51
|
Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral heterogeneity in pancreatic ductal adenocarcinoma. NPJ Genom Med 2020; 5:55. [PMID: 33311498 PMCID: PMC7733475 DOI: 10.1038/s41525-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival rate of <8%. Unsupervised clustering of 76 PDAC patients based on intron retention (IR) events resulted in two clusters of tumors (IR-1 and IR-2). While gene expression-based clusters are not predictive of patient outcome in this cohort, the clusters we developed based on intron retention were associated with differences in progression-free interval. IR levels are lower and clinical outcome is worse in IR-1 compared with IR-2. Oncogenes were significantly enriched in the set of 262 differentially retained introns between the two IR clusters. Higher IR levels in IR-2 correlate with higher gene expression, consistent with detention of intron-containing transcripts in the nucleus in IR-2. Out of 258 genes encoding RNA-binding proteins (RBP) that were differentially expressed between IR-1 and IR-2, the motifs for seven RBPs were significantly enriched in the 262-intron set, and the expression of 25 RBPs were highly correlated with retention levels of 139 introns. Network analysis suggested that retention of introns in IR-2 could result from disruption of an RBP protein-protein interaction network previously linked to efficient intron removal. Finally, IR-based clusters developed for the majority of the 20 cancer types surveyed had two clusters with asymmetrical distributions of IR events like PDAC, with one cluster containing mostly intron loss events. Taken together, our findings suggest IR may be an important biomarker for subclassifying tumors.
Collapse
Affiliation(s)
- Daniel J Tan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alec M Chiu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
52
|
Scarrow M, Wang Y, Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biol Rev Camb Philos Soc 2020; 96:394-407. [PMID: 33098261 DOI: 10.1111/brv.12661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Polyploidization influences the genetic composition and gene expression of an organism. This multi-level genetic change allows the formation of new regulatory pathways leading to increased adaptability. Although both forms of polyploidization provide advantages, autopolyploids were long thought to have little impact on plant divergence compared to allopolyploids due to their formation through genome duplication only, rather than in combination with hybridization. Recent advances have begun to clarify the molecular regulatory mechanisms such as microRNAs, alternative splicing, RNA-binding proteins, histone modifications, chromatin remodelling, DNA methylation, and N6 -methyladenosine (m6A) RNA methylation underlying the evolutionary success of polyploids. Such research is expanding our understanding of the evolutionary adaptability of polyploids and the regulatory pathways that allow adaptive plasticity in a variety of plant species. Herein we review the roles of individual molecular regulatory mechanisms and their potential synergistic pathways underlying plant evolution and adaptation. Notably, increasing interest in m6A methylation has provided a new component in potential mechanistic coordination that is still predominantly unexplored. Future research should attempt to identify and functionally characterize the evolutionary impact of both individual and synergistic pathways in polyploid plant species.
Collapse
Affiliation(s)
- Margaret Scarrow
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041000, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
53
|
Grabski DF, Broseus L, Kumari B, Rekosh D, Hammarskjold ML, Ritchie W. Intron retention and its impact on gene expression and protein diversity: A review and a practical guide. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1631. [PMID: 33073477 DOI: 10.1002/wrna.1631] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) occurs when a complete and unspliced intron remains in mature mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions, including several that impact human health and disease. Although experimental technologies used to study other forms of mRNA splicing can also be used to investigate IR, a specialized downstream computational analysis is optimal for IR discovery and analysis. Here we provide a review of IR and its biological implications, as well as a practical guide for how to detect and analyze it. Several methods, including long read third generation direct RNA sequencing, are described. We have developed an R package, FakIR, to facilitate the execution of the bioinformatic tasks recommended in this review and a tutorial on how to fit them to users aims. Additionally, we provide guidelines and experimental protocols to validate IR discovery and to evaluate the potential impact of IR on gene expression and protein output. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Regulation/Alternative Splicing RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- David F Grabski
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lucile Broseus
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bandana Kumari
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Ritchie
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
54
|
First Come, First Served: Sui Generis Features of the First Intron. PLANTS 2020; 9:plants9070911. [PMID: 32707681 PMCID: PMC7411622 DOI: 10.3390/plants9070911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5′-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.
Collapse
|
55
|
Zheng JT, Lin CX, Fang ZY, Li HD. Intron Retention as a Mode for RNA-Seq Data Analysis. Front Genet 2020; 11:586. [PMID: 32733531 PMCID: PMC7358572 DOI: 10.3389/fgene.2020.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Intron retention (IR) is an alternative splicing mode whereby introns, rather than being spliced out as usual, are retained in mature mRNAs. It was previously considered a consequence of mis-splicing and received very limited attention. Only recently has IR become of interest for transcriptomic data analysis owing to its recognized roles in gene expression regulation and associations with complex diseases. In this article, we first review the function of IR in regulating gene expression in a number of biological processes, such as neuron differentiation and activation of CD4+ T cells. Next, we briefly review its association with diseases, such as Alzheimer's disease and cancers. Then, we describe state-of-the-art methods for IR detection, including RNA-seq analysis tools IRFinder and iREAD, highlighting their underlying principles and discussing their advantages and limitations. Finally, we discuss the challenges for IR detection and potential ways in which IR detection methods could be improved.
Collapse
Affiliation(s)
- Jian-Tao Zheng
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Cui-Xiang Lin
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhao-Yu Fang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
56
|
Sellamuthu G, Jegadeeson V, Sajeevan RS, Rajakani R, Parthasarathy P, Raju K, Shabala L, Chen ZH, Zhou M, Sowdhamini R, Shabala S, Venkataraman G. Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. FRONTIERS IN PLANT SCIENCE 2020; 11:267. [PMID: 32218795 PMCID: PMC7078337 DOI: 10.3389/fpls.2020.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 05/30/2023]
Abstract
The genome of Asian cultivated rice (Oryza sativa L.) shows the presence of six organelle-specific and one plasma membrane (OsNHX1-7) NHX-type cation proton antiporters. Of these, vacuolar-localized OsNHX1 is extensively characterized. The genus Oryza consists of 27 species and 11 genome-types, with cultivated rice, diploid O. sativa, having an AA-type genome. Oryza NHX1 orthologous regions (gene organization, 5' upstream cis elements, amino acid residues/motifs) from closely related Oryza AA genomes cluster distinctly from NHX1 regions from more ancestral Oryza BB, FF and KKLL genomes. These sequence-specific distinctions also extend to two separate intron retention (IR) events involving Oryza NHX1 transcripts that occur at the 5' and 3' ends of the NHX1 transcripts. We demonstrate that the IR event involving the 5' UTR is present only in more recently evolved Oryza AA genomes while the IR event governing retention of the 13th intron of Oryza NHX1 (terminal intron) is more ancient in origin, also occurring in halophytic wild rice, Oryza coarctata (KKLL). We also report presence of a retro-copy of the OcNHX1 cDNA in the genome of O. coarctata (rOcNHX1). Preferential species and tissue specific up- or down-regulation of the correctly spliced NHX1 transcript/5' UTR/13th intron-retaining splice variants under salinity was observed. The implications of IR on NHX1 mRNA stability and ORF diversity in Oryza spp. is discussed.
Collapse
Affiliation(s)
| | - Vidya Jegadeeson
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Radha Sivarajan Sajeevan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
57
|
Sun S, Deng D, Duan C, Zong X, Xu D, He Y, Zhu Z. Two Novel er1 Alleles Conferring Powdery Mildew ( Erysiphe pisi) Resistance Identified in a Worldwide Collection of Pea ( Pisum sativum L.) Germplasms. Int J Mol Sci 2019; 20:E5071. [PMID: 31614814 PMCID: PMC6829425 DOI: 10.3390/ijms20205071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 11/23/2022] Open
Abstract
Powdery mildew caused by Erysiphe pisi DC. severely affects pea crops worldwide. The use of resistant cultivars containing the er1 gene is the most effective way to control this disease. The objectives of this study were to reveal er1 alleles contained in 55 E. pisi-resistant pea germplasms and to develop the functional markers of novel alleles. Sequences of 10 homologous PsMLO1 cDNA clones from each germplasm accession were used to determine their er1 alleles. The frame shift mutations and various alternative splicing patterns were observed during transcription of the er1 gene. Two novel er1 alleles, er1-8 and er1-9, were discovered in the germplasm accessions G0004839 and G0004400, respectively, and four known er1 alleles were identified in 53 other accessions. One mutation in G0004839 was characterized by a 3-bp (GTG) deletion of the wild-type PsMLO1 cDNA, resulting in a missing valine at position 447 of the PsMLO1 protein sequence. Another mutation in G0004400 was caused by a 1-bp (T) deletion of the wild-type PsMLO1 cDNA sequence, resulting in a serine to leucine change of the PsMLO1 protein sequence. The er1-8 and er1-9 alleles were verified using resistance inheritance analysis and genetic mapping with respectively derived F2 and F2:3 populations. Finally, co-dominant functional markers specific to er1-8 and er1-9 were developed and validated in populations and pea germplasms. These results improve our understanding of E. pisi resistance in pea germplasms worldwide and provide powerful tools for marker-assisted selection in pea breeding.
Collapse
Affiliation(s)
- Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuxiao Zong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, China.
| | - Yuhua He
- Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
58
|
Yang Y, Pu Y, Yin X, Du J, Zhou Z, Yang D, Sun X, Sun H, Yang Y. A Splice Variant of BrrWSD1 in Turnip ( Brassica rapa var. rapa) and Its Possible Role in Wax Ester Synthesis under Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11077-11088. [PMID: 31525039 DOI: 10.1021/acs.jafc.9b04069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cuticular wax accumulation in plants contributes to drought tolerance. Here, we compared the drought levels on two varieties with different genotypes in turnip (Brassica rapa var. rapa) and found that the drought tolerance was higher in the waxy KTRG-B48a than in the wax-free KTRG-B48b. A combination of PacBio and Illumina sequencing analyses revealed that differential transcripts were mainly enriched in the wax synthesis pathway, and a splice variant (BrrWSD1-X2) was identified in the waxy KTRG-B48a. BrrWSD1-X2 had a stronger ability to synthesize wax esters than BrrWSD1-X1 using heterologous expression in yeast (Saccharomyces cerevisiae) mutant H1246a. Then, we speculated that the T to C transversion of the third intron and the higher number of TA repeats in the third intron of BrrWSD1 DNA in the waxy KTRG-B48a may result in a lower efficiency of splicing recognition of the third intron, resulting in the emergence of BrrWSD1-X2 in waxy varieties.
Collapse
Affiliation(s)
- Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| | - Yanan Pu
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiancan Du
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
| | - Zhili Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia , Kunming Institute of Botany, Chinese Academy of Science , Kunming , 650204 , People's Republic of China
- Plant Germplasm and Genomics Center , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- Institute of Tibetan Plateau Research at Kunming , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , 650201 , People's Republic of China
| |
Collapse
|
59
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
60
|
Ye X, Tang X, Wang X, Che J, Wu M, Liang J, Ye L, Qian Q, Li J, You Z, Zhang Y, Wang S, Zhong B. Improving Silkworm Genome Annotation Using a Proteogenomics Approach. J Proteome Res 2019; 18:3009-3019. [PMID: 31250652 DOI: 10.1021/acs.jproteome.8b00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The silkworm genome has been deeply sequenced and assembled, but accurate genome annotation, which is important for modern biological research, remains far from complete. To improve silkworm genome annotation, we carried out a proteogenomics analysis using 9.8 million mass spectra collected from different tissues and developmental stages of the silkworm. The results confirmed the translational products of 4307 existing gene models and identified 1701 novel genome search-specific peptides (GSSPs). Using these GSSPs, 74 novel gene-coding sequences were identified, and 121 existing gene models were corrected. We also identified 1182 novel junction peptides based on an exon-skipping database that resulted in the identification of 973 alternative splicing sites. Furthermore, we performed RNA-seq analysis to improve silkworm genome annotation at the transcriptional level. A total of 1704 new transcripts and 1136 new exons were identified, 2581 untranslated regions (UTRs) were revised, and 1301 alternative splicing (AS) genes were identified. The transcriptomics results were integrated with the proteomics data to further complement and verify the new annotations. In addition, 14 incorrect genes and 10 skipped exons were verified using the two analysis methods. Altogether, we identified 1838 new transcripts and 1593 AS genes and revised 5074 existing genes using proteogenomics and transcriptome analyses. Data are available via ProteomeXchange with identifier PXD009672. The large-scale proteogenomics and transcriptome analyses in this study will greatly improve silkworm genome annotation and contribute to future studies.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoli Tang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoxiao Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jiaqian Che
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Meiyu Wu
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianshe Liang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Lupeng Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Qiujie Qian
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianying Li
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Zhengying You
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Yuyu Zhang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Shaohua Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Boxiong Zhong
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| |
Collapse
|
61
|
Ma X, Zuo Z, Shao W, Jin Y, Meng Y. The expanding roles of Argonautes: RNA interference, splicing and beyond. Brief Funct Genomics 2019; 17:191-197. [PMID: 29240875 DOI: 10.1093/bfgp/elx045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Argonaute (AGO) protein family is highly conserved in eukaryotes and prokaryotes, reflecting its evolutionarily indispensible role in maintaining normal life cycle of the organisms. Small RNA-guided, AGO-dependent RNA interference (RNAi) is a well-studied pathway for gene expression regulation, which can be performed at transcriptional, posttranscriptional or translational level. In addition to RNAi, growing pieces of evidence point to a novel role of AGOs in pre-mRNA (messenger RNA precursor) splicing in animals. Many noncoding RNAs (ncRNAs) share common structural features with protein-coding genes, indicating that these ncRNAs might be subject to AGO-mediated splicing. Finally, we provide a comprehensive view that RNAi, transcription and RNA splicing are highly interactive processes, all of which involve several key factors such as AGOs. In this regard, the AGO proteins contribute to orchestrate an exquisite gene regulatory network in vivo. However, more research efforts are needed to reach a thorough understanding of the AGO activities.
Collapse
|
62
|
Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach. PLoS One 2019; 14:e0216068. [PMID: 31059518 PMCID: PMC6502313 DOI: 10.1371/journal.pone.0216068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Drought is a severe environmental stress. It is estimated that about 50% of the world rice production is affected mainly by drought. Apart from conventional breeding strategies to develop drought-tolerant crops, innovative computational approaches may provide insights into the underlying molecular mechanisms of stress response and identify drought-responsive markers. Here we propose a network-based computational approach involving a meta-analytic study of seven drought-tolerant rice genotypes under drought stress. RESULTS Co-expression networks enable large-scale analysis of gene-pair associations and tightly coupled clusters that may represent coordinated biological processes. Considering differentially expressed genes in the co-expressed modules and supplementing external information such as resistance/tolerance QTLs, transcription factors, network-based topological measures, we identify and prioritize drought-adaptive co-expressed gene modules and potential candidate genes. Using the candidate genes that are well-represented across the datasets as 'seed' genes, two drought-specific protein-protein interaction networks (PPINs) are constructed with up- and down-regulated genes. Cluster analysis of the up-regulated PPIN revealed ABA signalling pathway as a central process in drought response with a probable crosstalk with energy metabolic processes. Tightly coupled gene clusters representing up-regulation of core cellular respiratory processes and enhanced degradation of branched chain amino acids and cell wall metabolism are identified. Cluster analysis of down-regulated PPIN provides a snapshot of major processes associated with photosynthesis, growth, development and protein synthesis, most of which are shut down during drought. Differential regulation of phytohormones, e.g., jasmonic acid, cell wall metabolism, signalling and posttranslational modifications associated with biotic stress are elucidated. Functional characterization of topologically important, drought-responsive uncharacterized genes that may play a role in important processes such as ABA signalling, calcium signalling, photosynthesis and cell wall metabolism is discussed. Further transgenic studies on these genes may help in elucidating their biological role under stress conditions. CONCLUSION Currently, a large number of resources for rice functional genomics exist which are mostly underutilized by the scientific community. In this study, a computational approach integrating information from various resources such as gene co-expression networks, protein-protein interactions and pathway-level information is proposed to provide a systems-level view of complex drought-responsive processes across the drought-tolerant genotypes.
Collapse
Affiliation(s)
- Sanchari Sircar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
- * E-mail:
| |
Collapse
|
63
|
Ruggiero A, Landi S, Punzo P, Possenti M, Van Oosten MJ, Costa A, Morelli G, Maggio A, Grillo S, Batelli G. Salinity and ABA Seed Responses in Pepper: Expression and Interaction of ABA Core Signaling Components. FRONTIERS IN PLANT SCIENCE 2019; 10:304. [PMID: 30941154 PMCID: PMC6433719 DOI: 10.3389/fpls.2019.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Simone Landi
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | | | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | - Albino Maggio
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Reaserch Division Portici, Portici, Italy
| |
Collapse
|
64
|
Li Z, Shen J, Liang J. Genome-Wide Identification, Expression Profile, and Alternative Splicing Analysis of the Brassinosteroid-Signaling Kinase (BSK) Family Genes in Arabidopsis. Int J Mol Sci 2019; 20:ijms20051138. [PMID: 30845672 PMCID: PMC6429265 DOI: 10.3390/ijms20051138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Brassinosteroids (BRs) are steroid hormones essential for different biological processes, ranging from growth to environmental adaptation in plants. The plant brassinosteroid-signaling kinase (BSK) proteins belong to a family of receptor-like cytoplasmic kinases, which have been reported to play an important role in BR signal transduction. However, the knowledge of BSK genes in plants is still quite limited. In the present study, a total of 143 BSK proteins were identified by a genome-wide search in 17 plant species. A phylogenetic analysis showed that the BSK gene originated in embryophytes, with no BSK found in green algae, and these BSK genes were divided into six groups by comparison with orthologs/paralogs. A further study using comparative analyses of gene structure, expression patterns and alternative splicing of BSK genes in Arabidopsis revealed that all BSK proteins shared similar protein structure with some exception and post-translation modifications including sumolyation and ubiquitination. An expression profile analysis showed that most Arabidopsis BSK genes were constitutively expressed in different tissues; of these, several BSK genes were significantly expressed in response to some hormones or abiotic stresses. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) assays showed that BSK5, BSK7, and BSK9 underwent alternative splicing in specific stress induced and tissue-dependent patterns. Collectively, these results lay the foundation for further functional analyses of these genes in plants.
Collapse
Affiliation(s)
- Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Jinyu Shen
- Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou 225000, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
65
|
Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis). Sci Rep 2019; 9:2709. [PMID: 30804390 PMCID: PMC6389920 DOI: 10.1038/s41598-019-39286-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/22/2019] [Indexed: 11/08/2022] Open
Abstract
Flavonoids, theanine and caffeine are the main secondary metabolites of the tea plant (Camellia sinensis), which account for the tea's unique flavor quality and health benefits. The biosynthesis pathways of these metabolites have been extensively studied at the transcriptional level, but the regulatory mechanisms are still unclear. In this study, to explore the transcriptome diversity and complexity of tea plant, PacBio Iso-Seq and RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression during the leaf development. A total of 1,388,066 reads of insert (ROI) were generated with an average length of 1,762 bp, and more than 54% (755,716) of the ROIs were full-length non-chimeric (FLNC) reads. The Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness was 92.7%. A total of 93,883 non-redundant transcripts were obtained, and 87,395 (93.1%) were new alternatively spliced isoforms. Meanwhile, 7,650 differential expression transcripts (DETs) were identified. A total of 28,980 alternative splicing (AS) events were predicted, including 1,297 differential AS (DAS) events. The transcript isoforms of the key genes involved in the flavonoid, theanine and caffeine biosynthesis pathways were characterized. Additionally, 5,777 fusion transcripts and 9,052 long non-coding RNAs (lncRNAs) were also predicted. Our results revealed that AS potentially plays a crucial role in the regulation of the secondary metabolism of the tea plant. These findings enhanced our understanding of the complexity of the secondary metabolic regulation of tea plants and provided a basis for the subsequent exploration of the regulatory mechanisms of flavonoid, theanine and caffeine biosynthesis in tea plants.
Collapse
|
66
|
Cao J. Molecular Evolution of the Vacuolar Iron Transporter ( VIT) Family Genes in 14 Plant Species. Genes (Basel) 2019; 10:E144. [PMID: 30769903 PMCID: PMC6409731 DOI: 10.3390/genes10020144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The vacuolar iron transporter (VIT) proteins are involved in the storage and transport of iron. However, the evolution of this gene family in plants is unknown. In this study, I first identified 114 VIT genes in 14 plant species and classified these genes into seven groups by phylogenetic analysis. Conserved gene organization and motif distribution implied conserved function in each group. I also found that tandem duplication, segmental duplication and transposition contributed to the expansion of this gene family. Additionally, several positive selection sites were identified. Divergent expression patterns of soybean VIT genes were further investigated in different development stages and under iron stress. Functional network analysis exhibited 211 physical or functional interactions. The results will provide the basis for further functional studies of the VIT genes in plants.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
67
|
Vyacheslavova AO, Abdeeva IA, Piruzian ES, Bruskin SA. Protein interference for regulation of gene expression in plants. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcription factors (TFs) play a central role in the gene regulation associated with a plant's development and its response to the environmental factors. The work of TFs is well regulated at each stage of their activities. TFs usually consist of three protein domains required for DNA binding, dimerization, and transcriptional regulation. Alternative splicing (AS) produces multiple proteins with varying composition of domains. Recent studies have shown that AS of some TF genes form small proteins (small interfering peptide/small interfering protein, siPEP/siPRoT), which lack one or more domains and negatively regulate target TFs by the mechanism of protein interference (peptide interference/protein interference, PEPi/PROTi). The presence of an alternative form for the transcription factor CCA1 of Arabidopsis thaliana, has been shown to be involved in the regulation of the response to cold stress. For the PtFLC protein, one of the isoforms was found, which is formed as a result of alternative splicing and acts as a negative repressor, binding to the full-length TF PtFLC and therefore regulating the development of the Poncirus trifoliata. For A. thaliana, a FLM gene was found forming the FLM-б isoform, which acts as a dominant negative regulator and stimulates the development of the flower formation process due to the formation of a heterodimer with SVP TF. Small interfering peptides and proteins can actively participate in the regulation of gene expression, for example, in situations of stress or at different stages of plant development. Moreover, small interfering peptides and proteins can be used as a tool for fundamental research on the function of genes as well as for applied research for permanent or temporary knockout of genes. In this review, we have demonstrated recent studies related to siPEP/siPROT and their involvement in the response to various stresses, as well as possible ways to obtain small proteins.
Collapse
|
68
|
Manipulating mRNA splicing by base editing in plants. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1293-1300. [DOI: 10.1007/s11427-018-9392-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/04/2023]
|
69
|
Bazin J, Romero N, Rigo R, Charon C, Blein T, Ariel F, Crespi M. Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1209. [PMID: 30186296 PMCID: PMC6111844 DOI: 10.3389/fpls.2018.01209] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Nuclear speckle RNA binding proteins (NSRs) act as regulators of alternative splicing (AS) and auxin-regulated developmental processes such as lateral root formation in Arabidopsis thaliana. These proteins were shown to interact with specific alternatively spliced mRNA targets and at least with one structured lncRNA, named Alternative Splicing Competitor RNA. Here, we used genome-wide analysis of RNAseq to monitor the NSR global role on multiple tiers of gene expression, including RNA processing and AS. NSRs affect AS of 100s of genes as well as the abundance of lncRNAs particularly in response to auxin. Among them, the FPA floral regulator displayed alternative polyadenylation and differential expression of antisense COOLAIR lncRNAs in nsra/b mutants. This may explains the early flowering phenotype observed in nsra and nsra/b mutants. GO enrichment analysis of affected lines revealed a novel link of NSRs with the immune response pathway. A RIP-seq approach on an NSRa fusion protein in mutant background identified that lncRNAs are privileged direct targets of NSRs in addition to specific AS mRNAs. The interplay of lncRNAs and AS mRNAs in NSR-containing complexes may control the crosstalk between auxin and the immune response pathway.
Collapse
Affiliation(s)
- Jérémie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Natali Romero
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Richard Rigo
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Celine Charon
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Thomas Blein
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Federico Ariel
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
- Instituto de Agrobiotecnologıa del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| |
Collapse
|
70
|
Peng Z, He S, Gong W, Xu F, Pan Z, Jia Y, Geng X, Du X. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC PLANT BIOLOGY 2018; 18:128. [PMID: 29925319 PMCID: PMC6011603 DOI: 10.1186/s12870-018-1350-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/12/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress that limits upland cotton growth and reduces fibre production worldwide. To reveal genetic regulation via transcript and protein levels after salt stress, we comprehensively analysed the global changes in mRNA, miRNA, and protein profiles in response to salt stress in two contrasting salt-tolerant cotton genotypes. RESULTS In the current study, proteomic and mRNA-seq data were combined to reveal that some genes are differentially expressed at both the proteomic and mRNA levels. However, we observed no significant change in mRNA corresponding to most of the strongly differentially abundant proteins. This finding may have resulted from global changes in alternative splicing events and miRNA levels under salt stress conditions. Evidence was provided indicating that several salt stress-responsive proteins can alter miRNAs and modulate alternative splicing events in upland cotton. The results of the stringent screening of the mRNA-seq and proteomic data between the salt-tolerant and salt-sensitive genotypes identified 63 and 85 candidate genes/proteins related to salt tolerance after 4 and 24 h of salt stress, respectively, between the tolerant and sensitive genotype. Finally, we predicted an interaction network comprising 158 genes/proteins and then discovered that two main clusters in the network were composed of ATP synthase (CotAD_74681) and cytochrome oxidase (CotAD_46197) in mitochondria. The results revealed that mitochondria, as important organelles involved in energy metabolism, play an essential role in the synthesis of resistance proteins during the process of salt exposure. CONCLUSION We provided a plausible schematic for the systematic salt tolerance model; this schematic reveals multiple levels of gene regulation in response to salt stress in cotton and provides a list of salt tolerance-related genes/proteins. The information here will facilitate candidate gene discovery and molecular marker development for salt tolerance breeding in cotton.
Collapse
Affiliation(s)
- Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Feifei Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
71
|
Yuan Y, Chen S. Widespread antisense transcription of Populus genome under drought. Mol Genet Genomics 2018; 293:1017-1033. [PMID: 29876646 DOI: 10.1007/s00438-018-1456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.
Collapse
Affiliation(s)
- Yinan Yuan
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Su Chen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
72
|
Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress. DNA Res 2018; 24:205-217. [PMID: 28025318 PMCID: PMC5397606 DOI: 10.1093/dnares/dsw051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire spectrum of HS-related AS, samples taken directly after HS and after recovery were combined and analysed by RNA-seq. For nearly 9,200 genes per cultivar, we observed at least one AS event under HS. In comparison to control, for one cultivar we observed 76% more genes with intron retention (IR) or exon skipping (ES) under HS. Furthermore, 2,343 genes had at least one transcript with IR or ES accumulated under HS in both cultivars. These genes are involved in biological processes like protein folding, gene expression and heat response. Transcriptome assembly of these genes revealed that most of the alternative spliced transcripts possess truncated coding sequences resulting in partial or total loss of functional domains. Moreover, 141 HS specific and 22 HS repressed transcripts were identified. Further on, we propose AS as layer of stress response regulating constitutively expressed genes under HS by isoform abundance.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438 Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants.,Cluster of Excellence Frankfurt
| |
Collapse
|
73
|
Lin SY, Chooi YH, Solomon PS. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum. Mol Microbiol 2018; 109:78-90. [PMID: 29722915 DOI: 10.1111/mmi.13968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.
Collapse
Affiliation(s)
- Shao-Yu Lin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
74
|
Shao M, Ma J, Wang S. DeepBound: accurate identification of transcript boundaries via deep convolutional neural fields. Bioinformatics 2018; 33:i267-i273. [PMID: 28881999 PMCID: PMC5870651 DOI: 10.1093/bioinformatics/btx267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Motivation Reconstructing the full-length expressed transcripts (a.k.a. the transcript assembly problem) from the short sequencing reads produced by RNA-seq protocol plays a central role in identifying novel genes and transcripts as well as in studying gene expressions and gene functions. A crucial step in transcript assembly is to accurately determine the splicing junctions and boundaries of the expressed transcripts from the reads alignment. In contrast to the splicing junctions that can be efficiently detected from spliced reads, the problem of identifying boundaries remains open and challenging, due to the fact that the signal related to boundaries is noisy and weak. Results We present DeepBound, an effective approach to identify boundaries of expressed transcripts from RNA-seq reads alignment. In its core DeepBound employs deep convolutional neural fields to learn the hidden distributions and patterns of boundaries. To accurately model the transition probabilities and to solve the label-imbalance problem, we novelly incorporate the AUC (area under the curve) score into the optimizing objective function. To address the issue that deep probabilistic graphical models requires large number of labeled training samples, we propose to use simulated RNA-seq datasets to train our model. Through extensive experimental studies on both simulation datasets of two species and biological datasets, we show that DeepBound consistently and significantly outperforms the two existing methods. Availability and implementation DeepBound is freely available at https://github.com/realbigws/DeepBound.
Collapse
Affiliation(s)
- Mingfu Shao
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- To whom correspondence should be addressed. or
| | - Jianzhu Ma
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sheng Wang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- To whom correspondence should be addressed. or
| |
Collapse
|
75
|
Wei G, Liu K, Shen T, Shi J, Liu B, Han M, Peng M, Fu H, Song Y, Zhu J, Dong A, Ni T. Position-specific intron retention is mediated by the histone methyltransferase SDG725. BMC Biol 2018; 16:44. [PMID: 29706137 PMCID: PMC5925840 DOI: 10.1186/s12915-018-0513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Intron retention (IR), the most prevalent alternative splicing form in plants, plays a critical role in gene expression during plant development and stress response. However, the molecular mechanisms underlying IR regulation remain largely unknown. RESULTS Knockdown of SDG725, a histone H3 lysine 36 (H3K36)-specific methyltransferase in rice, leads to alterations of IR in more than 4700 genes. Surprisingly, IR events are globally increased at the 5' region but decreased at the 3' region of the gene body in the SDG725-knockdown mutant. Chromatin immunoprecipitation sequencing analyses reveal that SDG725 depletion results in a genome-wide increase of the H3K36 mono-methylation (H3K36me1) but, unexpectedly, promoter-proximal shifts of H3K36 di- and tri-methylation (H3K36me2 and H3K36me3). Consistent with the results in animals, the levels of H3K36me1/me2/me3 in rice positively correlate with gene expression levels, whereas shifts of H3K36me2/me3 coincide with position-specific alterations of IR. We find that either H3K36me2 or H3K36me3 alone contributes to the positional change of IR caused by SDG725 knockdown, although IR shift is more significant when both H3K36me2 and H3K36me3 modifications are simultaneously shifted. CONCLUSIONS Our results revealed that SDG725 modulates IR in a position-specific manner, indicating that H3K36 methylation plays a role in RNA splicing, probably by marking the retained introns in plants.
Collapse
Affiliation(s)
- Gang Wei
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Kunpeng Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jinlei Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Miao Han
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Haihui Fu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yifan Song
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
76
|
Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, Li M, Jiang X, Wang Y, Gao L, Xia T. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4281-4293. [PMID: 29606002 DOI: 10.1021/acs.jafc.8b00946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tea is an important economic crop with a 3.02 Gb genome. It accumulates various bioactive compounds, especially catechins, which are closely associated with tea flavor and quality. Catechins are biosynthesized through the phenylpropanoid and flavonoid pathways, with 12 structural genes being involved in their synthesis. However, we found that in Camellia sinensis the understanding of the basic profile of catechins biosynthesis is still unclear. The gene structure, locus, transcript number, transcriptional variation, and function of multigene families have not yet been clarified. Our previous studies demonstrated that the accumulation of flavonoids in tea is species, tissue, and induction specific, which indicates that gene coexpression patterns may be involved in tea catechins and flavonoids biosynthesis. In this paper, we screened candidate genes of multigene families involved in the phenylpropanoid and flavonoid pathways based on an analysis of genome and transcriptome sequence data. The authenticity of candidate genes was verified by PCR cloning, and their function was validated by reverse genetic methods. In the present study, 36 genes from 12 gene families were identified and were accessed in the NCBI database. During this process, some intron retention events of the CsCHI and CsDFR genes were found. Furthermore, the transcriptome sequencing of various tea tissues and subcellular location assays revealed coexpression and colocalization patterns. The correlation analysis showed that CsCHIc, CsF3'H, and CsANRb expression levels are associated significantly with the concentration of soluble PA as well as the expression levels of CsPALc and CsPALf with the concentration of insoluble PA. This work provides insights into catechins metabolism in tea and provides a foundation for future studies.
Collapse
Affiliation(s)
- Wenzhao Wang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yihui Zhou
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yingling Wu
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yajun Liu
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Yumei Qian
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
- School of Biological and Food Engineering , Suzhou University , 49 Middle Bianhe Road , Suzhou , 234000 Anhui , China
| | - Mingzhuo Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
- Department of Plant and Microbial Biology , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yunsheng Wang
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Liping Gao
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| |
Collapse
|
77
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
78
|
Vanichkina DP, Schmitz U, Wong JJL, Rasko JE. Challenges in defining the role of intron retention in normal biology and disease. Semin Cell Dev Biol 2018; 75:40-49. [DOI: 10.1016/j.semcdb.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
79
|
Laloum T, Martín G, Duque P. Alternative Splicing Control of Abiotic Stress Responses. TRENDS IN PLANT SCIENCE 2018; 23:140-150. [PMID: 29074233 DOI: 10.1016/j.tplants.2017.09.019] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future.
Collapse
Affiliation(s)
- Tom Laloum
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Guiomar Martín
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
80
|
Albaqami M, Reddy ASN. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. PLANT METHODS 2018; 14:1. [PMID: 29321806 PMCID: PMC5757305 DOI: 10.1186/s13007-017-0271-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pre-mRNA splicing is an essential post-transcriptional process in all eukaryotes. In vitro splicing systems using nuclear or cytoplasmic extracts from mammalian cells, yeast, and Drosophila have provided a wealth of mechanistic insights into assembly and composition of the spliceosome, splicing regulatory proteins and mechanisms of pre-mRNA splicing in non-plant systems. The lack of an in vitro splicing system prepared from plant cells has been a major limitation in splicing research in plants. RESULTS Here we report an in vitro splicing assay system using plant nuclear extract. Several lines of evidence indicate that nuclear extract derived from Arabidopsis seedlings can convert pre-mRNA substrate (LHCB3) into a spliced product. These include: (1) generation of an RNA product that corresponds to the size of expected mRNA, (2) a junction-mapping assay using S1 nuclease revealed that the two exons are spliced together, (3) the reaction conditions are similar to those found with non-plant extracts and (4) finally mutations in conserved donor and acceptor sites abolished the production of the spliced product. CONCLUSIONS This first report on the plant in vitro splicing assay opens new avenues to investigate plant spliceosome assembly and composition, and splicing regulatory mechanisms specific to plants.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
81
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
82
|
Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proc Natl Acad Sci U S A 2017; 114:E9722-E9729. [PMID: 29078399 DOI: 10.1073/pnas.1714422114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Secondary cell wall (SCW) biosynthesis is the biological process that generates wood, an important renewable feedstock for materials and energy. NAC domain transcription factors, particularly Vascular-Related NAC-Domain (VND) and Secondary Wall-Associated NAC Domain (SND) proteins, are known to regulate SCW differentiation. The regulation of VND and SND is important to maintain homeostasis for plants to avoid abnormal growth and development. We previously identified a splice variant, PtrSND1-A2IR , derived from PtrSND1-A2 as a dominant-negative regulator, which suppresses the transactivation of all PtrSND1 family members. PtrSND1-A2IR also suppresses the self-activation of the PtrSND1 family members except for its cognate transcription factor, PtrSND1-A2, suggesting the existence of an unknown factor needed to regulate PtrSND1-A2 Here, a splice variant, PtrVND6-C1IR , derived from PtrVND6-C1 was discovered that suppresses the protein functions of all PtrVND6 family members. PtrVND6-C1IR also suppresses the expression of all PtrSND1 members, including PtrSND1-A2, demonstrating that PtrVND6-C1IR is the previously unidentified regulator of PtrSND1-A2 We also found that PtrVND6-C1IR cannot suppress the expression of its cognate transcription factor, PtrVND6-C1PtrVND6-C1 is suppressed by PtrSND1-A2IR Both PtrVND6-C1IR and PtrSND1-A2IR cannot suppress their cognate transcription factors but can suppress all members of the other family. The results indicate that the splice variants from the PtrVND6 and PtrSND1 family may exert reciprocal cross-regulation for complete transcriptional regulation of these two families in wood formation. This reciprocal cross-regulation between families suggests a general mechanism among NAC domain proteins and likely other transcription factors, where intron-retained splice variants provide an additional level of regulation.
Collapse
|
83
|
Pirnie SP, Osman A, Zhu Y, Carmichael GG. An Ultraconserved Element (UCE) controls homeostatic splicing of ARGLU1 mRNA. Nucleic Acids Res 2017; 45:3473-3486. [PMID: 27899669 PMCID: PMC5389617 DOI: 10.1093/nar/gkw1140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Arginine and Glutamate-Rich protein 1 (ARGLU1) is a protein whose function is poorly understood, but may act in both transcription and pre-mRNA splicing. We demonstrate that the ARGLU1 gene expresses at least three distinct RNA splice isoforms – a fully spliced isoform coding for the protein, an isoform containing a retained intron that is detained in the nucleus, and an isoform containing an alternative exon that targets the transcript for nonsense mediated decay. Furthermore, ARGLU1 contains a long, highly evolutionarily conserved sequence known as an Ultraconserved Element (UCE) that is within the retained intron and overlaps the alternative exon. Manipulation of the UCE, in a reporter minigene or via random mutations in the genomic context using CRISPR/Cas9, changed the splicing pattern. Further, overexpression of the ARGLU1 protein shifted the splicing of endogenous ARGLU1 mRNA, resulting in an increase in the retained intron isoform and nonsense mediated decay susceptible isoform and a decrease in the fully spliced isoform. Taken together with data showing that functional protein knockout shifts splicing toward the fully spliced isoform, our data are consistent with a model in which unproductive splicing complexes assembled at the alternative exon lead to inefficient splicing and intron retention.
Collapse
Affiliation(s)
- Stephan P Pirnie
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Ahmad Osman
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Yinzhou Zhu
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
84
|
Regulated Intron Removal Integrates Motivational State and Experience. Cell 2017; 169:836-848.e15. [PMID: 28525754 DOI: 10.1016/j.cell.2017.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022]
Abstract
Myriad experiences produce transient memory, yet, contingent on the internal state of the organism and the saliency of the experience, only some memories persist over time. How experience and internal state influence the duration of memory at the molecular level remains unknown. A self-assembled aggregated state of Drosophila Orb2A protein is required specifically for long-lasting memory. We report that in the adult fly brain the mRNA encoding Orb2A protein exists in an unspliced non-protein-coding form. The convergence of experience and internal drive transiently increases the spliced protein-coding Orb2A mRNA. A screen identified pasilla, the fly ortholog of mammalian Nova-1/2, as a mediator of Orb2A mRNA processing. A single-nucleotide substitution in the intronic region that reduces Pasilla binding and intron removal selectively impairs long-term memory. We posit that pasilla-mediated processing of unspliced Orb2A mRNA integrates experience and internal state to control Orb2A protein abundance and long-term memory formation.
Collapse
|
85
|
Zeng W, Liu Z, Liu X, Zhang S, Khanniche A, Zheng Y, Ma X, Yu T, Tian F, Liu XR, Fan J, Lin Y. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4 + T Cells in Early Human Pregnancy. Front Immunol 2017; 8:682. [PMID: 28659920 PMCID: PMC5466981 DOI: 10.3389/fimmu.2017.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Decidual CD4+ T (dCD4 T) cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS) landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T) cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-patient Operating Room, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
86
|
Wang G, Weng L, Li M, Xiao H. Response of Gene Expression and Alternative Splicing to Distinct Growth Environments in Tomato. Int J Mol Sci 2017; 18:E475. [PMID: 28257093 PMCID: PMC5372491 DOI: 10.3390/ijms18030475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Phenotypic plasticity is the phenomenon that one particular genotype produces different phenotypes under different environmental conditions, but its underlying molecular and genetic mechanisms are poorly understood. Plastic traits may be under the control of genes whose expression is modulated by environmental cues. In this study, we investigated phenotypic plasticity in tomato (Solanum lycopersicum) and its ancestral species S. pimpinellifolium by comparing the global gene expression of young seedlings grown under two distinct growth conditions. Our results show that more than 7000 genes exhibited differential expression in response to environmental changes from phytotron to a plastic greenhouse, and 98 environmentally sensitive genes displayed the same patterns of expression response across the two tomato species. We also found that growth conditions had a remarkable impact on transcriptome complexity, attributable to alternative splicing (AS), in which 665 splice variants showed differential expression in response to the environmental changes. Moreover, more splice variants and AS events per gene were detected in plastic greenhouse-grown seedlings than their phytotron counterparts, and these seedlings also had higher percentages of intron retention events. The identification of the conserved environmentally-sensitive genes and the splice variants in this study will be useful for further analysis of gene regulation of environmental response in tomato and other crops.
Collapse
Affiliation(s)
- Guixiang Wang
- University of Chinese Academy of Sciences, 19A Yuquan Rd., Beijing 100049, China.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), 300 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
87
|
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:789-804. [PMID: 27862469 DOI: 10.1111/tpj.13415] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Vivek Krishnakumar
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Agnes P Chan
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, US National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Seth Schobel
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Christopher D Town
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
88
|
Li S, Yamada M, Han X, Ohler U, Benfey PN. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Dev Cell 2016; 39:508-522. [PMID: 27840108 DOI: 10.1016/j.devcel.2016.10.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/15/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types.
Collapse
Affiliation(s)
- Song Li
- Department of Biology and HHMI, Duke University, Durham, NC 27708, USA
| | - Masashi Yamada
- Department of Biology and HHMI, Duke University, Durham, NC 27708, USA
| | - Xinwei Han
- Department of Biology and HHMI, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27710, USA; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
| | - Philip N Benfey
- Department of Biology and HHMI, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
89
|
Stepien A, Knop K, Dolata J, Taube M, Bajczyk M, Barciszewska-Pacak M, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z. Posttranscriptional coordination of splicing and miRNA biogenesis in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [DOI: 10.1002/wrna.1403] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 09/30/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Agata Stepien
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Katarzyna Knop
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Michal Taube
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Maria Barciszewska-Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| |
Collapse
|
90
|
Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila. G3-GENES GENOMES GENETICS 2016; 6:3603-3613. [PMID: 27633791 PMCID: PMC5100859 DOI: 10.1534/g3.116.033308] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS) transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.
Collapse
|
91
|
Li Y, Bor YC, Fitzgerald MP, Lee KS, Rekosh D, Hammarskjold ML. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell 2016; 27:3903-3912. [PMID: 27708137 PMCID: PMC5170612 DOI: 10.1091/mbc.e16-07-0515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
A small Nxf1 protein, expressed from an NXF1 mRNA with a retained intron is highly expressed in rodent hippocampal and neocortical neurons, colocalizes with Staufen2 proteins in neuronal RNA granules, is present in polysomes, and replaces Nxt1 as an Nxf1 cofactor in export and expression of mRNA with retained introns. The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356–amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes.
Collapse
Affiliation(s)
- Ying Li
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yeou-Cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mark P Fitzgerald
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
92
|
Transcriptome Dynamics during Maize Endosperm Development. PLoS One 2016; 11:e0163814. [PMID: 27695101 PMCID: PMC5047526 DOI: 10.1371/journal.pone.0163814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.
Collapse
|
93
|
Yang Y, Zheng B, Bao C, Huang H, Ye H. Vitellogenin2: spermatozoon specificity and immunoprotection in mud crabs. Reproduction 2016; 152:235-43. [DOI: 10.1530/rep-16-0188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
As the precursor of vitellin (Vn), vitellogenin (Vg) has initially been considered as a female-specific protein involved in vitellogenesis, while it was also present in males induced by hormones or organs manipulation. Distinct from vtg1 we previously found in female mud crab Scylla paramamosain, vtg2 was intriguingly detected in male testis under normal physiological conditions in this study. Sequence analysis showed that vtg2 and vtg1 were actually two isoforms of Vg caused by different types of alternative splicing. PCR and in situ hybridization analysis revealed that vtg2 was localized only in the testicular spermatozoa, while Vn was detected in both the spermatozoa of the testis and seminal vesicle. Therefore, we speculated that Vn was initially translated in testicular spermatozoa, then migrated with spermatozoa, and finally stored in the seminal vesicle, where spermatozoa gradually accomplished maturation. We presumed that vtg2/Vn might act as an immune-relevant molecule in the male reproduction system. In the subsequent experiment, the expression of vtg2/Vn in testis was significantly induced in response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) injection at both transcriptional and translational levels. In the light of the results presented above, we deemed that vtg2/Vn is a novel candidate of immune-relevant molecules involved in immunoprotection during the spermatozoon maturation, and this research helps to open a new avenue for further exploring the role of Vg.
Collapse
|
94
|
Adega F, Borges A, Chaves R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet Sci 2016; 3:vetsci3030017. [PMID: 29056725 PMCID: PMC5606576 DOI: 10.3390/vetsci3030017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022] Open
Abstract
The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias) and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression) regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively), but also to present a critical point of view of some of the issues that really need to be investigated in future research.
Collapse
Affiliation(s)
- Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Ana Borges
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5001-801, Portugal.
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| |
Collapse
|
95
|
The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress. Int J Mol Sci 2016; 17:ijms17071154. [PMID: 27447607 PMCID: PMC4964526 DOI: 10.3390/ijms17071154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/03/2022] Open
Abstract
Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1.
Collapse
|
96
|
Zafrir Z, Zur H, Tuller T. Selection for reduced translation costs at the intronic 5' end in fungi. DNA Res 2016; 23:377-94. [PMID: 27260512 PMCID: PMC4991832 DOI: 10.1093/dnares/dsw019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 12/12/2022] Open
Abstract
It is generally believed that introns are not translated; therefore, the potential intronic features that may be related to the translation step (occurring after splicing) have yet to be thoroughly studied. Here, focusing on four fungi, we performed for the first time a comprehensive study aimed at characterizing how translation efficiency is encoded in introns and affects their evolution. By analysing their intronome we provide evidence of selection for STOP codons close to the intronic 5′ end, and show that the beginning of introns are selected for significantly high translation, presumably to reduce translation and metabolic costs in cases of non-spliced introns. Ribosomal profiling data analysis in Saccharomyces cerevisiae supports the conjecture that in this organism intron retention frequently occurs, introns are partially translated, and their translation efficiency affects organismal fitness. We show that the reported results are more significant in highly translated and highly spliced genes, but are not associated only with genes with a specific function. We also discuss the potential relation of the reported signals to efficient nonsense-mediated decay due to splicing errors. These new discoveries are supported by population-genetics considerations. In addition, they are contributory steps towards a broader understanding of intron evolution and the effect of silent mutations on gene expression and organismal fitness.
Collapse
Affiliation(s)
- Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Zur
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
97
|
Ahrazem O, Rubio-Moraga A, Argandoña-Picazo J, Castillo R, Gómez-Gómez L. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. PLANT MOLECULAR BIOLOGY 2016; 91:355-374. [PMID: 27071403 PMCID: PMC4884571 DOI: 10.1007/s11103-016-0473-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/22/2016] [Indexed: 05/30/2023]
Abstract
The carotenoid cleavage dioxygenase 2, a new member of the CCD family, catalyzes the conversion of zeaxanthin into crocetin-dialdehyde in Crocus. CCD2 is expressed in flowers, being responsible for the yellow, orange and red colorations displayed by tepals and stigma. Three CsCCD2 genes were identified in Crocus sativus, the longest contains ten exons and the shorter is a truncated copy with no introns and which lacks one exon sequence. Analysis of RNA-seq datasets of three developmental stages of saffron stigma allowed the determination of alternative splicing in CsCCD2, being intron retention (IR) the prevalent form of alternative splicing in CsCCD2. Further, high IR was observed in tissues that do not accumulate crocetin. The analysis of one CsCCD2 promoter showed cis-regulatory motifs involved in the response to light, temperature, and circadian regulation. The light and circadian regulation are common elements shared with the previously characterized CsLycB2a promoter, and these shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation of these genes during the development of the stigma in saffron. A daily coordinated rhythmic regulation for CsCCD2 and CsLycB2a was observed, with higher levels of mRNA occurring at low temperatures during darkness, confirming the results obtained in the in silico promoter analysis. In addition, to the light and temperature dependent regulation of CsCCD2 expression, the apocarotenoid β-cyclocitral up-regulated CsCCD2 expression and could acts as a mediator of chromoplast-to-nucleus signalling, coordinating the expression of CsCCD2 with the developmental state of the chromoplast in the developing stigma.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
- Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Javier Argandoña-Picazo
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Raquel Castillo
- VITAB Laboratorios, Polígono Industrial Garysol C/Pino, parcela 53, La Gineta, 02110, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
98
|
Abstract
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.
Collapse
|
99
|
Zhang C, Yang H, Yang H. Evolutionary Character of Alternative Splicing in Plants. Bioinform Biol Insights 2016; 9:47-52. [PMID: 26819552 PMCID: PMC4721685 DOI: 10.4137/bbi.s33716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable.
Collapse
Affiliation(s)
- Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Huizhao Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
100
|
Affiliation(s)
- Justin J.-L. Wong
- Gene and Stem Cell Therapy Program, Centenary Institute; Royal Prince Alfred Hospital; Camperdown Australia
- Sydney Medical School; University of Sydney; Camperdown Australia
| | - Amy Y. M. Au
- Gene and Stem Cell Therapy Program, Centenary Institute; Royal Prince Alfred Hospital; Camperdown Australia
- Sydney Medical School; University of Sydney; Camperdown Australia
| | - William Ritchie
- Gene and Stem Cell Therapy Program, Centenary Institute; Royal Prince Alfred Hospital; Camperdown Australia
- Sydney Medical School; University of Sydney; Camperdown Australia
- Department of Bioinformatics, Centenary Institute; Royal Prince Alfred Hospital; Camperdown Australia
| | - John E. J. Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute; Royal Prince Alfred Hospital; Camperdown Australia
- Sydney Medical School; University of Sydney; Camperdown Australia
- Cell and Molecular Therapies; Royal Prince Alfred Hospital; Camperdown Australia
| |
Collapse
|