51
|
Lai GC, Cho H, Bernhardt TG. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 2017; 13:e1006934. [PMID: 28749938 PMCID: PMC5549755 DOI: 10.1371/journal.pgen.1006934] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022] Open
Abstract
Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes to expand the cell wall matrix. Penicillin and related beta-lactams are one of our oldest and most effective classes of antibiotics. These drugs target enzymes called penicillin-binding proteins (PBPs) that build the essential cell wall that surrounds bacterial cells. Beta-lactams have long been used as chemical and genetic probes to uncover the mechanisms required for proper bacterial cell wall biogenesis. In this report, we use a high-throughput genetic approach to comprehensively identify nearly all genetic loci that promote resistance to the beta-lactam mecillinam in the model organism Escherichia coli. Moreover, by performing our analysis in several different genetic backgrounds we were able to generate a rich resource that defines those alleles that promote resistance by inducing a stress response and those that are more likely to do so by directly modulating cell wall synthesis. Further characterization of one of the stress response-independent resistance loci helped us discover that enzymes that cleave crosslinks in the cell wall are capable of activating cell wall synthesis by a subset of PBPs. Our analysis of the activation mechanism challenges the prevailing view in the field that cell wall synthases and cell wall cleaving enzymes must work in multi-enzyme complexes to assemble the cell wall.
Collapse
Affiliation(s)
- Ghee Chuan Lai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
52
|
Tsang MJ, Yakhnina AA, Bernhardt TG. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet 2017; 13:e1006888. [PMID: 28708841 PMCID: PMC5533458 DOI: 10.1371/journal.pgen.1006888] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/28/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cytokinesis in gram-negative bacteria requires the constriction of all three cell envelope layers: the inner membrane (IM), the peptidoglycan (PG) cell wall and the outer membrane (OM). In order to avoid potentially lethal breaches in cell integrity, this dramatic reshaping of the cell surface requires tight coordination of the different envelope remodeling activities of the cytokinetic ring. However, the mechanisms responsible for this coordination remain poorly defined. One of the few characterized regulatory points in the envelope remodeling process is the activation of cell wall hydrolytic enzymes called amidases. These enzymes split cell wall material shared by developing daughter cells to facilitate their eventual separation. In Escherichia coli, amidase activity requires stimulation by one of two partially redundant activators: EnvC, which is associated with the IM, and NlpD, a lipoprotein anchored in the OM. Here, we investigate the regulation of amidase activation by NlpD. Structure-function analysis revealed that the OM localization of NlpD is critical for regulating its amidase activation activity. To identify additional factors involved in the NlpD cell separation pathway, we also developed a genetic screen using a flow cytometry-based enrichment procedure. This strategy allowed us to isolate mutants that form long chains of unseparated cells specifically when the redundant EnvC pathway is inactivated. The screen implicated the Tol-Pal system and YraP in NlpD activation. The Tol-Pal system is thought to promote OM invagination at the division site. YraP is a conserved protein of unknown function that we have identified as a new OM-localized component of the cytokinetic ring. Overall, our results support a model in which OM and PG remodeling events at the division site are coordinated in part through the coupling of NlpD activation with OM invagination.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anastasiya A. Yakhnina
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
53
|
Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis. Sci Rep 2017; 7:2949. [PMID: 28592797 PMCID: PMC5462765 DOI: 10.1038/s41598-017-02399-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
Collapse
|
54
|
Robust peptidoglycan growth by dynamic and variable multi-protein complexes. Curr Opin Microbiol 2017; 36:55-61. [DOI: 10.1016/j.mib.2017.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 11/19/2022]
|
55
|
Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli. J Bacteriol 2017; 199:JB.00724-16. [PMID: 28167522 DOI: 10.1128/jb.00724-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coliIMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.
Collapse
|
56
|
Myka KK, Hawkins M, Syeda AH, Gupta MK, Meharg C, Dillingham MS, Savery NJ, Lloyd RG, McGlynn P. Inhibiting translation elongation can aid genome duplication in Escherichia coli. Nucleic Acids Res 2017; 45:2571-2584. [PMID: 27956500 PMCID: PMC5389703 DOI: 10.1093/nar/gkw1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.
Collapse
Affiliation(s)
- Kamila K. Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Milind K. Gupta
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, UK
| | - Mark S. Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Nigel J. Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Robert G. Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
57
|
Viola MG, LaBreck CJ, Conti J, Camberg JL. Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in Escherichia coli. PLoS One 2017; 12:e0170505. [PMID: 28114338 PMCID: PMC5256927 DOI: 10.1371/journal.pone.0170505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics.
Collapse
Affiliation(s)
- Marissa G. Viola
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christopher J. LaBreck
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Joseph Conti
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
58
|
Abstract
Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress.
Collapse
|
59
|
Abstract
Bacterial cell division is driven by the divisome, a ring-shaped protein complex organized by the bacterial tubulin homolog FtsZ. Although most of the division proteins in Escherichia coli have been identified, how they assemble into the divisome and synthesize the septum remains poorly understood. Recent studies suggest that the bacterial actin homolog FtsA plays a critical role in divisome assembly and acts synergistically with the FtsQLB complex to regulate the activity of the divisome. FtsEX, an ATP-binding cassette transporter-like complex, is also necessary for divisome assembly and inhibits division when its ATPase activity is inactivated. However, its role in division is not clear. Here, we find that FtsEX acts on FtsA to regulate both divisome assembly and activity. FtsX interacts with FtsA and this interaction is required for divisome assembly and inhibition of divisome function by ATPase mutants of FtsEX. Our results suggest that FtsEX antagonizes FtsA polymerization to promote divisome assembly and the ATPase mutants of FtsEX block divisome activity by locking FtsA in the inactive form or preventing FtsA from communicating with other divisome proteins. Because FtsEX is known to govern cell wall hydrolysis at the septum, our findings indicate that FtsEX acts on FtsA to promote divisome assembly and to coordinate cell wall synthesis and hydrolysis at the septum. Furthermore, our study provides evidence that FtsA mutants impaired for self-interaction are favored for division, and FtsW plays a critical role in divisome activation in addition to the FtsQLB complex.
Collapse
|
60
|
Syeda AH, Atkinson J, Lloyd RG, McGlynn P. The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication. Genes (Basel) 2016; 7:genes7080042. [PMID: 27483323 PMCID: PMC4999830 DOI: 10.3390/genes7080042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023] Open
Abstract
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory helicases and recombination enzymes in both bacteria and lower eukaryotes but how these replication repair systems interact to ensure efficient genome duplication remains unclear. Here, we demonstrate that the DNA content defects of Escherichia coli cells lacking the strand exchange protein RecA are driven primarily by conflicts between replication and transcription, as is the case in cells lacking the accessory helicase Rep. However, in contrast to Rep, neither RecA nor RecBCD, the helicase/exonuclease that loads RecA onto dsDNA ends, is important for maintaining rapid chromosome duplication. Furthermore, RecA and RecBCD together can sustain viability in the absence of accessory replicative helicases but only when transcriptional barriers to replication are suppressed by an RNA polymerase mutation. Our data indicate that the minimisation of replisome pausing by accessory helicases has a more significant impact on successful completion of chromosome duplication than recombination-directed fork repair.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
61
|
Wu H, Chen J, Chen GQ. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Appl Microbiol Biotechnol 2016; 100:9907-9916. [DOI: 10.1007/s00253-016-7715-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
62
|
Buczek MS, Cardenas Arevalo AL, Janakiraman A. ClpXP and ClpAP control the Escherichia coli division protein ZapC by proteolysis. MICROBIOLOGY-SGM 2016; 162:909-920. [PMID: 26978224 DOI: 10.1099/mic.0.000278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bacterial FtsZ-ring is an essential cytokinetic structure under tight spatiotemporal regulation. In Escherichia coli, FtsZ polymerization and assembly into the Z-ring is controlled on multiple levels through interactions with positive and negative regulators. Among these regulatory factors are ZapC, a Z-ring stabilizer, and the conserved protease ClpXP, which has been shown to degrade FtsZ protofilaments in preference to FtsZ monomers. Here we report that ZapC and ClpX interact in a protein-protein interaction assay, and that ZapC is degraded in a ClpXP-dependent manner in vivo. The SspB adaptor protein is not required for targeting ZapC to the ClpXP proteolytic machinery. A mutation disrupting the zapC ssrA-like sequence (zapCDD) stabilizes ZapC consistent with a reduction in ClpXP-mediated ZapC degradation. ZapCDD retains the ability to interact with FtsZ and to promote bundling in vitro indicating that WT ZapC contains discrete FtsZ and ClpX recognition motifs. Additionally, ClpAP complexes are sufficient for degradation of ZapC in the absence of ClpX in vivo. Further, chromosomal expression of zapCDD suppresses filamentation of the temperature-sensitive ftsZ84 mutant, confirming the role of ZapC as a Z-ring stabilizer. Lastly, changes in ClpXP and ZapC levels lead to cell division effects, likely through their roles in modulating FtsZ assembly dynamics. Taken together, our results indicate that the Z-ring stabilizer ZapC is a substrate of both ClpXP and ClpAP in vivo. Our data also point to a more complex regulatory circuit that integrates FtsZ, ClpXP and ZapC in achieving Z-ring stability in E. coli and related species.
Collapse
Affiliation(s)
- Monika S Buczek
- Department of Biology, MR 526, The City College of CUNY, New York, NY 10031, USA.,The Graduate Center of CUNY, New York, NY 10016, USA
| | | | - Anuradha Janakiraman
- The Graduate Center of CUNY, New York, NY 10016, USA.,Department of Biology, MR 526, The City College of CUNY, New York, NY 10031, USA
| |
Collapse
|
63
|
Jorgenson MA, Kannan S, Laubacher ME, Young KD. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Mol Microbiol 2015; 100:1-14. [PMID: 26593043 DOI: 10.1111/mmi.13284] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/31/2023]
Abstract
Bacterial morphology is determined primarily by the architecture of the peptidoglycan (PG) cell wall, a mesh-like layer that encases the cell. To identify novel mechanisms that create or maintain cell shape in Escherichia coli, we used flow cytometry to screen a transposon insertion library and identified a wecE mutant that altered cell shape, causing cells to filament and swell. WecE is a sugar aminotransferase involved in the biosynthesis of enterobacterial common antigen (ECA), a non-essential outer membrane glycolipid of the Enterobacteriaceae. Loss of wecE interrupts biosynthesis of ECA and causes the accumulation of the undecaprenyl pyrophosphate-linked intermediate ECA-lipid II. The wecE shape defects were reversed by: (i) preventing initiation of ECA biosynthesis, (ii) increasing the synthesis of the lipid carrier undecaprenyl phosphate (Und-P), (iii) diverting Und-P to PG synthesis or (iv) promoting Und-P recycling. The results argue that the buildup of ECA-lipid II sequesters part of the pool of Und-P, which, in turn, adversely affects PG synthesis. The data strongly suggest there is competition for a common pool of Und-P, whose proper distribution to alternate metabolic pathways is required to maintain normal cell shape in E. coli.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suresh Kannan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mary E Laubacher
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
64
|
Inactivation of Cell Division Protein FtsZ by SulA Makes Lon Indispensable for the Viability of a ppGpp0 Strain of Escherichia coli. J Bacteriol 2015; 198:688-700. [PMID: 26644431 DOI: 10.1128/jb.00693-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. IMPORTANCE The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
Collapse
|
65
|
Yunck R, Cho H, Bernhardt TG. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol Microbiol 2015; 99:700-18. [PMID: 26507882 DOI: 10.1111/mmi.13258] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2015] [Indexed: 12/27/2022]
Abstract
Bacterial cells are fortified against osmotic lysis by a cell wall made of peptidoglycan (PG). Synthases called penicillin-binding proteins (PBPs), the targets of penicillin and related antibiotics, polymerize the glycan strands of PG and crosslink them into the cell wall meshwork via attached peptides. The average length of glycan chains inserted into the matrix by the PBPs is thought to play an important role in bacterial morphogenesis, but polymerization termination factors controlling this process have yet to be discovered. Here, we report the identification of Escherichia coli MltG (YceG) as a potential terminase for glycan polymerization that is broadly conserved in bacteria. A clone containing mltG was initially isolated in a screen for multicopy plasmids generating a lethal phenotype in cells defective for the PG synthase PBP1b. Biochemical studies revealed that MltG is an inner membrane enzyme with endolytic transglycosylase activity capable of cleaving at internal positions within a glycan polymer. Radiolabeling experiments further demonstrated MltG-dependent nascent PG processing in vivo, and bacterial two-hybrid analysis identified an MltG-PBP1b interaction. Mutants lacking MltG were also shown to have longer glycans in their PG relative to wild-type cells. Our combined results are thus consistent with a model in which MltG associates with PG synthetic complexes to cleave nascent polymers and terminate their elongation.
Collapse
Affiliation(s)
- Rachel Yunck
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
66
|
Lamers RP, Nguyen UT, Nguyen Y, Buensuceso RNC, Burrows LL. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa. Microbiologyopen 2015; 4:879-95. [PMID: 26374494 PMCID: PMC4694138 DOI: 10.1002/mbo3.286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections. Its relatively impermeable outer membrane (OM) limits antibiotic entry, and a chromosomally encoded AmpC β‐lactamase inactivates β‐lactam antibiotics. AmpC expression is linked to peptidoglycan (PG) recycling, and soluble (sLT) or membrane‐bound (mLT) lytic transglycosylases are responsible for generating the anhydromuropeptides that induce AmpC expression. Thus, inhibition of LT activity could reduce AmpC‐mediated β‐lactam resistance in P. aeruginosa. Here, we characterized single and combination LT mutants. Strains lacking SltB1 or MltB had increased β‐lactam minimum inhibitory concentrations (MICs) compared to wild type, while only loss of Slt decreased MICs. An sltB1 mltB double mutant had elevated β‐lactam MICs compared to either the sltB1 or mltB single mutants (96 vs. 32 μg/mL cefotaxime), without changes to AmpC levels. Time–kill assays with β‐lactams suggested that increased MIC correlated with a slower rate of autolysis in the sltB1 mltB mutant – an antisuicide phenotype. Strains lacking multiple mLTs were more sensitive to β‐lactams and up to 16‐fold more sensitive to vancomycin, normally incapable of crossing the OM. Multi‐mLT mutants were also sensitive to bile salts and osmotic stress, and were hyperbiofilm formers, all phenotypes consistent with cell envelope compromise. Complementation with genes encoding inactive forms of the enzymes – or alternatively, overexpression of Braun's lipoprotein – reversed the mutants' cell envelope damage phenotypes, suggesting that mLTs help to stabilize the OM. We conclude that P. aeruginosa mLTs contribute physically to cell envelope stability, and that Slt is the preferred target for future development of LT inhibitors that could synergize with β‐lactams.
Collapse
Affiliation(s)
- Ryan P Lamers
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Uyen T Nguyen
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ylan Nguyen
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ryan N C Buensuceso
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
67
|
Rowlett VW, Margolin W. The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 2015; 6:478. [PMID: 26029202 PMCID: PMC4429545 DOI: 10.3389/fmicb.2015.00478] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Rod-shaped bacteria such as E. coli have mechanisms to position their cell division plane at the precise center of the cell, to ensure that the daughter cells are equal in size. The two main mechanisms are the Min system and nucleoid occlusion (NO), both of which work by inhibiting assembly of FtsZ, the tubulin-like scaffold that forms the cytokinetic Z ring. Whereas NO prevents Z rings from constricting over unsegregated nucleoids, the Min system is nucleoid-independent and even functions in cells lacking nucleoids and thus NO. The Min proteins of E. coli and B. subtilis form bipolar gradients that inhibit Z ring formation most at the cell poles and least at the nascent division plane. This article will outline the molecular mechanisms behind Min function in E. coli and B. subtilis, and discuss distinct Z ring positioning systems in other bacterial species.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| |
Collapse
|
68
|
Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 2015; 523:236-9. [PMID: 25945741 DOI: 10.1038/nature14473] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/16/2015] [Indexed: 01/14/2023]
Abstract
Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.
Collapse
|
69
|
Naganathan A, Wood MP, Moore SD. The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation. PLoS One 2015; 10:e0120060. [PMID: 25879934 PMCID: PMC4399890 DOI: 10.1371/journal.pone.0120060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023] Open
Abstract
The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9's activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA.
Collapse
Affiliation(s)
- Anusha Naganathan
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
| | - Matthew P. Wood
- Seattle Biomed, 307 Westlake Ave N, Suite 500, Seattle, WA, 98109, United States of America
- Department of Global Health, University of Washington, 1510 N.E. San Juan Road, Seattle, WA, 98195, United States of America
| | - Sean D. Moore
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
- * E-mail:
| |
Collapse
|
70
|
Arnaouteli S, Giastas P, Andreou A, Tzanodaskalaki M, Aldridge C, Tzartos SJ, Vollmer W, Eliopoulos E, Bouriotis V. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. J Biol Chem 2015; 290:13465-78. [PMID: 25825488 PMCID: PMC4505593 DOI: 10.1074/jbc.m115.640029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 11/26/2022] Open
Abstract
Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis.
Collapse
Affiliation(s)
- Sofia Arnaouteli
- From the Department of Biology, Enzyme Biotechnology Group, University of Crete, Vasilika Vouton, 70013 Heraklion, Crete, Greece
| | - Petros Giastas
- the Department of Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - Athina Andreou
- the Department of Biotechnology, Laboratory of Genetics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Mary Tzanodaskalaki
- the Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece
| | - Christine Aldridge
- the Institute for Cell and Molecular Biosciences, Centre for Bacterial Cell Biology, Newcastle University, NE2 4AX Newcastle upon Tyne, United Kingdom, and
| | - Socrates J Tzartos
- the Department of Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece, the Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | - Waldemar Vollmer
- the Institute for Cell and Molecular Biosciences, Centre for Bacterial Cell Biology, Newcastle University, NE2 4AX Newcastle upon Tyne, United Kingdom, and
| | - Elias Eliopoulos
- the Department of Biotechnology, Laboratory of Genetics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vassilis Bouriotis
- From the Department of Biology, Enzyme Biotechnology Group, University of Crete, Vasilika Vouton, 70013 Heraklion, Crete, Greece, the Institute of Molecular Biology and Biotechnology, 70013 Heraklion, Crete, Greece,
| |
Collapse
|
71
|
Efficient assembly of ribosomes is inhibited by deletion of bipA in Escherichia coli. J Bacteriol 2015; 197:1819-27. [PMID: 25777676 DOI: 10.1128/jb.00023-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The bacterial BipA protein belongs to the EF-G family of translational GTPases and has been postulated to be either a regulatory translation factor or a ribosome assembly factor. To distinguish between these hypotheses, we analyzed the effect of bipA deletion on three phenotypes associated with ribosome assembly factors: cold sensitivity, ribosome subunit distribution, and rRNA processing. We demonstrated that a ΔbipA strain exhibits a cold-sensitive phenotype that is similar to, and synergistic with, that of a strain with a known ribosome assembly factor, deaD. Additionally, the bipA deletion strain displayed a perturbed ribosome subunit distribution when grown at low temperature, similar to that of a deaD mutant, and again, the double mutant showed additive effects. The primary ribosomal deficiency noted was a decreased level of the 50S subunit and the appearance of a presumed pre-50S particle. Finally, deletion of bipA resulted in accumulation of pre23S rRNA, as did deletion of deaD. We further found that deletion of rluC, which encodes a pseudouridine synthase that modifies the 23S rRNA at three sites, suppressed all three phenotypes of the bipA mutant, supporting and extending previous findings. Together, these results suggest that BipA is important for the correct and efficient assembly of the 50S subunit of the ribosome at low temperature but when unmodified by RluC, the ribosomes become BipA independent for assembly. IMPORTANCE The ribosome is the complex ribonucleoprotein machine responsible for protein synthesis in all cells. Although much has been learned about the structure and function of the ribosome, we do not fully understand how it is assembled or the accessory proteins that increase efficiency of biogenesis and function. This study examined one such protein, BipA. Our results indicate that BipA either directly or indirectly enhances the formation of the 50S subunit of the ribosome, particularly at low temperature. In addition, ribosomes contain a large number of modified nucleosides, including pseudouridines. This work demonstrates that the function of BipA is tied to the modification status of the ribosome and may help us understand why these modifications have been retained.
Collapse
|
72
|
Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2015; 159:1300-11. [PMID: 25480295 DOI: 10.1016/j.cell.2014.11.017] [Citation(s) in RCA: 412] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/25/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
Abstract
Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.
Collapse
|
73
|
Tsang MJ, Bernhardt TG. A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol Microbiol 2015; 95:925-44. [PMID: 25496050 DOI: 10.1111/mmi.12905] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 01/19/2023]
Abstract
The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin-like FtsZ protein into a ring structure at midcell. This so-called Z-ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a 'forgotten' allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK and FtsN, and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
74
|
Bundalovic-Torma C, Parkinson J. Comparative Genomics and Evolutionary Modularity of Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:77-96. [PMID: 26621462 DOI: 10.1007/978-3-319-23603-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The soaring number of high-quality genomic sequences has ushered in the era of post-genomic research where our understanding of organisms has dramatically shifted towards defining the function of genes within their larger biological contexts. As a result, novel high-throughput experimental technologies are being increasingly employed to uncover physical and functional associations of genes and proteins in complex biological processes. Through the construction and analysis of physical, genetic and metabolic networks generated for the model organisms, such as Escherichia coli, organizational principles of the genome have been deduced, such as modularity, which has important implications toward understanding prokaryotic evolution and adaptation to novel lifestyles.
Collapse
Affiliation(s)
- Cedoljub Bundalovic-Torma
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 21-9830, Toronto, ON, Canada, M5G 0A4.
| | - John Parkinson
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 20-9709, Toronto, ON, Canada, M5G 0A4.
| |
Collapse
|
75
|
Bager RJ, Kudirkiene E, da Piedade I, Seemann T, Nielsen TK, Pors SE, Mattsson AH, Boyce JD, Adler B, Bojesen AM. In silico prediction of Gallibacterium anatis pan-immunogens. Vet Res 2014; 45:80. [PMID: 25223320 PMCID: PMC4423631 DOI: 10.1186/s13567-014-0080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in commercial egg-layers, leading to reduced egg production and increased mortality. Unfortunately, widespread multidrug resistance and antigenic diversity makes it difficult to control infections and novel prevention strategies are urgently needed. In this study, a pan-genomic reverse vaccinology (RV) approach was used to identify potential vaccine candidates. Firstly, the genomes of 10 selected Gallibacterium strains were analyzed and proteins selected on the following criteria; predicted surface-exposure or secretion, none or one transmembrane helix (TMH), and presence in six or more of the 10 genomes. In total, 42 proteins were selected. The genes encoding 27 of these proteins were successfully cloned in Escherichia coli and the proteins expressed and purified. To reduce the number of vaccine candidates for in vivo testing, each of the purified recombinant proteins was screened by ELISA for their ability to elicit a significant serological response with serum from chickens that had been infected with G. anatis. Additionally, an in silico prediction of the protective potential was carried out based on a protein property prediction method. Of the 27 proteins, two novel putative immunogens were identified; Gab_1309 and Gab_2312. Moreover, three previously characterized virulence factors; GtxA, FlfA and Gab_2156, were identified. Thus, by combining the pan-genomic RV approach with subsequent in vitro and in silico screening, we have narrowed down the pan-proteome of G. anatis to five vaccine candidates. Importantly, preliminary immunization trials indicated an in vivo protective potential of GtxA-N, FlfA and Gab_1309.
Collapse
Affiliation(s)
- Ragnhild J Bager
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Isabelle da Piedade
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Tine K Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susanne E Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Andreas H Mattsson
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark. .,Evaxion Biotech North America LLC, Wilmington, USA.
| | - John D Boyce
- Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
76
|
Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 2014; 345:220-2. [PMID: 25013077 DOI: 10.1126/science.1254522] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptidoglycan (PG) is a polysaccharide matrix that protects bacteria from osmotic lysis. Inhibition of its biogenesis is a proven strategy for killing bacteria with antibiotics. The assembly of PG requires disaccharide-pentapeptide building blocks attached to a polyisoprene lipid carrier called lipid II. Although the stages of lipid II synthesis are known, the identity of the essential flippase that translocates it across the cytoplasmic membrane for PG polymerization is unclear. We developed an assay for lipid II flippase activity and used a chemical genetic strategy to rapidly and specifically block flippase function. We combined these approaches to demonstrate that MurJ is the lipid II flippase in Escherichia coli.
Collapse
Affiliation(s)
- Lok-To Sham
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily K Butler
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Matthew D Lebar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Natividad Ruiz
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
77
|
Donovan C, Bramkamp M. Cell division in Corynebacterineae. Front Microbiol 2014; 5:132. [PMID: 24782835 PMCID: PMC3989709 DOI: 10.3389/fmicb.2014.00132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/14/2014] [Indexed: 12/02/2022] Open
Abstract
Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal regulation of bacterial cytokinesis is indispensable for the production of viable, genetically identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome assembles in the proximity of the midcell region, however more spatial flexibility is observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to intensive study and are well-understood. In comparison, only a minimal set of positive and negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing of cytokinesis and the placement of the division septum is coordinated with growth as well as initiation of chromosome replication and segregation. We summarize here the current knowledge on cytokinesis and division site selection in the Actinobacteria suborder Corynebacterineae.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
78
|
Abo T, Chadani Y. The fail-safe system to rescue the stalled ribosomes in Escherichia coli. Front Microbiol 2014; 5:156. [PMID: 24782844 PMCID: PMC3989581 DOI: 10.3389/fmicb.2014.00156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3′-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific “degradation tag.” Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.
Collapse
Affiliation(s)
- Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan ; Department of Biology, Faculty of Science, Okayama University Okayama, Japan
| | - Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| |
Collapse
|
79
|
Upton AL, Grove JI, Mahdi AA, Briggs GS, Milner DS, Rudolph CJ, Lloyd RG. Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus. Nucleic Acids Res 2014; 42:5702-14. [PMID: 24692661 PMCID: PMC4027168 DOI: 10.1093/nar/gku228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RecG is a DNA translocase encoded by most species of bacteria. The Escherichia coli protein targets branched DNA substrates and drives the unwinding and rewinding of DNA strands. Its ability to remodel replication forks and to genetically interact with PriA protein have led to the idea that it plays an important role in securing faithful genome duplication. Here we report that RecG co-localises with sites of DNA replication and identify conserved arginine and tryptophan residues near its C-terminus that are needed for this localisation. We establish that the extreme C-terminus, which is not resolved in the crystal structure, is vital for DNA unwinding but not for DNA binding. Substituting an alanine for a highly conserved tyrosine near the very end results in a substantial reduction in the ability to unwind replication fork and Holliday junction structures but has no effect on substrate affinity. Deleting or substituting the terminal alanine causes an even greater reduction in unwinding activity, which is somewhat surprising as this residue is not uniformly present in closely related RecG proteins. More significantly, the extreme C-terminal mutations have little effect on localisation. Mutations that do prevent localisation result in only a slight reduction in the capacity for DNA repair.
Collapse
Affiliation(s)
- Amy L Upton
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane I Grove
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Akeel A Mahdi
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Geoffrey S Briggs
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - David S Milner
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK School of Health Sciences and Social Care, Division of Biosciences, Brunel University, Uxbridge, London UB8 3PH, UK
| | - Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
80
|
A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet 2014; 10:e1004056. [PMID: 24391520 PMCID: PMC3879167 DOI: 10.1371/journal.pgen.1004056] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a formidable barrier that is difficult for antimicrobial drugs to penetrate. Thus, the list of treatments effective against these organisms is small and with the rise of new resistance mechanisms is shrinking rapidly. New therapies to treat Gram-negative bacterial infections are therefore sorely needed. This goal will be greatly aided by a detailed mechanistic understanding of envelope assembly. Although excellent progress in the identification of essential envelope biogenesis systems has been made in recent years, many aspects of the process remain to be elucidated. We therefore developed a simple, quantitative, and high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of Escherichia coli. The screen was robust and correctly identified numerous mutants known to be involved in envelope assembly. Importantly, the screen also implicated 102 genes of unknown function as encoding factors that likely impact envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for the biogenesis of cell wall and other bacterial surface polysaccharides. Further analysis of the function of ElyC and other hits identified in our screen is likely to uncover a wealth of new information about the biogenesis of the Gram-negative envelope and the vulnerabilities in the system suitable for drug targeting. Moreover, the screening assay described here should be readily adaptable to other organisms to study the biogenesis of different envelope architectures. Bacteria are surrounded by complex structures called cell envelopes that play an essential role in maintaining cellular integrity. Organisms classified as Gram-negative have especially complicated envelopes that consist of two membranes with a tough cell wall exoskeleton sandwiched between them. This envelope architecture is extremely proficient at preventing drug molecules from entering the cell. Gram-negative bacteria are therefore intrinsically resistant to many antibiotics, limiting the therapeutic options for treating infections caused by these organisms. To reveal new weaknesses in the Gram-negative envelope for drug targeting, we developed a quantitative, high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of the model Gram-negative bacterium Escherichia coli. Importantly, the screen implicated 102 genes of previously unknown function as encoding factors that likely participate in envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for cell wall synthesis. Further study of ElyC function and that of other factors identified in our screen is likely to reveal novel ways to disrupt the envelope assembly process for therapeutic purposes.
Collapse
|
81
|
RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 2013; 506:249-53. [PMID: 24362571 PMCID: PMC3925069 DOI: 10.1038/nature12868] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/05/2013] [Indexed: 11/08/2022]
Abstract
DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.
Collapse
|
82
|
Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in Escherichia coli. J Bacteriol 2013; 196:300-9. [PMID: 24187084 DOI: 10.1128/jb.00921-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is an essential organelle that is important for cell shape and protection from toxic compounds. Proteins involved in envelope biogenesis are therefore attractive targets for the design of new antibacterial agents. In a search for new envelope assembly factors, we screened a collection of Escherichia coli deletion mutants for sensitivity to detergents and hydrophobic antibiotics, a phenotype indicative of defects in the cell envelope. Strains lacking yciM were among the most sensitive strains of the mutant collection. Further characterization of yciM mutants revealed that they display a thermosensitive growth defect on low-osmolarity medium and that they have a significantly altered cell morphology. At elevated temperatures, yciM mutants form bulges containing cytoplasmic material and subsequently lyse. We also discovered that yciM genetically interacts with envC, a gene encoding a regulator of the activity of peptidoglycan amidases. Altogether, these results indicate that YciM is required for envelope integrity. Biochemical characterization of the protein showed that YciM is anchored to the inner membrane via its N terminus, the rest of the protein being exposed to the cytoplasm. Two CXXC motifs are present at the C terminus of YciM and serve to coordinate a redox-sensitive iron center of the rubredoxin type. Both the N-terminal membrane anchor and the C-terminal iron center of YciM are important for function.
Collapse
|
83
|
|
84
|
Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol 2013; 89:690-701. [PMID: 23796240 DOI: 10.1111/mmi.12304] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/19/2022]
Abstract
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell-shape determination. Most LytM-like proteins that have been structurally and/or biochemically characterized are metallo-endopeptidases that cleave cross-links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active-site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo-endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
85
|
Crippling the essential GTPase Der causes dependence on ribosomal protein L9. J Bacteriol 2013; 195:3682-91. [PMID: 23772068 DOI: 10.1128/jb.00464-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal protein L9 is a component of all eubacterial ribosomes, yet deletion strains display only subtle growth defects. Although L9 has been implicated in helping ribosomes maintain translation reading frame and in regulating translation bypass, no portion of the ribosome-bound protein seems capable of contacting either the peptidyltransferase center or the decoding center, so it is a mystery how L9 can influence these important processes. To reveal the physiological roles of L9 that have maintained it in evolution, we identified mutants of Escherichia coli that depend on L9 for fitness. In this report, we describe a class of L9-dependent mutants in the ribosome biogenesis GTPase Der (EngA/YphC). Purified mutant proteins were severely compromised in their GTPase activities, despite the fact that the mutations are not present in GTP hydrolysis sites. Moreover, although L9 and YihI complemented the slow-growth der phenotypes, neither factor could rescue the GTPase activities in vitro. Complementation studies revealed that the N-terminal domain of L9 is necessary and sufficient to improve the fitness of these Der mutants, suggesting that this domain may help stabilize compromised ribosomes that accumulate when Der is defective. Finally, we employed a targeted degradation system to rapidly deplete L9 from a highly compromised der mutant strain and show that the L9-dependent phenotype coincides with a cell division defect.
Collapse
|
86
|
Krishnan K, Duncan MJ. Role of sodium in the RprY-dependent stress response in Porphyromonas gingivalis. PLoS One 2013; 8:e63180. [PMID: 23671672 PMCID: PMC3646045 DOI: 10.1371/journal.pone.0063180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/31/2013] [Indexed: 01/09/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe which is strongly associated with periodontal disease. Environmental changes in the gingival sulcus trigger the growth of P. gingivalis and a concurrent shift from periodontal health to disease. Bacteria adjust their physiology in response to environmental changes and gene regulation by two-component phospho-relay systems is one mechanism by which such adjustments are effected. In P. gingivalis RprY is an orphan response regulator and previously we showed that the RprY regulon included genes associated with oxidative stress and sodium metabolism. The goals of the present study were to identify environmental signals that induce rprY and clarify the role of the regulator in the stress response. In Escherichia coli an RprY-LacZ fusion protein was induced in sodium- depleted medium and a P. gingivalis rprY mutant was unable to grow in similar medium. By several approaches we established that sodium depletion induced up-regulation of genes involved in oxidative stress. In addition, we demonstrated that RprY interacted directly with the promoters of several molecular chaperones. Further, both genetic and transcription data suggest that the regulator acts as a repressor. We conclude that RprY is one of the regulators that controls stress responses in P. gingivalis, possibly by acting as a repressor since an rprY mutant showed a superstress reponse in sodium-depleted medium which we propose inhibited growth.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
87
|
Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 2013. [PMID: 23207917 DOI: 10.1101/gad.196741.112] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its cofactor, NusG, is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissociation of transcription complexes. NusG is required for efficient termination at minority subsets (~20%) of both antisense and sense Rho-dependent terminators with lower C/G ratio sequences. In contrast, a widely studied nusA deletion proposed to compromise Rho-dependent termination had no effect on antisense or sense Rho-dependent terminators in vivo. Global colocalization of the histone-like nucleoid-structuring protein (H-NS) with Rho-dependent terminators and genetic interactions between hns and rho suggest that H-NS aids Rho in suppression of antisense transcription. The combined actions of Rho, NusG, and H-NS appear to be analogous to the Sen1-Nrd1-Nab3 and nucleosome systems that suppress antisense transcription in eukaryotes.
Collapse
Affiliation(s)
- Jason M Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
88
|
Singh SK, SaiSree L, Amrutha RN, Reddy M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 2012; 86:1036-51. [PMID: 23062283 DOI: 10.1111/mmi.12058] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Bacterial peptidoglycan (PG or murein) is a single, large, covalently cross-linked macromolecule and forms a mesh-like sacculus that completely encases the cytoplasmic membrane. Hence, growth of a bacterial cell is intimately coupled to expansion of murein sacculus and requires cleavage of pre-existing cross-links for incorporation of new murein material. Although, conceptualized nearly five decades ago, the mechanism of such essential murein cleavage activity has not been studied so far. Here, we identify three new murein hydrolytic enzymes in Escherichia coli, two (Spr and YdhO) belonging to the NlpC/P60 peptidase superfamily and the third (YebA) to the lysostaphin family of proteins that cleave peptide cross-bridges between glycan chains. We show that these hydrolases are redundantly essential for bacterial growth and viability as a conditional mutant lacking all the three enzymes is unable to incorporate new murein and undergoes rapid lysis upon shift to restrictive conditions. Our results indicate the step of cross-link cleavage as essential for enlargement of the murein sacculus, rendering it a novel target for development of antibacterial therapeutic agents.
Collapse
|
89
|
Mahdi AA, Briggs GS, Lloyd RG. Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase. Mol Microbiol 2012; 86:675-91. [PMID: 22957744 PMCID: PMC3533792 DOI: 10.1111/mmi.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
RecG is a DNA translocase that helps to maintain genomic integrity. Initial studies suggested a role in promoting recombination, a possibility consistent with synergism between recG and ruv null alleles and reinforced when the protein was shown to unwind Holliday junctions. In this article we describe novel suppressors of recG and show that the pathology seen without RecG is suppressed on reducing or eliminating PriB, a component of the PriA system for replisome assembly and replication restart. Suppression is conditional, depending on additional mutations that modify ribosomal subunit S6 or one of three subunits of RNA polymerase. The latter suppress phenotypes associated with deletion of priB, enabling the deletion to suppress recG. They include alleles likely to disrupt interactions with transcription anti-terminator, NusA. Deleting priB has a different effect in ruv strains. It provokes abortive recombination and compromises DNA repair in a manner consistent with PriB being required to limit exposure of recombinogenic ssDNA. This synergism is reduced by the RNA polymerase mutations identified. Taken together, the results reveal that RecG curbs a potentially negative effect of proteins that direct replication fork assembly at sites removed from the normal origin, a facility needed to resolve conflicts between replication and transcription.
Collapse
Affiliation(s)
- Akeel A Mahdi
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
90
|
The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery. J Bacteriol 2012; 194:5576-88. [PMID: 22885295 DOI: 10.1128/jb.00774-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.
Collapse
|
91
|
ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. J Bacteriol 2012; 194:5334-42. [PMID: 22843850 DOI: 10.1128/jb.00859-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rod-shaped bacteria grow by a repetitive cycle of elongation followed by division, and the mechanisms responsible for these two processes have been studied for decades. However, little is known about what happens during the transition between the two activities. At least one event occurs after elongation ends and before division commences, that being the insertion of new cell wall peptidoglycan into a narrowly circumscribed ribbon around midcell where septation is destined to take place. This insertion does not depend on the presence of the septation-specific protein PBP3 and is therefore known as PBP3-independent peptidoglycan synthesis (PIPS). Here we report that only FtsZ and ZipA are required to generate PIPS in wild-type Escherichia coli. PIPS does not require the participation of other members of the divisome, the MreB-directed cell wall elongation complex, alternate peptidoglycan synthases, the major peptidoglycan amidases, or any of the low-molecular-weight penicillin binding proteins. ZipA-directed PIPS may represent an intermediate stage that connects cell wall elongation to septal invagination and may be the reason ZipA is essential in the gammaproteobacteria.
Collapse
|
92
|
Häuser R, Pech M, Kijek J, Yamamoto H, Titz B, Naeve F, Tovchigrechko A, Yamamoto K, Szaflarski W, Takeuchi N, Stellberger T, Diefenbacher ME, Nierhaus KH, Uetz P. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet 2012; 8:e1002815. [PMID: 22829778 PMCID: PMC3400551 DOI: 10.1371/journal.pgen.1002815] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells. The YbeB/DUF143 family of proteins is one of the most widely conserved proteins with homologues present in almost all bacteria and eukaryotic organelles such as mitochondria and chloroplasts (but not archaea). While it has been shown that these proteins associate with ribosomes, their molecular function remained mysterious. Here we show that a knock-out of the ybeB gene causes a dramatic adaptation block during a shift from rich to poor media and seriously deteriorates the viability during stationary phase. YbeB of six different species binds to ribosomal protein L14. This interaction blocks the association of the two ribosomal subunits and, as a consequence, translation. YbeB is thus renamed “RsfA” (ribosomal silencing factor A). RsfA inhibits translation when nutrients are depleted (or when cells are in stationary phase), which helps the cell to save energy and nutrients, a critical function for all cells that are regularly struggling with limited resources.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Pech
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jaroslaw Kijek
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Hiroshi Yamamoto
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Titz
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Florian Naeve
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Kaori Yamamoto
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Witold Szaflarski
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nono Takeuchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Thorsten Stellberger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Markus E. Diefenbacher
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Knud H. Nierhaus
- Abteilung Vingron, AG Ribosomen Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (KHN); (PU)
| | - Peter Uetz
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Proteros Biostructures, Martinsried, Germany
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (KHN); (PU)
| |
Collapse
|
93
|
Plocinska R, Purushotham G, Sarva K, Vadrevu IS, Pandeeti EVP, Arora N, Plocinski P, Madiraju MV, Rajagopalan M. Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J Biol Chem 2012; 287:23887-99. [PMID: 22610443 DOI: 10.1074/jbc.m112.346544] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms responsible for activation of the MtrAB two-component regulatory signal transduction system, which includes sensor kinase MtrB and response regulator MtrA, are unknown. Here, we show that an MtrB-GFP fusion protein localized to the cell membrane, the septa, and the poles in Mycobacterium tuberculosis and Mycobacterium smegmatis. This localization was independent of MtrB phosphorylation status but dependent upon the assembly of FtsZ, the initiator of cell division. The M. smegmatis mtrB mutant was filamentous, defective for cell division, and contained lysozyme-sensitive cell walls. The mtrB phenotype was complemented by either production of MtrB protein competent for phosphorylation or overproduction of MtrA(Y102C) and MtrA(D13A) mutant proteins exhibiting altered phosphorylation potential, indicating that either MtrB phosphorylation or MtrB independent expression of MtrA regulon genes, including those involved in cell wall processing, are necessary for regulated cell division. In partial support of this observation, we found that the essential cell wall hydrolase ripA is an MtrA target and that the expression of bona fide MtrA targets ripA, fbpB, and dnaA were compromised in the mtrB mutant and partially rescued upon MtrA(Y102C) and MtrA(D13A) overproduction. MtrB septal assembly was compromised upon FtsZ depletion and exposure of cells to mitomycin C, a DNA damaging agent, which interferes with FtsZ ring assembly. Expression of MtrA targets was also compromised under the above conditions, indicating that MtrB septal localization and MtrA regulon expression are linked. We propose that MtrB septal association is a necessary feature of MtrB activation that promotes MtrA phosphorylation and MtrA regulon expression.
Collapse
Affiliation(s)
- Renata Plocinska
- Biomedical Research, The University of Texas Health Science Center, Tyler, Texas 75708-3154, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Stockum A, Lloyd RG, Rudolph CJ. On the viability of Escherichia coli cells lacking DNA topoisomerase I. BMC Microbiol 2012; 12:26. [PMID: 22373098 PMCID: PMC3313902 DOI: 10.1186/1471-2180-12-26] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Manipulations of the DNA double helix during replication, transcription and other nucleic acid processing cause a change of DNA topology, which results in torsional stress. This stress is relaxed by DNA topoisomerases, a class of enzymes present in all domains of life. Negatively supercoiled DNA is relaxed by type IA topoisomerases that are widespread in bacteria, archaea and eukaryotes. In Escherichia coli there is conflicting data about viability of ΔtopA cells lacking topoisomerase I. Results In this study we sought to clarify whether E. coli cells lacking topoisomerase I are viable by using a plasmid-based lethality assay that allowed us to investigate the phenotype of ΔtopA cells without the presence of any compensatory mutations. Our results show that cells lacking topoisomerase I show an extreme growth defect and cannot be cultured without the accumulation of compensatory mutations. This growth defect can be partially suppressed by overexpression of topoisomerase III, the other type IA topoisomerase in E. coli, suggesting that the accumulation of torsional stress is, at least partially, responsible for the lethality of ΔtopA cells. The absence of RNase HI strongly exacerbates the phenotype of cells lacking topoisomerase I, which supports the idea that the processing of RNA:DNA hybrids is vitally important in ΔtopA cells. However, we did not observe suppression of the ΔtopA phenotype by increasing the level of R-loop processing enzymes, such as RNase HI or RecG. Conclusions Our data show unambiguously that E. coli cells are not viable in the absence of DNA topoisomerase I without the presence of compensatory mutations. Furthermore, our data suggest that the accumulation of R-loops is not the primary reason for the severe growth defect of cells lacking topoisomerase I, which is in contrast to the current literature. Potential reasons for this discrepancy are discussed.
Collapse
Affiliation(s)
- Anna Stockum
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
95
|
Skoog K, Daley DO. The Escherichia coli cell division protein ZipA forms homodimers prior to association with FtsZ. Biochemistry 2012; 51:1407-15. [PMID: 22304478 DOI: 10.1021/bi2015647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZipA is an essential component of the cell division machinery in E. coli and other closely related bacteria. It is an integral membrane protein that binds to FtsZ, tethering it to the inner membrane. ZipA also induces bundling of FtsZ protofilaments and may play a role in regulating FtsA activity; however, the molecular details behind these observations are not clear. In this study we have analyzed the oligomeric state of ZipA in vivo, by chemical cross-linking, and in vitro, by native gel electrophoresis (BN-PAGE). Our data indicate that ZipA can self-associate as a homodimer and that this self-interaction is not dependent on the FtsZ-binding domain. This observation rules out the possibility that FtsZ polymers mediate the ZipA self-interaction. Given this observation, it is possible that a certain population of ZipA is recruited to the division septum in a homodimeric form.
Collapse
Affiliation(s)
- Karl Skoog
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
96
|
Abstract
The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway.
Collapse
Affiliation(s)
- Jean van Heijenoort
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Bat 430, Université Paris-Sud, Orsay F-91405, France.
| |
Collapse
|
97
|
Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 2011; 82:1330-48. [PMID: 22026368 DOI: 10.1111/j.1365-2958.2011.07895.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endonuclease RNase E of Escherichia coli is essential for viability, but deletion of its C-terminal half (CTH) is not lethal. RNase E preferentially acts on 5'-monophosphorylated RNA whose generation from primary transcripts is catalysed by RppH, but ΔRppH strains are viable. Here we show that the RNase E-ΔCTH ΔRppH combination is lethal, and that the lethality is suppressed by rho or nusG mutations impairing Rho-dependent transcription termination. Lethality was correlated with defects in bulk mRNA decay and tRNA processing, which were reversed by the rho suppressor. Lethality suppression was dependent on RNase H1 or the helicase UvsW of phage T4, both of which act to remove RNA-DNA hybrids (R-loops). The rho and nusG mutations also rescued inviability of a double alteration R169Q (that abolishes 5'-sensing) with ΔCTH in RNase E, as also that of conditional RNase E deficiency. We suggest that the ΔCTH alteration leads to loss of a second 5'-end-independent pathway of RNase E action. We further propose that an increased abundance of R-loops in the rho and nusG mutants, although ordinarily inimical to growth, contributes to rescue the lethality associated with loss of the two RNase E cleavage pathways by providing an alternative means of RNA degradation.
Collapse
Affiliation(s)
- K Anupama
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | | | |
Collapse
|
98
|
Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A 2011; 108:E1061-9. [PMID: 22006325 DOI: 10.1073/pnas.1108323108] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connection between peptidoglycan remodeling and cell division is poorly understood in ellipsoid-shaped ovococcus bacteria, such as the human respiratory pathogen Streptococcus pneumoniae. In S. pneumoniae, peptidoglycan homeostasis and stress are regulated by the WalRK (VicRK) two-component regulatory system, which positively regulates expression of the essential PcsB cysteine- and histidine-dependent aminohydrolases/peptidases (CHAP)-domain protein. CHAP-domain proteins usually act as peptidoglycan hydrolases, but purified PcsB lacks detectable enzymatic activity. To explore the functions of PcsB, its subcellular localization was determined. Fractionation experiments showed that cell-bound PcsB was located through hydrophobic interactions on the external membrane surface of pneumococcal cells. Immunofluorescent microscopy localized PcsB mainly to the septa and equators of dividing cells. Chemical cross-linking combined with immunoprecipitation showed that PcsB interacts with the cell division complex formed by membrane-bound FtsX(Spn) and cytoplasmic FtsE(Spn) ATPase, which structurally resemble an ABC transporter. Far Western blotting showed that this interaction was likely through the large extracellular loop of FtsX(Spn) and the amino terminal coiled-coil domain of PcsB. Unlike in Bacillus subtilis and Escherichia coli, we show that FtsX(Spn) and FtsE(Spn) are essential in S. pneumoniae. Consistent with an interaction between PcsB and FtsX(Spn), cells depleted of PcsB or FtsX(Spn) had strikingly similar defects in cell division, and depletion of FtsX(Spn) caused mislocalization of PcsB but not the FtsZ(Spn) early-division protein. A model is presented in which the interaction of the FtsEX(Spn) complex with PcsB activates its peptidoglycan hydrolysis activity and couples peptidoglycan remodeling to pneumococcal cell division.
Collapse
|
99
|
An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci U S A 2011; 108:E1052-60. [PMID: 22006326 DOI: 10.1073/pnas.1107780108] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ATP-binding cassette transporters are ubiquitous membrane protein complexes that move substrates across membranes. They do so using ATP-induced conformational changes in their nucleotide-binding domains to alter the conformation of the transport cavity formed by their transmembrane domains. In Escherichia coli, an ATP-binding cassette transporter-like complex composed of FtsE (nucleotide-binding domain) and FtsX (transmembrane domain) has long been known to be important for cytokinesis, but its role in the process has remained mysterious. Here we identify FtsEX as a regulator of cell-wall hydrolysis at the division site. Cell-wall material synthesized by the division machinery is shared initially by daughter cells and must be split by hydrolytic enzymes called "amidases" to drive daughter-cell separation. We recently showed that the amidases require activation at the cytokinetic ring by proteins with LytM domains, of which EnvC is the most critical. In this report, we demonstrate that FtsEX directly recruits EnvC to the septum via an interaction between EnvC and a periplasmic loop of FtsX. Importantly, we also show that FtsEX variants predicted to be ATPase defective still recruit EnvC to the septum but fail to promote cell separation. Our results thus suggest that amidase activation via EnvC in the periplasm is regulated by conformational changes in the FtsEX complex mediated by ATP hydrolysis in the cytoplasm. Since FtsE has been reported to interact with the tubulin-like FtsZ protein, our model provides a potential mechanism for coupling amidase activity with the contraction of the FtsZ cytoskeletal ring.
Collapse
|
100
|
Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 2011; 193:4984-7. [PMID: 21764912 DOI: 10.1128/jb.00315-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies investigating the subcellular localization of periplasmic proteins have been hampered by problems with the export of green fluorescent protein (GFP). Here we show that a superfolding variant of GFP (sfGFP) is fluorescent following Sec-mediated transport and works best when the cotranslational branch of the pathway is employed.
Collapse
|