacterial peptides suggesting that in vivo attenuation may be due in part to sensitivity to antibacterial peptides present in the lungs of BALB/c mice. These data support the view that lipopolysaccharide acylation plays a important role in providing Gram-negative bacteria some resistance to structural and innate defenses and especially the antibacterial properties of detergents (e.g. bile) and cationic defensins.
Collapse
Affiliation(s)
- Abigail Clements
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dedreia Tull
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam W. Jenney
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jacinta L. Farn
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sang-Hyun Kim
- Department of Biochemistry, University of Toronto, Ontario M5S1A8, Canada
| | - Russell E. Bishop
- Department of Biochemistry, University of Toronto, Ontario M5S1A8, Canada
| | - Joseph B. McPhee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Elizabeth L. Hartland
- CRC for Vaccine Technology in the Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Odilia L. C. Wijburg
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David C. Jackson
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A. Strugnell
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- To whom correspondence should be addressed: Dept. of Microbiology & Immunology, University of Melbourne, Parkville VIC 3010, Australia. Tel.: 61-3-8344-5712; Fax: 61-3-9347-1540;
| |
Collapse
|
55
|
Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, Govan JRW, Valvano MA. A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol 2007; 189:3639-44. [PMID: 17337576 PMCID: PMC1855895 DOI: 10.1128/jb.00153-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a conditional mutagenesis strategy we demonstrate here that a gene cluster encoding putative aminoarabinose (Ara4N) biosynthesis enzymes is essential for the viability of Burkholderia cenocepacia. Loss of viability is associated with dramatic changes in bacterial cell morphology and ultrastructure, increased permeability to propidium iodide, and sensitivity to sodium dodecyl sulfate, suggesting a general cell envelope defect caused by the lack of Ara4N.
Collapse
Affiliation(s)
- Ximena P Ortega
- Department of Microbiology and Immunology, Infectious Diseases Research Group, Siebens-Drake Medical Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.
Collapse
Affiliation(s)
- H Harbottle
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | | | |
Collapse
|
57
|
Abstract
The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
58
|
Nohynek LJ, Alakomi HL, Kähkönen MP, Heinonen M, Helander IM, Oksman-Caldentey KM, Puupponen-Pimiä RH. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 2006; 54:18-32. [PMID: 16800770 DOI: 10.1207/s15327914nc5401_4] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Antimicrobial activity and mechanisms of phenolic extracts of 12 Nordic berries were studied against selected human pathogenic microbes. The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus. Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins. Cloudberry extract gave strong microbicidic effects on the basis of plate count with all studied strains. However, fluorescence staining of liquid cultures of virulent Salmonella showed viable cells not detectable by plate count adhering to cloudberry extract, whereas Staphylococcus aureus cells adhered to berry extracts were dead on the basis of their fluorescence and plate count. Phenolic extracts of cloudberry and raspberry disintegrated the outer membrane of examined Salmonella strains as indicated by 1-N-phenylnaphthylamine (NPN) uptake increase and analysis of liberation of [14C]galactose- lipopolysaccharide. Gallic acid effectively permeabilized the tested Salmonella strains, and significant increase in the NPN uptake was recorded. The stability of berry phenolics and their antimicrobial activity in berries stored frozen for a year were examined using Escherichia coli and nonvirulent Salmonella enterica sv. Typhimurium. The amount of phenolic compounds decreased in all berries, but their antimicrobial activity was not influenced accordingly. Cloudberry, in particular, showed constantly strong antimicrobial activity during the storage.
Collapse
|
59
|
Vinogradov E, Lindner B, Seltmann G, Radziejewska-Lebrecht J, Holst O. Lipopolysaccharides fromSerratia marcescens Possess One or Two 4-Amino-4-deoxy-L-arabinopyranose 1-Phosphate Residues in the Lipid A andD-glycero-D-talo-Oct-2-ulopyranosonic Acid in the Inner Core Region. Chemistry 2006; 12:6692-700. [PMID: 16807947 DOI: 10.1002/chem.200600186] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The carbohydrate backbones of the core-lipid A region were characterized from the lipopolysaccharides (LPSs) of Serratia marcescens strains 111R (a rough mutant strain of serotype O29) and IFO 3735 (a smooth strain not serologically characterized but possessing the O-chain structure of serotype O19). The LPSs were degraded either by mild hydrazinolysis (de-O-acylation) and hot 4 M KOH (de-N-acylation), or by hydrolysis in 2 % aqueous acetic acid, or by deamination. Oligosaccharide phosphates were isolated by high-performance anion-exchange chromatography. Through the use of compositional analysis, electrospray ionization Fourier transform mass spectrometry, and 1H and 13C NMR spectroscopy applying various one- and two-dimensional experiments, we identified the structures of the carbohydrate backbones that contained D-glycero-D-talo-oct-2-ulopyranosonic acid and 4-amino-4-deoxy-L-arabinose 1-phosphate residues. We also identified some truncated structures for both strains. All sugars were D-configured pyranoses and alpha-linked, except where stated otherwise.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, NRC Canada, Ottawa, ON K1 A 0R6, Canada
| | | | | | | | | |
Collapse
|
60
|
Gootz TD. The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Biochem Pharmacol 2005; 71:1073-84. [PMID: 16359640 DOI: 10.1016/j.bcp.2005.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/28/2005] [Accepted: 11/04/2005] [Indexed: 11/16/2022]
Abstract
Gram-negative bacilli have become increasingly resistant to antibiotics over the past 2 decades due to selective pressure from the extensive use of antibiotics in the hospital and community. In addition, these bacteria have made optimum use of their innate genetic capabilities to extensively mutate structural and regulatory genes of antibiotic resistance factors, broadening their ability to modify or otherwise inactivate antibiotics in the cell. The great genetic plasticity of bacteria have permitted the transfer of resistance genes on plasmids and integrons between bacterial species allowing an unprecedented dissemination of genes leading to broad-spectrum resistance. As a result, many Gram-negative bacilli possess a complicated set of genes encoding efflux pumps, alterations in outer membrane lipopolysaccharides, regulation of porins and drug inactivating enzymes such as beta-lactamases, that diminish the clinical utility of today's antibiotics. The cross-species mobility of these resistance genes indicates that multidrug resistance will only increase in the future, impacting the efficacy of existing antimicrobials. This trend toward greater resistance comes at a time when very few new antibiotics have been identified capable of controlling such multi-antibiotic resistant pathogens. The continued dissemination of these resistance genes underscores the need for new classes of antibiotics that do not possess the liability of cross-resistance to existing classes of drugs and thereby having diminished potency against Gram-negative bacilli.
Collapse
Affiliation(s)
- Thomas D Gootz
- Pfizer Global Research and Development, Department of Antibiotics, Immunology and Cancer, MS 220-2301, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
61
|
Manterola L, Moriyón I, Moreno E, Sola-Landa A, Weiss DS, Koch MHJ, Howe J, Brandenburg K, López-Goñi I. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 2005; 187:5631-9. [PMID: 16077108 PMCID: PMC1196083 DOI: 10.1128/jb.187.16.5631-5639.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component BvrS/BvrR system is essential for Brucella abortus virulence. It was shown previously that its dysfunction abrogates expression of some major outer membrane proteins and increases bactericidal peptide sensitivity. Here, we report that BvrS/BvrR mutants have increased surface hydrophobicity and susceptibility to killing by nonimmune serum. The bvrS and bvrR mutant lipopolysaccharides (LPSs) bound more polymyxin B, chimeras constructed with bvrS mutant cells and parental LPS showed augmented polymyxin B resistance, and, conversely, parental cells and bvrS mutant LPS chimeras were more sensitive and displayed polymyxin B-characteristic outer membrane lesions, implicating LPS as being responsible for the phenotype of the BvrS/BvrR mutants. No qualitative or quantitative changes were detected in other envelope and outer membrane components examined: periplasmic beta(1-2) glucans, native hapten polysaccharide, and phospholipids. The LPS of the mutants was similar to parental LPS in O-polysaccharide polymerization and fine structure but showed both increased underacylated lipid A species and higher acyl-chain fluidity that correlated with polymyxin B binding. These lipid A changes did not alter LPS cytokine induction, showing that in contrast to other gram-negative pathogens, recognition by innate immune receptors is not decreased by these changes in LPS structure. Transcription of Brucella genes required for incorporating long acyl chains into lipid A (acpXL and lpxXL) or implicated in lipid A acylation control (bacA) was not affected. We propose that in Brucella the outer membrane homeostasis depends on the functioning of BvrS/BvrR. Accordingly, disruption of BvrS/BvrR damages the outer membrane, thus contributing to the severe attenuation manifested by bvrS and bvrR mutants.
Collapse
Affiliation(s)
- Lorea Manterola
- Departamento de Microbiología y Parasitología, Universidad de Navarra, c/ Irunlarrea no. 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Tamayo R, Prouty AM, Gunn JS. Identification and functional analysis of Salmonella enterica serovar Typhimurium PmrA-regulated genes. ACTA ACUST UNITED AC 2005; 43:249-58. [PMID: 15681155 DOI: 10.1016/j.femsim.2004.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/10/2004] [Accepted: 08/23/2004] [Indexed: 11/17/2022]
Abstract
The PmrA-PmrB two-component regulatory system of Salmonella enterica serovar Typhimurium is activated in vivo and plays an important role in resistance to cationic antimicrobial peptides. Resistance is partly mediated by modifications to the lipopolysaccharide. To identify new PmrA-regulated genes, microarray analysis was undertaken comparing cDNA derived from PmrA-constitutive and PmrA-null strains. A combination of RT-PCR and transcriptional analysis confirmed the inclusion of six new loci in the PmrA-PmrB regulon: STM1253, STM1269, STM4118, STM0459, STM3968 and STM4568. These loci did not affect the ability to grow in high iron conditions, the ability to modify lipid A with aminoarabinose, or virulence. STM4118, a putative phosphoethanolamine phosphotransferase, had a minor effect on polymyxin resistance, whereas the remaining genes had no role in polymyxin resistance. Although several of the identified loci lacked the consensus PmrA binding site, PmrA was demonstrated to bind the promoter of a PmrA-activated gene lacking the consensus site. A more complete definition of the PmrA-PmrB regulon will provide a better understanding of its role in host and non-host environments.
Collapse
Affiliation(s)
- Rita Tamayo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7758, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
63
|
Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187:5387-96. [PMID: 16030233 PMCID: PMC1196002 DOI: 10.1128/jb.187.15.5387-5396.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/04/2005] [Indexed: 11/20/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are important components of the innate host defense system against microbial infections and microbial products. However, the human pathogen Neisseria meningitidis is intrinsically highly resistant to CAMPs, such as polymyxin B (PxB) (MIC > or = 512 microg/ml). To ascertain the mechanisms by which meningococci resist PxB, mutants that displayed increased sensitivity (> or =4-fold) to PxB were identified from a library of mariner transposon mutants generated in a meningococcal strain, NMB. Surprisingly, more than half of the initial PxB-sensitive mutants had insertions within the mtrCDE operon, which encodes proteins forming a multidrug efflux pump. Additional PxB-sensitive mariner mutants were identified from a second round of transposon mutagenesis performed in an mtr efflux pump-deficient background. Further, a mutation in lptA, the phosphoethanolamine (PEA) transferase responsible for modification of the lipid A head groups, was identified to cause the highest sensitivity to PxB. Mutations within the mtrD or lptA genes also increased meningococcal susceptibility to two structurally unrelated CAMPs, human LL-37 and protegrin-1. Consistently, PxB neutralized inflammatory responses elicited by the lptA mutant lipooligosaccharide more efficiently than those induced by wild-type lipooligosaccharide. mariner mutants with increased resistance to PxB were also identified in NMB background and found to contain insertions within the pilMNOPQ operon involved in pilin biogenesis. Taken together, these data indicated that meningococci utilize multiple mechanisms including the action of the MtrC-MtrD-MtrE efflux pump and lipid A modification as well as the type IV pilin secretion system to modulate levels of CAMP resistance. The modification of meningococcal lipid A head groups with PEA also prevents neutralization of the biological effects of endotoxin by CAMP.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Department of Veterans Affairs Medical Center, Research 151, Room 5A188, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Tran AX, Lester ME, Stead CM, Raetz CRH, Maskell DJ, McGrath SC, Cotter RJ, Trent MS. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 2005; 280:28186-94. [PMID: 15951433 DOI: 10.1074/jbc.m505020200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attachment of positively charged, amine-containing residues such as 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN) to Escherichia coli and Salmonella typhimurium lipid A is required for resistance to the cationic antimicrobial peptide, polymyxin. In an attempt to discover additional lipid A modifications important for polymyxin resistance, we generated polymyxin-sensitive mutants of an E. coli pmrA(C) strain, WD101. A subset of polymyxin-sensitive mutants produced a lipid A that lacked both the 3'-acyloxyacyl-linked myristate (C(14)) and l-Ara4N, even though the necessary enzymatic machinery required to synthesize l-Ara4N-modified lipid A was present. Inactivation of lpxM in both E. coli and S. typhimurium resulted in the loss of l-Ara4N addition, as well as, increased sensitivity to polymyxin. However, decoration of the lipid A phosphate groups with pEtN residues was not effected in lpxM mutants. In summary, we demonstrate that attachment of l-Ara4N to the phosphate groups of lipid A and the subsequent resistance to polymyxin is dependent upon the presence of the secondary linked myristoyl group.
Collapse
Affiliation(s)
- An X Tran
- Department of Microbiology, J. H. Quillen College of Medicine, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Tamayo R, Choudhury B, Septer A, Merighi M, Carlson R, Gunn JS. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 2005; 187:3391-9. [PMID: 15866924 PMCID: PMC1112023 DOI: 10.1128/jb.187.10.3391-3399.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In response to the in vivo environment, the Salmonella enterica serovar Typhimurium lipopolysaccharide (LPS) is modified. These modifications are controlled in part by the two-component regulatory system PmrA-PmrB, with the addition of 4-aminoarabinose (Ara4N) to the lipid A and phosphoethanolamine (pEtN) to the lipid A and core. Here we demonstrate that the PmrA-regulated STM4118 (cptA) gene is necessary for the addition of pEtN to the LPS core. pmrC, a PmrA-regulated gene necessary for the addition of pEtN to lipid A, did not affect core pEtN addition. Although imparting a similar surface charge modification as Ara4N, which greatly affects polymyxin B resistance and murine virulence, neither pmrC nor cptA plays a dramatic role in antimicrobial peptide resistance in vitro or virulence in the mouse model. Therefore, factors other than surface charge/electrostatic interaction contribute to resistance to antimicrobial peptides such as polymyxin B.
Collapse
Affiliation(s)
- R Tamayo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
66
|
Gibbons HS, Kalb SR, Cotter RJ, Raetz CRH. Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol 2005; 55:425-40. [PMID: 15659161 DOI: 10.1111/j.1365-2958.2004.04409.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid A of Salmonella typhimurium is covalently modified with additional acyl and/or polar substituents in response to activation of the PhoP/PhoQ and/or PmrA/PmrB signalling systems, which are induced by growth at low Mg2+ concentrations and mild acid pH respectively. Although these conditions are thought to exist within macrophage phagolysosomes, no direct evidence for lipid A modification after endocytosis has been presented. To address this issue, we grew S. typhimurium inside RAW264.7 cells in the presence of 32Pi, and then isolated the labelled lipid A fraction, which was found to be extensively derivatized with phosphoethanolamine, aminoarabinose, 2-hydroxymyristate and/or palmitate moieties. S. typhimurium grown in tissue culture medium synthesized lipid A molecules lacking all these substituents with the exception of the 2-hydroxymyristate chain, which was still present. Using defined minimal media to simulate the intracellular pH and Mg2+ concentrations of endosomes, we found that lipid A of S. typhimurium grown in an acidic, low-Mg2+ medium closely resembled lipid A isolated from bacteria internalized by RAW264.7 cells. A subset of S. typhimurium lipid A modifications were induced by low Mg2+ alone. Escherichia coli K-12 W3110 modified its lipid A molecules in response to growth under acidic but not low-Mg2+ conditions. Growth in a high-Mg2+, mildly alkaline medium resulted in suppression of most lipid A modifications with the exception of the 2-hydroxymyristate in S. typhimurium. Although lpxO transcription was stimulated by growth on low Mg2+, the biosynthesis of lipid A species containing 2-hydroxymyristate was independent of PhoP/PhoQ and PmrA/PmrB in S. typhimurium. Our labelling methods should be applicable to studies of lipid A modifications induced by endocytosis of diverse bacteria.
Collapse
Affiliation(s)
- Henry S Gibbons
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
67
|
Kawasaki K, Ernst RK, Miller SI. Inhibition of Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation by aminoarabinose membrane modification. J Bacteriol 2005; 187:2448-57. [PMID: 15774888 PMCID: PMC1065228 DOI: 10.1128/jb.187.7.2448-2457.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium remodels the lipid A component of lipopolysaccharide, a major component of the outer membrane, to survive within animals. The activation of the sensor kinase PhoQ in host environments increases the synthesis of enzymes that deacylate, palmitoylate, hydroxylate, and attach aminoarabinose to lipid A, also known as endotoxin. These modifications promote bacterial resistance to antimicrobial peptides and reduce the host recognition of lipid A by Toll-like receptor 4. The Salmonella lipid A 3-O-deacylase, PagL, is an outer membrane protein whose expression is regulated by PhoQ. In S. enterica serovar Typhimurium strains that had the ability to add aminoarabinose to lipid A, 3-O-deacylated lipid A species were not detected, despite the PhoQ induction of PagL protein expression. In contrast, strains defective for the aminoarabinose modification of lipid A demonstrated in vivo PagL activity, indicating that this membrane modification inhibited PagL's enzymatic activity. Since not all lipid A molecules are modified with aminoarabinose upon PhoQ activation, these results cannot be ascribed to the substrate specificity of PagL. PagL-dependent deacylation was detected in sonically disrupted membranes and membranes treated with the nonionic detergent n-octyl-beta-d-glucopyranoside, suggesting that perturbation of the intact outer membrane releases PagL from posttranslational inhibition by aminoarabinose-containing membranes. Taken together, these results suggest that PagL enzymatic deacylation is posttranslationally inhibited by membrane environments, which either sequester PagL from its substrate or alter its conformation.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Department of Microbiology, University of Washington, Health Sciences Building, K140, Box 357710, 1959 Pacific St. N.E., Seattle, WA 98195, USA
| | | | | |
Collapse
|
68
|
Abstract
Innate immune receptors recognize microorganism-specific motifs. One such receptor-ligand complex is formed between the mammalian Toll-like receptor 4 (TLR4)-MD2-CD14 complex and bacterial lipopolysaccharide (LPS). Recent research indicates that there is significant phylogenetic and individual diversity in TLR4-mediated responses. In addition, the diversity of LPS structures and the differential recognition of these structures by TLR4 have been associated with several bacterial diseases. This review will examine the hypothesis that the variability of bacterial ligands such as LPS and their innate immune receptors is an important factor in determining the outcome of infectious disease.
Collapse
Affiliation(s)
- Samuel I Miller
- Department of Medicine, University of Washington Medical School, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
69
|
Breazeale SD, Ribeiro AA, McClerren AL, Raetz CRH. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 2005; 280:14154-67. [PMID: 15695810 DOI: 10.1074/jbc.m414265200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of the phosphate groups of lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) is required for resistance to polymyxin and cationic antimicrobial peptides in Escherichia coli and Salmonella typhimurium. We previously demonstrated that the enzyme ArnA catalyzes the NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid to yield the UDP-4''-ketopentose, uridine 5'-diphospho-beta-(L-threo-pentapyranosyl-4''-ulose), which is converted by ArnB to UDP-beta-(L-Ara4N). E. coli ArnA is a bi-functional enzyme with a molecular mass of approximately 74 kDa. The oxidative decarboxylation of UDP-glucuronic acid is catalyzed by the 345-residue C-terminal domain of ArnA. The latter shows sequence similarity to enzymes that oxidize the C-4'' position of sugar nucleotides, like UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase. We now show that the 304-residue N-terminal domain catalyzes the N-10-formyltetrahydrofolate-dependent formylation of the 4''-amine of UDP-L-Ara4N, generating the novel sugar nucleotide, uridine 5'-diphospho-beta-(4-deoxy-4-formamido-L-arabinose). The N-terminal domain is highly homologous to methionyl-tRNA(f)Met formyltransferase. The structure of the formylated sugar nucleotide generated in vitro by ArnA was validated by 1H and 13C NMR spectroscopy. The two domains of ArnA were expressed independently as active proteins in E. coli. Both were required for maintenance of polymyxin resistance and L-Ara4N modification of lipid A. We conclude that N-formylation of UDP-L-Ara4N is an obligatory step in the biosynthesis of L-Ara4N-modified lipid A in polymyxin-resistant mutants. We further demonstrate that only the formylated sugar nucleotide is converted in vitro to an undecaprenyl phosphate-linked form by the enzyme ArnC. Because the L-Ara4N unit attached to lipid A is not derivatized with a formyl group, we postulate the existence of a deformylase, acting later in the pathway.
Collapse
Affiliation(s)
- Steven D Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
70
|
Abstract
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.
Collapse
Affiliation(s)
- M Stephen Trent
- Department of Microbiology, East Tennessee State University, J.H. Quillen College of Medicine, Johnson City, 37164, USA.
| |
Collapse
|
71
|
Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124-33. [PMID: 15205413 PMCID: PMC421605 DOI: 10.1128/jb.186.13.4124-4133.2004] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with aminoarabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
72
|
Tzeng YL, Datta A, Ambrose K, Lo M, Davies JK, Carlson RW, Stephens DS, Kahler CM. The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 2004; 279:35053-62. [PMID: 15173178 DOI: 10.1074/jbc.m401433200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipooligosaccharide (LOS) of Neisseria meningitidis is the major inflammatory mediator that contributes to meningococcal pathogenesis. Variable attachments to the HepII residue of the LOS inner core together with the alpha-chain heterogeneity result in immunologically distinct LOS structures, which may be selected for during human infection. Lpt-3, a phosphoethanolamine (PEA) transferase, and LgtG, a glucosyltransferase, mediate the substitution of PEA or glucose at the O-3 position of HepII in L3 or L2 LOS immunotypes, respectively. Inactivation of a two-component response regulator, encoded by NMB0595, in N. meningitidis strain NMB resulted in the loss of all PEA decorations on the LOS inner core expressed by the NMB0595 mutant. When compared with the parental strain NMB that predominantly expresses L2 immunotype LOS and other minor LOS structures, the NMB0595 mutant expresses a pure population of a novel LOS structure completely substituted at the HepII O-3 position with glucose, but lacking other PEA decorations on the inner core. Quantitative real time PCR experiments showed increased transcription of lgtG in the NMB0595 mutant, and no significant change in lpt-3 transcription. Inactivation of lgtG resulted in LOS inner cores without glucose, but these structures, even though the lpt-3 transcription was unaffected, also lacked the O-3-linked PEA. Consistently, a double mutation of lgtG and misR in strain NMB yielded a LOS structure without PEA or Glc substitution of HepII. These data indicated a new pathway for the regulation of LOS inner core structure in N. meningitidis through an environmental sensing two-component regulatory system, named misR(NMB0595)/misS(NMB0594) for regulator and sensor of the meningococcal inner core structure.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Kukkonen M, Suomalainen M, Kyllönen P, Lähteenmäki K, Lång H, Virkola R, Helander IM, Holst O, Korhonen TK. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol 2004; 51:215-25. [PMID: 14651623 DOI: 10.1046/j.1365-2958.2003.03817.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The O-antigen of lipopolysaccharide (LPS) is a virulence factor in enterobacterial infections, and the advantage of its genetic loss in the lethal pathogen Yersinia pestis has remained unresolved. Y. pestis and Salmonella enterica express beta-barrel surface proteases of the omptin family that activate human plasminogen. Plasminogen activation is central in pathogenesis of plague but has not, however, been found to be important in diarrhoeal disease. We observed that the presence of O-antigen repeats on wild-type or recombinant S. enterica, Yersinia pseudotuberculosis or Escherichia coli prevents plasminogen activation by PgtE of S. enterica and Pla of Y. pestis; the O-antigen did not affect incorporation of the omptins into the bacterial outer membrane. Purified His6-Pla was successfully reconstituted with rough LPS but remained inactive after reconstitution with smooth LPS. Expression of smooth LPS prevented Pla-mediated adhesion of recombinant E. coli to basement membrane as well as invasion into human endothelial cells. Similarly, the presence of an O-antigen prevented PgtE-mediated bacterial adhesion to basement membrane. Substitution of Arg-138 and Arg-171 of the motif for protein binding to lipid A 4'-phosphate abolished proteolytic activity but not membrane translocation of PgtE, indicating dependence of omptin activity on a specific interaction with lipid A. The results suggest that Pla and PgtE require LPS for activity and that the O-antigen sterically prevents recognition of large-molecular-weight substrates. Loss of O-antigen facilitates Pla functions and invasiveness of Y. pestis; on the other hand, smooth LPS renders plasminogen activator cryptic in S. enterica.
Collapse
Affiliation(s)
- Maini Kukkonen
- Division of General Microbiology, Department of Biosciences, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
75
|
Masschalck B, Deckers D, Michiels CW. Sensitization of outer-membrane mutants of Salmonella typhimurium and Pseudomonas aeruginosa to antimicrobial peptides under high pressure. J Food Prot 2003; 66:1360-7. [PMID: 12929820 DOI: 10.4315/0362-028x-66.8.1360] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High pressure can sensitize gram-negative bacteria to antimicrobial peptides or proteins through the permeabilization of their outer membranes; however, the range of compounds to which sensitivity is induced is species and strain dependent. We studied the role of outer-membrane properties in this sensitization by making use of a series of rough and deep rough mutants of Salmonella enterica serovar Typhimurium that show an increased degree of lipopolysaccharide (LPS) truncation, along with Pseudomonas aeruginosa PhoP and PhoQ mutants with altered outer-membrane properties. The outer-membrane properties of P. aernginosa were also modulated through the use of different Mg2- concentrations in the growth medium. Each of these strains was challenged under high pressure (15 min at 270 MPa for Salmonella Typhimurium and 15 min at 100 MPa for P. aerttginosa) in phosphate buffer with lysozyme (100 microg/ml), nisin (100 IU/ml), lactoferricin (20 microg/ml), and HEL96-116 (100 microg/ml), a synthetic lysozyme-derived peptide, and sensitization levels were compared. The results obtained indicated that outer-membrane properties affected high-pressure sensitization differently for different compounds. LPS truncation in Salmonella Typhimurium was correlated with increased sensitization to lysozyme (up to 1.5 log10 units) and nisin (up to 1.2 log10 units) but with decreased sensitization to lactoferricin under pressure. For P. aeruginosa, the pattern of sensitization to lactoferricin and nisin resembled that of polymyxin B at atmospheric pressure, suggesting that pressure induces the self-promoted uptake of both peptides. Sensitization to HEL96-116 was not affected by outer-membrane properties for either organism. Hence, outer-membrane permeabilization by high pressure cannot be explained by a single unifying mechanism and is dependent on the organism, the outer-membrane properties, and the nature of the antimicrobial compound. On the basis of these findings, the use of antimicrobial cocktails targeting different bacteria and fractions of bacterial populations may enhance the efficacy of high pressure as a preservation treatment.
Collapse
Affiliation(s)
- Barbara Masschalck
- Katholieke Universiteit Leuven, Laboratory of Food Microbiology, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | |
Collapse
|
76
|
Breazeale SD, Ribeiro AA, Raetz CRH. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 2003; 278:24731-9. [PMID: 12704196 DOI: 10.1074/jbc.m304043200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli and Salmonella typhimurium, addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate group(s) of lipid A is required for resistance to polymyxin and cationic antimicrobial peptides. We have proposed previously (Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R. H. (2002) J. Biol. Chem. 277, 2886-2896) a pathway for l-Ara4N biosynthesis that begins with the ArnA-catalyzed C-4" oxidation and C-6" decarboxylation of UDP-glucuronic acid, followed by the C-4" transamination of the product to generate the novel sugar nucleotide UDP-l-Ara4N. We now show that ArnB (PmrH) encodes the relevant aminotransferase. ArnB was overexpressed using a T7lac promoter-driven construct and shown to catalyze the reversible transfer of the amino group from glutamate to the acceptor, uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate), the intermediate that is synthesized by ArnA from UDP-glucuronic acid. A 1.7-mg sample of the putative UDP-l-Ara4N product generated in vitro was purified by ion exchange chromatography, and its structure was confirmed by 1H and 13C NMR spectroscopy. ArnB, which is a cytoplasmic protein, was purified to homogeneity from an overproducing strain of E. coli and shown to contain a pyridoxal phosphate cofactor, as judged by ultraviolet/visible spectrophotometry. The pyridoxal phosphate was converted to the pyridoxamine form in the presence of excess glutamate. A simple quantitative radiochemical assay was developed for ArnB, which can be used to assay the enzyme either in the forward or the reverse direction. The enzyme is highly selective for glutamate as the amine donor, but the equilibrium constant in the direction of UDP-l-Ara4N formation is unfavorable (approximately 0.1). ArnB is a member of a very large family of aminotransferases, but closely related ArnB orthologs are present only in those bacteria capable of synthesizing lipid A species modified with the l-Ara4N moiety.
Collapse
Affiliation(s)
- Steven D Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
77
|
Gorter AD, Oostrik J, van der Ley P, Hiemstra PS, Dankert J, van Alphen L. Involvement of lipooligosaccharides of Haemophilus influenzae and Neisseria meningitidis in defensin-enhanced bacterial adherence to epithelial cells. Microb Pathog 2003; 34:121-30. [PMID: 12631473 DOI: 10.1016/s0882-4010(02)00193-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stimulated neutrophils release a variety of antimicrobial peptides, including neutrophil defensins (HNP1-4). We have previously reported that neutrophil defensins enhanced the adherence of Haemophilus influenzae and Neisseria meningitidis to cultured respiratory epithelial cells. In this study, the effect of defensins on the adherence of H. influenzae and N. meningitidis lipooligosaccharide (LOS) mutants to epithelial cells was tested. Neutrophil defensins enhanced the adherence of the oligosaccharide mutants of H. influenzae and N. meningitidis, whilst the adherence of the lipid A mutants B29 of H. influenzae and lpxL1 and lpxL2 of N. meningitidis was not or only moderately stimulated by neutrophil defensins. The adherence of the N. meningitidis LOS negative mutant lpxA was not enhanced by defensins. These findings suggested that the secondary fatty acids of lipid A were involved in the defensin-enhanced adherence. LOS from strain H44/76 or HNP-LOS complexes did not affect or stimulate the adherence of N. meningitidis, although the defensin-enhanced adherence is specific for certain bacterial species having LOS in their outer membrane. These results indicated that LOS is involved in the defensin-enhanced adherence. However, the mechanism by which defensins and LOS interact with epithelial cells to promote bacterial adherence remains to be resolved.
Collapse
Affiliation(s)
- Annelies D Gorter
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA.
| | | |
Collapse
|
79
|
Gronow S, Noah C, Blumenthal A, Lindner B, Brade H. Construction of a deep-rough mutant of Burkholderia cepacia ATCC 25416 and characterization of its chemical and biological properties. J Biol Chem 2003; 278:1647-55. [PMID: 12427755 DOI: 10.1074/jbc.m206942200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Burkholderia cepacia is a bacterium with increasing importance as a pathogen in patients with cystic fibrosis. The deep-rough mutant Ko2b was generated from B. cepacia type strain ATCC 25416 by insertion of a kanamycin resistance cassette into the gene waaC encoding heptosyltransferase I. Mass spectrometric analysis of the de-O-acylated lipopolysaccharide (LPS) of the mutant showed that it consisted of a bisphosphorylated glucosamine backbone with two 3-hydroxyhexadecanoic acids in amide-linkage, 4-amino-4-deoxyarabinose (Ara4N) residues on both phosphates, and a core oligosaccharide of the sequence Ara4N-(1 --> 8) D-glycero-D-talo-oct-2-ulosonic acid (Ko)-(2 --> 4)3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). The mutant allowed investigations on the biosynthesis of the LPS as well as on its role in human infection. Mutant Ko2b showed no difference in its ability to invade human macrophages as compared with the wild type. Furthermore, isolated LPS of both strains induced the production of tumor necrosis factor alpha from macrophages to the same extent. Thus, the truncation of the LPS did not decrease the biological activity of the mutant or its LPS in these aspects.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Parkallee 22, D-23845 Borstel, Germany.
| | | | | | | | | |
Collapse
|
80
|
Tamayo R, Ryan SS, McCoy AJ, Gunn JS. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar typhimurium. Infect Immun 2002; 70:6770-8. [PMID: 12438352 PMCID: PMC133008 DOI: 10.1128/iai.70.12.6770-6778.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium encounters antimicrobial peptides (AP) within the phagosomes of professional phagocytes and at intestinal mucosal surfaces. Salmonella serovar Typhimurium utilizes the two-component regulatory system PmrA-PmrB, which is activated in response to the environmental conditions encountered in vivo, to regulate resistance to several AP, including polymyxin B (PM). Random MudJ transposon mutagenesis was used to identify PmrA-PmrB-regulated genes, as well as genetic loci necessary for PM resistance. Three different phenotypic classes of genes were identified: those necessary for PM resistance and regulated by PmrA, those necessary for PM resistance and not regulated by PmrA, and PmrA-regulated genes not required for PM resistance. Loci identified as necessary for PM resistance showed between 6- and 192-fold increased sensitivities to PM, and transposon insertion sites include surA, tolB, and gnd. PmrA-regulated loci identified included dgoA and yibD and demonstrated 500- and 2,500-fold activation by PmrA, respectively. The role of the identified loci in aminoarabinose modification of lipid A was determined by paper chromatography. The gnd mutant demonstrated a loss of aminoarabinose from lipid A, which was suggested to be due to a polar effect on the downstream gene pmrE. The remaining PM(s) mutants (surA and tolB), as well as the two PmrA-regulated gene (yibD and dgoA) mutants, retained aminoarabinose on lipid A. yibD, dgoA, and gnd (likely affecting pmrE) played no role in PmrA-regulated resistance to high iron concentrations, while surA and tolB mutations grew poorly on high iron media. All PM(s) mutants identified in this study demonstrated a defect in virulence compared to wild-type Salmonella serovar Typhimurium when administered orally to mice, while the PmrA-regulated gene (yibD and dgoA) mutants showed normal virulence in mice. These data broaden our understanding of in vivo gene regulation, lipopolysaccharide modification, and mechanisms of resistance to AP in enteric bacteria.
Collapse
Affiliation(s)
- Rita Tamayo
- University of Texas Health Science Center at San Antonio, 78229-7758, USA
| | | | | | | |
Collapse
|
81
|
Abstract
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II).
Collapse
Affiliation(s)
- Sangpen Chamnongpol
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
82
|
Preston A, Maskell DJ. Molecular genetics and role in infection of environmentally regulated lipopolysaccharide expression. Int J Med Microbiol 2002; 292:7-15. [PMID: 12139431 DOI: 10.1078/1438-4221-00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharides (LPSs) from different Gram-negative bacteria are structurally distinct. Even closely related serovars of single bacterial species may possess different LPS molecules. Further variability may then be superimposed on this ground-state structural diversity as a result of variable expression of other LPS structures. This variable expression is due in some cases to high-frequency, reversible, random "on-off" switching of genes required for biosynthesis of particular LPS structures. In other cases differential expression of LPS biosynthesis genes may be part of a programmed response to environmental stimuli, which may occur as adaptations by pathogenic bacteria to changing environments within the host during the course of infection.
Collapse
Affiliation(s)
- Andrew Preston
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, United Kingdom.
| | | |
Collapse
|
83
|
Brodsky IE, Ernst RK, Miller SI, Falkow S. mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol 2002; 184:3203-13. [PMID: 12029036 PMCID: PMC135090 DOI: 10.1128/jb.184.12.3203-3213.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that the mig-14 gene of Salmonella enterica serovar Typhimurium is necessary for bacterial proliferation in the liver and spleen of mice following intragastric inoculation and that mig-14 expression, which is induced within macrophages, is under the control of the global regulator PhoP. Here we demonstrate that the mig-14 promoter is induced by growth in minimal medium containing low magnesium or acidic pH, consistent with regulation by PhoP. In addition, mig-14 is strongly induced by polymyxin B, protamine, and the mammalian antimicrobial peptide protegrin-1. While phoP is necessary for the induction of mig-14 in response to protamine and protegrin, mig-14 is still induced by polymyxin B in a phoP background. We also demonstrate that mig-14 is necessary for resistance of S. enterica serovar Typhimurium to both polymyxin B and protegrin-1. Gram-negative resistance to a variety of antimicrobial peptides has been correlated with modifications of lipopolysaccharide structure. However, we show that mig-14 is not required for one of these modifications, the addition of 4-aminoarabinose to lipid A. Additionally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of wild-type and mig-14 lipopolysaccharide also shows no detectable differences between the two strains. Therefore, mig-14 contributes to Salmonella resistance to antimicrobial peptides by a mechanism that is not yet fully understood.
Collapse
Affiliation(s)
- Igor E Brodsky
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
84
|
Abstract
The emergence and spread of hospital acquired multi drug resistant bacteria present a need for new antibiotics with innovative mode of action. Advances in molecular microbiology and genomics have led to the identification of numerous bacterial genes coding for proteins that could potentially serve as targets for antibacterial compounds. Histidine kinase promoted two-component systems are extremely common in bacteria and play an important role in essential signal transduction for adapting to bacterial stress. Since signal transduction in mammals occurs by a different mechanism, inhibition of histidine kinases could be a potential target for antimicrobial agents. This review will summarize our current knowledge of the structure and function of histidine kinase and the development of antibiotics with a new mode of action: targeting histidine kinase promoted signal transduction and its subsequent regulation of gene expression system.
Collapse
Affiliation(s)
- Masayuki Matsushita
- The Scripps Research Institute, Department of Chemistry BCC-582, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
85
|
Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002; 26:17-47. [PMID: 12007641 DOI: 10.1111/j.1574-6976.2002.tb00597.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Current data from bacterial pathogens of animals and from bacterial symbionts of plants support some of the more general proposed functions for lipopolysaccharides (LPS) and underline the importance of LPS structural versatility and adaptability. Most of the structural heterogeneity of LPS molecules is found in the O-antigen polysaccharide. In this review, the role and mechanisms of this striking flexibility in molecular structure of the O-antigen in bacterial pathogens and symbionts are illustrated by some recent findings. The variation in O-antigen that gives rise to an enormous structural diversity of O-antigens lies in the sugar composition and the linkages between monosaccharides. The chemical composition and structure of the O-antigen is strain-specific (interstrain LPS heterogeneity) but can also vary within one bacterial strain (intrastrain LPS heterogeneity). Both LPS heterogeneities can be achieved through variations at different levels. First of all, O-polysaccharides can be modified non-stoichiometrically with sugar moieties, such as glucosyl and fucosyl residues. The addition of non-carbohydrate substituents, i.e. acetyl or methyl groups, to the O-antigen can also occur with regularity, but in most cases these modifications are again non-stoichiometric. Understanding LPS structural variation in bacterial pathogens is important because several studies have indicated that the composition or size of the O-antigen might be a reliable indicator of virulence potential and that these important features often differ within the same bacterial strain. In general, O-antigen modifications seem to play an important role at several (at least two) stages of the infection process, including the colonization (adherence) step and the ability to bypass or overcome host defense mechanisms. There are many reports of modifications of O-antigen in bacterial pathogens, resulting either from altered gene expression, from lysogenic conversion or from lateral gene transfer followed by recombination. In most cases, the mechanisms underlying these changes have not been resolved. However, in recent studies some progress in understanding has been made. Changes in O-antigen structure mediated by lateral gene transfer, O-antigen conversion and phase variation, including fucosylation, glucosylation, acetylation and changes in O-antigen size, will be discussed. In addition to the observed LPS heterogeneity in bacterial pathogens, the structure of LPS is also altered in bacterial symbionts in response to signals from the plant during symbiosis. It appears to be part of a molecular communication between bacterium and host plant. Experiments ex planta suggest that the bacterium in the rhizosphere prepares its LPS for its roles in symbiosis by refining the LPS structure in response to seed and root compounds and the lower pH at the root surface. Moreover, modifications in LPS induced by conditions associated with infection are another indication that specific structures are important. Also during the differentiation from bacterium to bacteroid, the LPS of Rhizobium undergoes changes in the composition of the O-antigen, presumably in response to the change of environment. Recent findings suggest that, during symbiotic bacteroid development, reduced oxygen tension induces structural modifications in LPS that cause a switch from predominantly hydrophilic to predominantly hydrophobic molecular forms. However, the genetic mechanisms by which the LPS epitope changes are regulated remain unclear. Finally, the possible roles of O-antigen variations in symbiosis will be discussed.
Collapse
Affiliation(s)
- Inge Lerouge
- Centre of Microbial and Plant Genetics, Katholieke Universtiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | |
Collapse
|
86
|
Abstract
Bacterial lipopolysaccharides (LPS) are the major outer surface membrane components present in almost all Gram-negative bacteria and act as extremely strong stimulators of innate or natural immunity in diverse eukaryotic species ranging from insects to humans. LPS consist of a poly- or oligosaccharide region that is anchored in the outer bacterial membrane by a specific carbohydrate lipid moiety termed lipid A. The lipid A component is the primary immunostimulatory centre of LPS. With respect to immunoactivation in mammalian systems, the classical group of strongly agonistic (highly endotoxic) forms of LPS has been shown to be comprised of a rather similar set of lipid A types. In addition, several natural or derivatised lipid A structures have been identified that display comparatively low or even no immunostimulation for a given mammalian species. Some members of the latter more heterogeneous group are capable of antagonizing the effects of strongly stimulatory LPS/lipid A forms. Agonistic forms of LPS or lipid A trigger numerous physiological immunostimulatory effects in mammalian organisms, but--in higher doses--can also lead to pathological reactions such as the induction of septic shock. Cells of the myeloid lineage have been shown to be the primary cellular sensors for LPS in the mammalian immune system. During the past decade, enormous progress has been obtained in the elucidation of the central LPS/lipid A recognition and signaling system in mammalian phagocytes. According to the current model, the specific cellular recognition of agonistic LPS/lipid A is initialized by the combined extracellular actions of LPS binding protein (LBP), the membrane-bound or soluble forms of CD14 and the newly identified Toll-like receptor 4 (TLR4)*MD-2 complex, leading to the rapid activation of an intracellular signaling network that is highly homologous to the signaling systems of IL-1 and IL-18. The elucidation of structure-activity correlations in LPS and lipid A has not only contributed to a molecular understanding of both immunostimulatory and toxic septic processes, but has also re-animated the development of new pharmacological and immunostimulatory strategies for the prevention and therapy of infectious and malignant diseases.
Collapse
Affiliation(s)
- C Alexander
- Department of Immunochemistry and Biochemical Microbiology, Centre of Medicine and Bio-Sciences, Borstel, Germany
| | | |
Collapse
|
87
|
Breazeale SD, Ribeiro AA, Raetz CRH. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. J Biol Chem 2002; 277:2886-96. [PMID: 11706007 DOI: 10.1074/jbc.m109377200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate groups of lipid A is implicated in bacterial resistance to polymyxin and cationic antimicrobial peptides of the innate immune system. The sequences of the products of the Salmonella typhimurium pmrE and pmrF loci, both of which are required for polymyxin resistance, recently led us to propose a pathway for l-Ara4N biosynthesis from UDP-glucuronic acid (Zhou, Z., Lin, S., Cotter, R. J., and Raetz, C. R. H. (1999) J. Biol. Chem. 274, 18503-18514). We now report that extracts of a polymyxin-resistant mutant of Escherichia coli catalyze the C-4" oxidation and C-6" decarboxylation of [alpha-(32)P]UDP-glucuronic acid, followed by transamination to generate [alpha-(32)P]UDP-l-Ara4N, when NAD and glutamate are added as co-substrates. In addition, the [alpha-(32)P]UDP-l-Ara4N is formylated when N-10-formyltetrahydrofolate is included. These activities are consistent with the proposed functions of two of the gene products (PmrI and PmrH) of the pmrF operon. PmrI (renamed ArnA) was overexpressed using a T7 construct, and shown by itself to catalyze the unprecedented oxidative decarboxylation of UDP-glucuronic acid to form uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate). A 6-mg sample of the latter was purified, and its structure was validated by NMR studies as the hydrate of the 4" ketone. ArnA resembles UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase in oxidizing the C-4" position of its substrate, but differs in that it releases the NADH product.
Collapse
Affiliation(s)
- Steven D Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
88
|
Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 2001; 71:235-44. [PMID: 11789941 DOI: 10.1016/s0168-1605(01)00609-2] [Citation(s) in RCA: 761] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mode of antimicrobial action of chitosan (polymeric beta-1,4-N-acetylglucosamine) on gram-negative bacteria was studied with special emphasis on its ability to bind to and weaken the barrier function of the outer membrane (OM). Chitosan (250 ppm) at pH 5.3 induced significant uptake of the hydrophobic probe 1-N-phenylnaphthylamine (NPN) in Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium. The effect was reduced (E. coli, salmonellae) or abolished (P. aeruginosa) by MgCl2. No NPN uptake was observed during exposure of the salmonellae to chitosan at pH 7.2. Chitosan also sensitized P. aeruginosa and the salmonellae to the lytic effect of sodium dodecyl sulfate (SDS); such sensitization was not blocked by MgCl2 and was reversible by washing chitosan-treated cells prior to SDS exposure. Chemical and electrophoretic analyses of cell-free supernatants of chitosan-treated cell suspensions showed that interaction of chitosan with E. coli and the salmonellae involved no release of lipopolysaccharide (LPS) or other membrane lipids. However, chitosan rendered E. coli more sensitive to the inhibitory action of dyes and bile acids used in selective media. Highly cationic mutants of S. typhimurium were more resistant to chitosan than the parent strains. Electron microscopy showed that chitosan caused extensive cell surface alterations and covered the OM with vesicular structures. Chitosan thus appeared to bind to the outer membrane, explaining the loss of the barrier function. This property makes chitosan a potentially useful indirect antimicrobial for food protection.
Collapse
Affiliation(s)
- I M Helander
- VTT Biotechnology and Food Research, Espoo, Finland
| | | | | | | | | |
Collapse
|
89
|
Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CR. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem 2001; 276:43111-21. [PMID: 11535603 DOI: 10.1074/jbc.m106960200] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid A of Salmonella typhimurium can be resolved into multiple molecular species. Many of these substances are more polar than the predominant hexa-acylated lipid A 1,4'-bisphosphate of Escherichia coli K-12. By using new isolation methods, we have purified six lipid A subtypes (St1 to St6) from wild type S. typhimurium. We demonstrate that these lipid A variants are covalently modified with one or two 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties. Each lipid A species with a defined set of polar modifications can be further derivatized with a palmitoyl moiety and/or a 2-hydroxymyristoyl residue in place of the secondary myristoyl chain at position 3'. The unexpected finding that St5 and St6 contain two l-Ara4N residues accounts for the anomalous structures of lipid A precursors seen in S. typhimurium mutants defective in 3-deoxy-d-manno-octulosonic acid biosynthesis in which only the 1-phosphate group is modified with the l-Ara4N moiety (Strain, S. M., Armitage, I. M., Anderson, L., Takayama, K., Quershi, N., and Raetz, C. R. H. (1985) J. Biol. Chem. 260, 16089-16098). Phosphoethanolamine (pEtN)-modified lipid A species are much less abundant than l-Ara4N containing forms in wild type S. typhimurium grown in broth but accumulate to high levels when l-Ara4N synthesis is blocked in pmrA(C)pmrE(-) and pmrA(C)pmrF(-) mutants. Purification and analysis of selected compounds demonstrate that one or two pEtN moieties may be present. Our findings show that S. typhimurium contains versatile enzymes capable of modifying both the 1- and 4'-phosphates of lipid A with l-Ara4N and/or pEtN groups. PmrA null mutants of S. typhimurium produce lipid A species without any pEtN or l-Ara4N substituents. However, PmrA is not needed for the incorporation of 2-hydroxymyristate or palmitate.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry and the Duke NMR Spectroscopy Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
90
|
Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CR. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem 2001; 276:43132-44. [PMID: 11535605 DOI: 10.1074/jbc.m106962200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.
Collapse
Affiliation(s)
- M S Trent
- Department of Biochemistry and the Duke NMR Spectroscopy Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
91
|
Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 2001; 276:43122-31. [PMID: 11535604 DOI: 10.1074/jbc.m106961200] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A is required for the maintenance of polymyxin resistance in Escherichia coli and Salmonella typhimurium. The enzymes that synthesize l-Ara4N and transfer it to lipid A have not been identified. We now report an inner membrane enzyme, expressed in polymyxin-resistant mutants, that adds one or two l-Ara4N moieties to lipid A or its immediate precursors. No soluble factors are required. A gene located near minute 51 on the S. typhimurium and E. coli chromosomes (previously termed orf5, pmrK, or yfbI) encodes the l-Ara4N transferase. The enzyme, renamed ArnT, consists of 548 amino acid residues in S. typhimurium with 12 possible membrane-spanning regions. ArnT displays distant similarity to yeast protein mannosyltransferases. ArnT adds two l-Ara4N units to lipid A precursors containing a Kdo disaccharide. However, as shown by mass spectrometry and NMR spectroscopy, it transfers only a single l-Ara4N residue to the 1-phosphate moiety of lipid IV(A), a precursor lacking Kdo. Proteins with full-length sequence similarity to ArnT are present in genomes of other bacteria thought to synthesize l-Ara4N-modified lipid A, including Pseudomonas aeruginosa and Yersinia pestis. As shown in the following article (Trent, M. S., Ribeiro, A. A., Doerrler, W. T., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 43132-43144), ArnT utilizes the novel lipid undecaprenyl phosphate-alpha-l-Ara4N as its sugar donor, suggesting that l-Ara4N transfer to lipid A occurs on the periplasmic side of the inner membrane.
Collapse
Affiliation(s)
- M S Trent
- Department of Biochemistry, Duke NMR Spectroscopy Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
93
|
McCoy AJ, Liu H, Falla TJ, Gunn JS. Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother 2001; 45:2030-7. [PMID: 11408219 PMCID: PMC90596 DOI: 10.1128/aac.45.7.2030-2037.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (APs) are important components of the innate defenses of animals, plants, and microorganisms. However, some bacterial pathogens are resistant to the action of APs. For example, Proteus mirabilis is highly resistant to the action of APs, such as polymyxin B (PM), protegrin, and the synthetic protegrin analog IB-367. To better understand this resistance, a transposon mutagenesis approach was used to generate P. mirabilis mutants sensitive to APs. Four unique PM-sensitive mutants of P. mirabilis were identified (these mutants were >2 to >128 times more sensitive than the wild type). Two of these mutants were also sensitive to IB-367 (16 and 128 times more sensitive than the wild type). Lipopolysaccharide (LPS) profiles of the PM- and protegrin-sensitive mutants demonstrated marked differences in both the lipid A and O-antigen regions, while the PM-sensitive mutants appeared to have alterations of either lipid A or O antigen. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of the wild-type and PM-sensitive mutant lipid A showed species with one or two aminoarabinose groups, while lipid A from the PM- and protegrin-sensitive mutants was devoid of aminoarabinose. When the mutants were streaked on an agar-containing medium, the swarming motility of the PM- and protegrin-sensitive mutants was completely inhibited and the swarming motility of the mutants sensitive to only PM was markedly decreased. DNA sequence analysis of the mutagenized loci revealed similarities to an O-acetyltransferase (PM and protegrin sensitive) and ATP synthase and sap loci (PM sensitive). These data further support the role of LPS modifications as an elaborate mechanism in the resistance of certain bacterial species to APs and suggest that LPS surface charge alterations may play a role in P. mirabilis swarming motility.
Collapse
Affiliation(s)
- A J McCoy
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
94
|
Trent MS, Pabich W, Raetz CR, Miller SI. A PhoP/PhoQ-induced Lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 2001; 276:9083-92. [PMID: 11108722 DOI: 10.1074/jbc.m010730200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental changes. Some lipid A modifications are important for virulence and resistance to cationic antimicrobial peptides. The two-component system PhoP/PhoQ plays a central role in regulating lipid A modification. We now report the discovery of a PhoP/PhoQ-activated gene (pagL) in Salmonella typhimurium, encoding a deacylase that removes the R-3-hydroxymyristate moiety attached at position 3 of certain lipid A precursors. The deacylase gene (pagL) was identified by assaying for loss of deacylase activity in extracts of 14 random TnphoA::pag insertion mutants. The pagL gene encodes a protein of 185 amino acid residues unique to S. typhimurium and closely related organisms such as Salmonella typhi. Heterologous expression of pagL in Escherichia coli on plasmid pWLP21 results in loss of the R-3-hydroxymyristate moiety at position 3 in approximately 90% of the lipid A molecules but does not inhibit cell growth. PagL is synthesized with a 20-amino acid N-terminal signal peptide and is localized mainly in the outer membrane, as judged by assays of separated S. typhimurium membranes and by SDS-polyacrylamide gel analysis of membranes from E. coli cells that overexpress PagL. The function of PagL is unknown, given that S. typhimurium mutants lacking pagL display no obvious phenotypes, but PagL might nevertheless play a role in pathogenesis if it serves to modulate the cytokine response of an infected animal host.
Collapse
Affiliation(s)
- M S Trent
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
95
|
Yethon JA, Whitfield C. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability. J Biol Chem 2001; 276:5498-504. [PMID: 11069912 DOI: 10.1074/jbc.m008255200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa, the waaP (rfaP) gene product is required for the addition of phosphate to O-4 of the first heptose residue of the lipopolysaccharide (LPS) inner core region. This phosphate substitution is particularly important to the biology of these bacteria; it has previously been shown that WaaP is necessary for resistance to hydrophobic and polycationic antimicrobials in E. coli and that it is required for virulence in invasive strains of S. enterica. WaaP function is also known to be essential for the viability of P. aeruginosa. The predicted WaaP protein shows low levels of similarity (10-15% identity) to eukaryotic protein kinases, but its kinase activity has never been tested. Here we report the purification of WaaP and the reconstitution of its enzymatic activity in vitro. The purified enzyme catalyzes the incorporation of 33P from [gamma-33P]ATP into acceptor LPS purified from a defined E. coli waaP mutant. Enzymatic activity is dependent upon the presence of Mg2+ and is maximal from pH 8.0 to 9.0. The apparent Km (determined at saturating concentrations of the second substrate) is 0.13 mm for ATP and 76 microm for LPS. These data are the first proof that WaaP is indeed an LPS kinase. Further, site-directed mutagenesis of a predicted catalytic residue suggests that WaaP shares a common mechanism of action with eukaryotic protein kinases.
Collapse
Affiliation(s)
- J A Yethon
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
96
|
Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J 2000; 19:5071-80. [PMID: 11013210 PMCID: PMC302101 DOI: 10.1093/emboj/19.19.5071] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella typhimurium PhoP/PhoQ-activated gene pagP is required both for biosynthesis of hepta-acylated lipid A species containing palmitate and for resistance to cationic anti-microbial peptides. Palmitoylated lipid A can also function as an endotoxin antagonist. We now show that pagP and its Escherichia coli homolog (crcA) encode an unusual enzyme of lipid A biosynthesis localized in the outer membrane. PagP transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A (or its precursors). PagP bearing a C-terminal His(6)-tag accumulated in outer membranes during overproduction, was purified with full activity and was shown by cross-linking to behave as a homodimer. PagP is the first example of an outer membrane enzyme involved in lipid A biosynthesis. Additional pagP homologs are encoded in the genomes of Yersinia and Bordetella species. PagP may provide an adaptive response toward both Mg(2+) limitation and host innate immune defenses.
Collapse
Affiliation(s)
- R E Bishop
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline Duke Building, Box 3711, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
97
|
Macfarlane ELA, Kwasnicka A, Hancock REW. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2543-2554. [PMID: 11021929 DOI: 10.1099/00221287-146-10-2543] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resistance to the polycationic antibiotic polymyxin B and expression of the outer-membrane protein OprH in the opportunistic pathogen Pseudomonas aeruginosa both involve the PhoP-PhoQ two-component regulatory system. The genes for this system form an operon with oprH, oprH-phoP-phoQ, that responds to Mg(2+) starvation and PhoP levels. In this study, the Mg(2+)-regulated promoter for this operon was mapped upstream of oprH by primer-extension experiments. An oprH::xylE-Gm(R) mutant H855 was constructed and measurement of the catechol 2,3-dioxygenase activity expressed from this transcriptional fusion provided evidence for a second, weak promoter for phoP-phoQ. Wild-type P. aeruginosa PAO1 strain H103 was found to exhibit Mg(2+)-regulated resistance to the alpha-helical antimicrobial cationic peptide CP28 in addition to its previously characterized resistance to polymyxin B. Resistance to this peptide was unchanged in the OprH-null mutant H855 and a PhoP-null mutant H851. In contrast, PhoQ-null mutant H854 demonstrated constitutive CP28 resistance. Northern blot analysis revealed constitutive expression of phoP in this strain, implicating PhoP-PhoQ in the resistance of P. aeruginosa to cationic peptides. Furthermore, all three null-mutant strains demonstrated increased resistance to the aminoglycoside antibiotics streptomycin, kanamycin and amikacin. Two additional mutant strains, H895 and H896, were constructed that carried unmarked deletions in oprH and were found to exhibit aminoglycoside susceptibility equivalent to that of the wild-type. This result provided definitive evidence that OprH is not involved in P. aeruginosa aminoglycoside resistance and that the changes in resistance in strain H855 and a previously reported oprH mutant were due to polar effects on phoP-phoQ rather than loss of OprH expression. A role for PhoP-PhoQ in resistance to aminoglycosides is envisaged that is distinct from that in resistance to cationic peptides and polymyxin B.
Collapse
Affiliation(s)
- Emma L A Macfarlane
- Department of Microbiology, #300, 6174 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z31
| | - Agnieszka Kwasnicka
- Department of Microbiology, #300, 6174 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z31
| | - Robert E W Hancock
- Department of Microbiology, #300, 6174 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z31
| |
Collapse
|
98
|
Wösten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell 2000; 103:113-25. [PMID: 11051552 DOI: 10.1016/s0092-8674(00)00092-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron is essential for all organisms but can be toxic in excess. Iron homeostasis is typically regulated by cytoplasmic iron binding proteins, but here we describe a signal transduction system (PmrA/PmrB) that responds to extracytoplasmic ferric iron. Iron promoted transcription of PmrA-activated genes and resistance to the antibiotic polymyxin in Salmonella. The PmrB protein bound iron via its periplasmic domain which harbors two copies of the sequence ExxE, a motif present in the Saccharomyces FTR1 iron transporter and in mammalian ferritin light chain. A pmrA mutant was hypersensitive to killing by iron but displayed wild-type resistance to a variety of oxidants, suggesting PmrA/PmrB controls a novel pathway mediating the avoidance of iron toxicity.
Collapse
Affiliation(s)
- M M Wösten
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
99
|
Helander IM, Mattila-Sandholm T. Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 2000; 60:153-61. [PMID: 11016605 DOI: 10.1016/s0168-1605(00)00307-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of nisin pretreatment on organic acid-induced permeability increase in strains of Escherichia coli, Pseudomonas aeruginosa, P. marginalis, and Salmonella enterica sv. Typhimurium was investigated, using assays based on the uptake of a fluorescent dye 1-N-phenylnaphthylamine (NPN) and on the bacterial susceptibility to detergent-induced bacteriolysis. The outer membrane of bacteria which had been pretreated with nisin was shown to be less stable against 1 mM EDTA, as indicated by their significantly higher NPN uptake levels as compared to untreated bacteria. Upon challenge with a tenfold lower concentration of EDTA (0.1 mM) some nisin-treated strains (Typhimurium, P. marginalis) exhibited, however, NPN uptake levels which were lower than those seen in control bacteria, suggesting that nisin had stabilized their outer membrane. Nisin pretreatment also decreased the NPN uptake induced by citric or lactic acid or both in E. coli, P. marginalis, and Typhimurium, whereas in P. aeruginosa the pretreatment resulted in increased NPN uptake in response to citric and lactic acid. These results suggest that, with the exception of P. aeruginosa, nisin could protect bacteria from the outer membrane-disrupting effect caused by the acids. P. aeruginosa was, however, shown to be protected against bacteriolysis induced by the detergents sodium dodecylsulfate and Triton X-100. With a pair of isogenic mutants of Typhimurium differing in their cell surface charge it was shown that the NPN uptake response to I mM EDTA of the abnormally cationic strain was not significantly affected by nisin, whereas in the normal anionic strain nisin strongly strengthened the uptake. Our hypothesis based on these findings is that the normally anionic cell surface of Gram-negative bacteria has a tendency to bind the cationic nisin. The binding of nisin to the surface does not proceed to the cytoplasmic membrane, but in the outer membrane the bound nisin actually stabilizes its structure through electrostatic interactions. With the exception of EDTA, the organic acids at pH 4 did not cause leakage of cell contents from Typhimurium, indicating that these acids do not permeabilize the outer membrane to an extent required for cytoplasmic pore formation by nisin.
Collapse
|
100
|
Yethon JA, Gunn JS, Ernst RK, Miller SI, Laroche L, Malo D, Whitfield C. Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo. Infect Immun 2000; 68:4485-91. [PMID: 10899846 PMCID: PMC98355 DOI: 10.1128/iai.68.8.4485-4491.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the waaP (rfaP) gene product was recently shown to be responsible for phosphorylation of the first heptose residue of the lipopolysaccharide (LPS) inner core region. WaaP was also shown to be necessary for the formation of a stable outer membrane. These earlier studies were performed with an avirulent rough strain of E. coli (to facilitate the structural chemistry required to properly define waaP function); therefore, we undertook the creation of a waaP mutant of Salmonella enterica serovar Typhimurium to assess the contribution of WaaP and LPS core phosphorylation to the biology of an intracellular pathogen. The S. enterica waaP mutant described here is the first to be both genetically and structurally characterized, and its creation refutes an earlier claim that waaP mutations in S. enterica must be leaky to maintain viability. The mutant was shown to exhibit characteristics of the deep-rough phenotype, despite its ability to produce a full-length core capped with O antigen. Further, phosphoryl modifications in the LPS core region were shown to be required for resistance to polycationic antimicrobials. The waaP mutant was significantly more sensitive to polymyxin in both wild-type and polymyxin-resistant backgrounds, despite the decreased negative charge of the mutant LPSs. In addition, the waaP mutation was shown to cause a complete loss of virulence in mouse infection models. Taken together, these data indicate that WaaP is a potential target for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- J A Yethon
- Canadian Bacterial Diseases Network, University of Guelph, Guelph, Ontario N1G 2W1
| | | | | | | | | | | | | |
Collapse
|